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Abstract

Background: Despite the promise of machine learning (ML) to inform individualized medical care, the clinical utility of ML
in medicine has been limited by the minimal interpretability and black box nature of these algorithms.

Objective: The study aimed to demonstrate a general and simple framework for generating clinically relevant and interpretable
visualizations of black box predictions to aid in the clinical translation of ML.

Methods: To obtain improved transparency of ML, simplified models and visual displays can be generated using common
methods from clinical practice such as decision trees and effect plots. We illustrated the approach based on postprocessing of
ML predictions, in this case random forest predictions, and applied the method to data from the Left Ventricular (LV) Structural
Predictors of Sudden Cardiac Death (SCD) Registry for individualized risk prediction of SCD, a leading cause of death.

Results: With the LV Structural Predictors of SCD Registry data, SCD risk predictions are obtained from a random forest
algorithm that identifies the most important predictors, nonlinearities, and interactions among a large number of variables while
naturally accounting for missing data. The black box predictions are postprocessed using classification and regression trees into
a clinically relevant and interpretable visualization. The method also quantifies the relative importance of an individual or a
combination of predictors. Several risk factors (heart failure hospitalization, cardiac magnetic resonance imaging indices, and
serum concentration of systemic inflammation) can be clearly visualized as branch points of a decision tree to discriminate
between low-, intermediate-, and high-risk patients.

Conclusions: Through a clinically important example, we illustrate a general and simple approach to increase the clinical
translation of ML through clinician-tailored visual displays of results from black box algorithms. We illustrate this general
model-agnostic framework by applying it to SCD risk prediction. Although we illustrate the methods using SCD prediction with
random forest, the methods presented are applicable more broadly to improving the clinical translation of ML, regardless of the
specific ML algorithm or clinical application. As any trained predictive model can be summarized in this manner to a prespecified
level of precision, we encourage the use of simplified visual displays as an adjunct to the complex predictive model. Overall, this
framework can allow clinicians to peek inside the black box and develop a deeper understanding of the most important features
from a model to gain trust in the predictions and confidence in applying them to clinical care.

(JMIR Med Inform 2020;8(6):e15791) doi: 10.2196/15791
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Introduction

Background
There is growing interest in benefiting from the predictive power
of machine learning (ML) to improve the outcomes of medical
care at more affordable costs. Although notable for their
impressive predictive ability, ML black box predictions are
often characterized by minimal interpretability, limiting their
clinical adoption despite their promise for improving health
care [1-6]. As a result, there is growing emphasis on the field
of interpretable ML or explainable Artificial Intelligence to
provide explanations of how models make their decisions [6-8].
However, the lack of understanding of how ML predictions are
generated and the complex relationships between the predictors
and outcomes are still obstacles to the adoption of ML in clinical
practice.

Many approaches have been developed to explain predictions
and determine ML feature importance and effect, but they have
limited adoption in real-world clinical applications [9-12]. There
have been previous proposals to stack ML methods or to use
rule extraction with ML output to produce simpler summaries,
but because of their inherent complexities or lack of clinical
applications, these tools are seldom used in medicine [13-16].

Objectives
To accelerate the integration of ML into clinical care, an
emphasis on the personalization of these tools for the end user
is crucial. Our work is motivated by the well-known clinical
challenge of measuring an individual's risk of sudden cardiac
death (SCD), a leading cause of death with inherently complex
pathophysiology that lends itself to novel approaches [17-22].
Although we focus here on SCD as an illustrative example, the
methods we present are applicable more broadly to improving
clinical translation of ML, regardless of the specific ML

algorithm or clinical application. The contribution of this work
is a general framework for translating complex black box
predictions into easily understood representations through
commonly encountered clinical summaries. Overall, we
emphasize the need for multidisciplinary teams to create
clinician-tailored visual displays that provide interpretability in
ways that are personalized to the clinician’s preferences for
understanding ML predictions to aid in effective clinical
translation of ML.

Methods

Data Source
The Left Ventricular (LV) Structural Predictors of SCD Registry
is a prospective observational registry (clinicaltrials.gov,
NCT01076660), which enrolled 382 patients for the primary
end point of an adjudicated appropriate implantable cardioverter
defibrillator firing for ventricular tachycardia or ventricular
fibrillation or SCD not aborted by the device [23-29]. In the
8-year follow-up, 75 individuals had the primary outcome.

Modeling
Our ML approach is based on the random forest (RF) algorithm
implemented in the randomForestSRC R package [30] extended
to time-varying SCD risk prediction [31]. RF is an ensemble
learning method based on a collection of decision trees, where
the overall RF prediction is the ensemble average or majority
vote. Random sampling of predictor variables at each decision
tree node and bootstrapping the original training data decrease
the correlation among the trees in the forest to allow for
impressive predictive performance [32,33]. For our RF, the
predictors included demographics, comorbidities, medications,
electrophysiologic parameters, laboratory values, LV ejection
fraction by echocardiography, and cardiac magnetic resonance
(CMR) imaging indices, summarized in Table 1.
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Table 1. Patient characteristics in the Left Ventricular Structural Predictors of Sudden Cardiac Death Registry (N=382).

P valuebPatient with SCD event (n=75)No. of SCDa event (n=307)Variables

Demographics and clinical characteristics

.7557 (12)57 (13)Age (years), mean (SD)

.0163 (84)211 (68.7)Male, n (%)

.66Race, n (%)

51 (68)200 (65.1)White

21 (28)99 (32)African American

3 (4)8 (3)Other

.072.05 (0.28)1.98 (0.28)Body surface area (m2), mean (SD)

.1544 (59)149 (48.5)Ischemic cardiomyopathy etiology, n (%)

.025.43 (5.61)3.83 (5.18)Years from incident MIc or cardiomyopathy diagnosis, mean (SD)

.55NYHAd functional class, n (%)

20 (27)64 (21)I

31 (41)137 (44.6)II

24 (32)106 (34.5)III

<.00119 (25.3)0 (0)One or more heart failure hospitalizations, n (%)

Cardiac risk factors, n (%)

>.9944 (59)180 (58.6)Hypertension

.9345 (60)180 (58.6)Hypercholesterolemia

.7919 (25)85 (28)Diabetes

.0244 (59)133 (43.3)Nicotine use

Medication usage, n (%)

.8566 (88)275 (89.6)ACEe-inhibitor or ARBf

.4868 (91)288 (93.8)Beta-blocker

.1456 (75)199 (64.8)Lipid-lowering

.228 (11)18 (6)Antiarrhythmics (amiodarone)

.0254 (72)173 (56.4)Diuretics

.3916 (21)50 (16)Digoxin

.8521 (28)80 (26)Aldosterone inhibitor

.6755 (73)215 (70.0)Aspirin

Electrophysiologic variables

.8014 (19)51 (17)Prior atrial fibrillation, n (%)

.0670 (14)73 (14)Ventricular rate (bpm), mean (SD)

.30122 (27)118 (31)QRS duration (ms), mean (SD)

.2614 (19)79 (26)Presence of LBBBg, n (%)

.3117 (23)90 (29)Biventricular ICDh, n (%)

Laboratory values or biomarkers

.73139 (3)139 (3)Sodium (mEq/L), mean (SD)

.874.27 (0.39)4.26 (0.42)Potassium (mEq/L), mean (SD)

.811.09 (0.33)1.07 (0.59)Creatinine (mEq/L), mean (SD)

.8080 (21)81 (24)eGFRi (mL/min/1.73 m2), mean (SD)

JMIR Med Inform 2020 | vol. 8 | iss. 6 | e15791 | p. 3https://medinform.jmir.org/2020/6/e15791
(page number not for citation purposes)

Wongvibulsin et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


P valuebPatient with SCD event (n=75)No. of SCDa event (n=307)Variables

.5520.28 (8.33)19.62 (8.72)Blood urea nitrogen (mg/dL), mean (SD)

.23113 (34)120 (53)Glucose (mg/dL), mean (SD)

.0341 (5)40 (4)Hematocrit (%), mean (SD)

.229.10 (16.29)6.89 (12.87)hsCRPj (µg/mL), mean (SD)

.822519 (1902)2704 (6736)NT-proBNPk (ng/L), mean (SD)

.124.32 (6.28)3.05 (5.36)IL-6l (pg/mL), mean (SD)

.7013.67 (59.94)10.74 (49.67)IL-10m (pg/mL), mean (SD)

.903456 (1671)3425 (1700)TNF-αRIIn (pg/mL), mean (SD)

.620.02 (0.05)0.03 (0.08)cTnTo (ng/mL), mean (SD)

.980.10 (0.25)0.10 (0.28)cTnIp (ng/mL), mean (SD)

.933.87 (3.86)3.94 (5.77)CK-MBq (ng/mL), mean (SD)

.3137.13 (41.53)31.37 (30.80)Myoglobin (ng/mL), mean (SD)

.1923.0 (7.4)24.2 (7.6)LVEFr: NonCMRs LVEF (%), mean (SD)

CMR structural and functional indices

.0425.1 (8.8)27.8 (10.3)LVEF (%), mean (SD)

.01136.2 (48.4)122.3 (39.9)LVt end-diastolic volume index (ml/m2), mean (SD)

.02104.3 (45.2)91.5 (39.1)LV end-systolic volume index (ml/m2), mean (SD)

.0980.3 (21.2)75.1 (24.4)LV mass index (ml/m2), mean (SD)

CMR hyperenhancement

.00256 (86)176 (66)LGEu present (%), mean (SD)

.00213.8 (12.2)8.8 (11.6)Gray zone (g), mean (SD)

.0117.7 (15.1)12.4 (14.9)Core (g), mean (SD)

.00431.3 (25.6)21.1 (25.4)Total scar (g), mean (SD)

aSCD: sudden cardiac death.
bP values <.05 are italicized.
cMI: myocardial infarction.
dNYHA: New York Heart Association.
eACE: angiotensin-converting enzyme.
fARB: angiotensin II receptor blocker.
gLBBB: left bundle branch block.
hICD: implantable cardioverter defibrillator.
ieGFR: estimated glomerular filtration rate.
jhsCRP: high-sensitivity C-reactive protein.
kNT-proBNP: N-terminal pro-b-type natriuretic peptide.
lIL-6: interleukin-6.
mIL-10: interleukin-10.
nTNF-αRII: tumor necrosis factor alpha R II.
ocTnT: cardiac troponin T.
pcTnI: cardiac troponin I.
qCK-MB: creatine kinase MB.
rLVEF: left ventricular ejection fraction.
sCMR: cardiac magnetic resonance.
tLV: left ventricular.
uLGE: late gadolinium enhancement.
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Interpretability
To communicate the results from ML models, such as our RF
for SCD predictions, we develop representative interpretable

summaries. As illustrated in Figure 1, the following general
steps can be employed to create simplified representations of
any black box prediction:

Figure 1. Steps to present machine learning (ML) predictions in an interpretable manner: The black box algorithm is applied to input data comprising
outcomes (Y) and predictors (X) to obtain black-box predictions (P) of the input outcomes. The original X variables and the black-box predictions (P)
are inputs to a simple model or algorithm, for example a single tree, whose predictions (S) are sufficiently close to (P) but more easily understood and
explained.

1. Train the ML model with the input features (X) and the
outcome of interest (Y).

2. Obtain the predicted values (P) from the ML model using
cross-validation, a separate test dataset, or another
data-division approach to ensure that predictions are not
obtained from the same dataset used to train the model.

3. Train a simple, interpretable, and clinically understood
model, such as a decision tree [34] or a linear or logistic
regression model [35], using the predicted values (P) from
the ML model as the outcome of interest and the
corresponding input variables (X) from the original training
dataset.

4. Obtain the predicted values (S) from the interpretive model.
Calculate how close S is to P, that is how well the simplified
model represents the ML model, using a measure such as

R2, defined as provided in Figure 2.

Figure 2. R2 equation where i=1 to n observations evaluated. S(i) denotes

the prediction for the ith observation using the simplified model, P(i) denotes
the prediction for the ith observation using the ML model, and Pavg denotes
the average prediction from the ML model.

Note that the interpretative tree can be grown sufficiently large

such that R2 is arbitrarily close to 1. If a simple tree has a small

R2, extra caution should be exercised to avoid overinterpreting

the simplified model. In contrast, if R2 is high, the simplified
model may be considered as an alternative to the actual ML
model for obtaining future predictions in a simplified manner
[36,37]. This model-agnostic approach to obtain a simplified
summary of the ML model is shown in Figure 1.

By using a single tree as a summary of the RF predictions, we
can quantify the importance of individual variables or groups
of variables. A useful measure of the total effect on outcome Y
of predictor (or group of predictors) X1 is obtained by summing
the improvements in prediction error (deviance) over all of the
X1 splits in the interpretative tree.

To present results in other ways familiar to clinicians, predictor
effects can be communicated in plots where risk ratios are
presented [38]. We created plots based on the relationship
between the predictor variables and predicted risks. For
categorical variables, risk ratios are calculated by comparing
risks for different levels of the categorical variable (eg, risk
ratio=[average predicted risk for males]/[average predicted risk
for females] ). For continuous variables, risk ratios are calculated
by comparing risks for different ranges of the continuous
variable (eg, risk ratio=[average predicted risk for upper tertile
of age]/[average predicted risk for lower tertile of age]). CIs for
these risk ratios were generated through nonparametric bootstrap
approaches [39]. All analyses were conducted using R 3.5.1 (R
Foundation) [40].
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Results

Global Summary Visualization
Using data from the LV Structural Predictors of SCD Registry,
a global summary for SCD risk prediction is obtained by fitting
a single decision tree to RF predictions using as inputs the same
covariates used in the RF and the outcome as the RF predictions.

Figure 3 shows a global summary tree of the RF model for SCD
prediction. Several risk factors appear as early split nodes in
the decision tree representing key variables that discriminate
between low -, intermediate -, and high-risk patients, including
heart failure (HF) hospitalization history, CMR imaging indices
(ie, LV end-diastolic volume index, and total scar and gray zone
mass), and a measure of systemic inflammation, interleukin-6
(IL-6).

Figure 3. Global summary tree of random forest (RF) model for sudden cardiac death (SCD) prediction: Several risk factors (namely heart failure
hospitalization, several cardiac magnetic resonance imaging indices, and interleukin-6 [IL-6], a marker of inflammation) discriminate between low-,
intermediate-, and high- risk patients. Decision rules in the tree are shown in bold italics. The 1-year risks of SCD are shown in the boxes at the bottom
of the decision tree. The boxes are colored according to the magnitude of the percent per year risk, with white corresponding to the lowest risk subgroup
and dark red corresponding to the highest risk subgroup. Percentages in parentheses at the bottom of the boxes are the proportions of the total training

data that belong to each of the risk subgroups. R2 is 0.88 for how well this global summary tree represents the RF model. HF: heart failure; LV: left
ventricular.

Risk Ratio and Variable Importance
Figure 4 shows the risk ratio plot for predictors identified as
splitting variables in the global tree summary model for our RF
SCD prediction example presented in Figure 3. The largest risk
ratio is for HF hospitalization history before an arrhythmic
event, indicating that individuals with 1 or more preceding HF
hospitalizations are at 4.06 (95% CI 2.82-5.30) times higher
risk of SCD than individuals without hospitalizations for HF.
Comparing the risk for individuals in the upper versus lower
tertile for CMR imaging variables and IL-6 demonstrates that
higher values for these variables suggest a higher SCD risk.
Specifically, the risk ratios were 1.54 (95% CI 1.14-1.93) for

an LV end-diastolic volume index above 133 mL/m2 versus

below 102 mL/m2; 1.48 (95% CI 1.04-1.92) for a total scar mass
above 30.79 g versus below 1.48 g; 1.48 (95% CI 1.04-1.91)

for a gray zone mass above 11.37 g versus below 0.40 g, and
1.38 (95% CI 1.11-1.66) for IL-6 above 2.15 pg/mL versus
below 1.04 pg/mL.

Table 2 lists the predictor variables in their order of importance
in the single interpretative tree shown in Figure 3. Their ranking
is based on the fraction of total variation (deviance) in the ML
predictions they explain in 1 or more splits in the single tree
shown in Figure 3. Although there are only 8 terminal nodes in
the tree, the tree explains 88% of the information in the
predictions from the black box RF. Additionally, trees inherently
identify interactions. Note that after the first split on whether
or not a person had a prior hospitalization for HF, the imaging
variable only predicted risk among persons without prior
hospitalization. This asymmetry indicates that the absence of a
prior HF hospitalization strongly interacts with the cardiac
imaging variables.
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Figure 4. Visualization of predictor effects in random forest (RF) model for sudden cardiac death (SCD) prediction: Risk ratio point estimates and the
95% confidence intervals generated from 500 bootstrap replications are shown for the RF model for SCD risk prediction. The largest risk ratio is between
individuals who never experienced a heart failure hospitalization and those who experienced one or more heart failure hospitalizations. The other risk
ratio comparisons show the risk ratios between individuals grouped into different categories based upon inflammation or cardiac magnetic resonance
(CMR) imaging variables indicating the structural and functional properties of the heart. HF: heart failure; IL-6: interleukin 6; LV: left ventricular.

Table 2. This table summarizes the global summary tree (shown in Figure 3) with an analysis of the variation (deviance) in the predicted values (P)
from the machine learning (ML) model explained by the predictors in the global summary tree. The number of splits contributed by each variable in
the global summary tree is enumerated along with the deviance and the percentage of the deviance explained. The predictors' ranked importance (ordered
from most to least important from left to right in the table) is determined from the percentage of the deviance explained.

MLd totalTree totalGray zoneInflammation (IL-6c)Total scarLVb end-diastolic
volume index

HFa hospitalization historySplit variable

N/Ae711221Number of splits

1.891.670.0200.0340.1000.2551.26Deviance explained

1000.88f1.11.75.213.566.6Percentage of deviance
explained

aHF: heart failure.
bLV: left ventricular.
cIL-6: interleukin 6.
dML: machine learning.
eN/A: not applicable.
fThis corresponds to the R2 value (0.88) obtained when using the equation shown in Figure 3 for the calculations.

Discussion

Principal Findings
We demonstrate that it is possible to obtain improved
transparency of ML by generating simplified models and visual
displays adapted from those used commonly in clinical practice.
As a specific example of this framework, we use RF extended
to survival analysis with time-varying covariates for
individualized SCD risk prediction. Commonly used methods
for SCD risk prediction, such as Cox proportional hazards
regression, do not automatically account for nonlinear and

interaction effects or facilitate the application to individualized
risk prediction [41,42]. In contrast to traditional regression
strategies or parametric approaches that make assumptions about
the underlying model, ML, such as RF, employs nonparametric
algorithms that allow the data to speak for themselves and
perform as powerful methods for individualized predictions
[32,43-45]. RFs, as ensembles of decision trees, are not easily
interpretable even though single decision trees are popular in
medicine because of their intuitiveness and comparability to
how a clinician tends to think through a case. The framework
introduced in this work provides a methodology to increase ML
transparency through representative interpretable summaries.
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Because this framework for interpretability is model-agnostic,
the user may benefit from ML’s high predictive performance
while also gaining insights into how predictions were generated.
Despite the complexity of the original algorithm, these methods
for interpretability only depend on the inputs upon which the
black box was trained and the corresponding outputs from the
black box, namely its predictions. Thus, any method for
prediction can be explained to an extent in a simplified manner.
In a situation where it is not possible to capture the variation in
ML predictions with a simple summary, the proposed method
signals this problem through a natural comparison of the
similarity between the predicted values from the ML and its
approximating interpretative model. This approach extends prior
research in mimic learning and post hoc explanations of the
black box predictions [46,47]. This paper emphasizes the
clinician’s perspective as the end user experienced with
tree-based reasoning as a natural correlate of clinical reasoning.

To implement ML in clinical practice, it is essential to provide
user-centric tools that allow clinicians to gain understanding
and trust in their predictions [48]. Developing visualizations
that are easy to interpret and based upon familiar ways clinicians
understand algorithms or results can help communicate ML
predictions. For example, simplifying RFs into a single decision
tree produces a visualization that reflects medical treatment or
diagnostic decision making in clinical practice. Although we
illustrate the simplified model with a decision tree, other models
such as linear regression can also be presented. Additionally,
providing visual displays of risk ratio estimates in a manner
similar to those presented in the medical literature may help
clinicians gain an understanding of ML predictions.

Developing interpretable predictions is particularly important
in the application of ML to health care because of the unique
challenges related to medical ethics and regulatory or legal
considerations [48]. Explanations that describe predictions can
facilitate trust, especially when the explanations are consistent
with domain knowledge or extend upon what is currently known
[48]. For instance, in our illustrative example of SCD prediction
in the LV Structural Predictors of SCD Registry, the key risk
factors are HF hospitalization history, CMR imaging indices
(ie, LV end-diastolic volume index, total scar, and gray zone
mass), and a measure of inflammation (ie, IL-6). The predictors
identified in our simplified summary are consistent with the
published literature on SCD. It is known that among HF patients,
SCD is a major cause of death due to complex interactions
between the underlying myocardial substrate and triggers such
as inflammation [22,49,50]. CMR imaging indices have been
independently associated with ventricular arrhythmias in
multiple cohorts [22,51-54]. This study raises the interaction
hypothesis that cardiac imaging predictors are mainly useful in
patients without prior HF hospitalizations. Visually seeing that
predictions are grounded upon decision rules coinciding with
clinical and biomedical knowledge (Figure 3) can help translate
ML predictions for the end user’s understanding. Furthermore,
presenting a summary visualization of the ML model along with
information about the effect estimates of the predictors (Figure
4) can facilitate further insight.

Limitations and Comparison With Prior Work
Although any complex model can be simplified to a summary
model, it is possible that the summary and original model

predictions are highly dissimilar, as reflected in a small R2. This
was not the case in the motivating study, where 5 variables and
7 splits explained 88% of the variation in the RF’s predicted
values. We can expect similar results in many problems because
the interpretive tree is trained on the predicted values from a
complex ML algorithm designed to find relatively
lower-dimensional summaries than the original data. When a

small interpretative tree has a poor R2, it can be enlarged as
needed to achieve a prespecified higher value. The user can
then look for simpler summaries by grouping classes of
predictors and interactions among them. Finally, the approach

has the R2 value as a measure of the fidelity of the simpler model
predictions to the ML predictions. When this value is too small
for a given tree, the user knows that a simple tree has limited
interpretative value.

A closely related subfield of ML is actively addressing this topic
by comparing different learning algorithms and selecting a final
model [55]. Additionally, as the general approach for obtaining
a simplified model summarizes the complex model at a global
level, the simplified model is considered a global surrogate
model and may not be representative of certain subgroups (eg,
different subpopulations may exhibit different relationships
between the predictor variables and predictions) [37]. To address
this possibility, multiple simplified models could be created for
each subgroup of interest. For example, two different summary
decision trees could be created for men and women. Another
area of active research is the development of local explanation
models, where the interpretable models are local surrogate
models that explain individual ML predictions rather than the
entire black box as a whole [56]. Furthermore, although we
emphasized here the tailoring of visual displays to clinicians,
research in focus groups with both clinicians and patients can
further accelerate the progress toward clinically meaningful ML
developments that are translated into patient care.

Conclusions
Currently, limited interpretability remains a major barrier to
successful translation of ML predictions to the clinical domain
[1-5]. Although numerous tools such as those for feature
importance, feature effect, and prediction explanations have
previously been developed to facilitate interpretability
[9-12,56,57], the clinical community as a whole still generally
considers ML as a field that generates black box predictions
[1-5]. Although further research is necessary to fully understand
the challenges limiting the clinical implementation of these
tools, we believe that emphasis on tailoring explanations and
visual displays to the end user is essential. Here, we expand
upon the toolkit for opening the black box to the clinical
community through the presentation of clinically relevant and
interpretable visualizations to aid in the progress toward
incorporating ML in health care. Ultimately, multidisciplinary
teams with combined clinical and data science expertise are
essential in furthering research to address the challenges limiting
the clinical implementation of these powerful, informative ML
tools.
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