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Abstract

Background: Early diabetes screening can effectively reduce the burden of disease. However, natural population—based screening
projects require alarge number of resources. With the emergence and development of machine learning, researchers have started
to pursue more flexible and efficient methods to screen or predict type 2 diabetes.

Objective: Theaim of this study was to build prediction models based on the ensemble learning method for diabetes screening
to further improve the health status of the population in a noninvasive and inexpensive manner.

Methods: The dataset for building and evaluating the diabetes prediction model was extracted from the National Health and
Nutrition Examination Survey from 2011-2016. After data cleaning and feature selection, the dataset was split into atraining set
(80%, 2011-2014), test set (20%, 2011-2014) and validation set (2015-2016). Three simple machine learning methods (linear
discriminant analysis, support vector machine, and random forest) and easy ensemble methods were used to build diabetes
prediction models. The performance of the models was evaluated through 5-fold cross-validation and external validation. The
Delong test (2-sided) was used to test the performance differences between the models.

Results: We selected 8057 observations and 12 attributes from the database. In the 5-fold cross-validation, the three simple
methods yielded highly predictive performance models with areas under the curve (AUCs) over 0.800, wherein the ensemble
methods significantly outperformed the simple methods. When we evaluated the models in the test set and validation set, the
same trends were observed. The ensemble model of linear discriminant analysis yielded the best performance, with an AUC of
0.849, an accuracy of 0.730, a sensitivity of 0.819, and a specificity of 0.709 in the validation set.

Conclusions: Thisstudy indicates that efficient screening using machine learning methods with noninvasive tests can be applied
to alarge population and achieve the objective of secondary prevention.
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Introduction

Diabetes is a heterogeneous metabolic disorder that is
characterized by the presence of hyperglycemia due to
impairment of insulin secretion, defectiveinsulin action, or both
[1]. The high blood glucose level caused by diabetes not only
affectsthe heart, eyes, kidneys, and nervesbut also is associated
with increased rates of cancer, physical and cognitive disabilities
[2-4], tuberculosis [5,6], and depression [7]; these conditions
are associated with high health care costs [8,9]. For patients
with type 2 diabetes, therisks of death and cardiovascular events
are 2-4 times greater than in the general population [10]. Due
to the aging population, lifestyle changes, and interrel ated rapid
unplanned urbanization, the prevalence of diabetesis quickly
increasing worldwide[11]. According to the latest International
Diabetes Federation Diabetes Atlas, there were approximately
420 million people aged 20-79 years with diabetes worldwide
in 2017, and this number is expected to rise to 629 million in
2045. Furthermore, approximately 50% of diabetes patientsare
undiagnosed [12]. Patients with type 2 diabeteswho are within
target ranges for 5 risk factor variables, namely glycated
hemoglobin levels, systolic and diastolic blood pressure,
albuminuria, smoking, and low-density lipoprotein cholesterol
levels, appear to have little or no excess risk of death,
myocardial infarction, or stroke compared with the general
population [13]. Therefore, devel oping an appropriate method
to screen people without clinical symptoms is necessary and
practical; such a screening method could reduce health care
costs and patient mortality and improve patients’ quality of life
through earlier clinic-based management.

Generally, traditional screening projects are based on studies
in epidemiology, such as the ADDITION trial study [14] and
the Ely study [15]. These screening studies cost hundreds of
thousands of dollars and require the collaboration of many
people. With the emergence and development of machine
learning, researchers have started to pursue more flexible and
efficient methods to screen or predict type 2 diabetes. Han et al
[16] trained a type 2 diabetes diagnosis model with features
mainly consisting of blood tests such as hemoglobin A1, and
total cholesterol, yielding a precision of 0.942 and a recall of
0.939. Maniruzzaman et al [17,18] trained a type 2 diabetes
prediction model using Pima Indian data with plasma glucose
features; they obtained an accuracy of 81.97% and an areaunder
the curve (AUC) of 0.93. A machinelearning—based framework
was also devel oped to identify patients with type 2 diabetesin
the clinic with electronic health records, showing an AUC of
0.98 with more than 110 clinical features [19]. Zou et a [20]
used principal component analysis and minimum redundancy
maximum relevance to reduce the dimensionality and achieve
the best accuracy in their model (0.81) in addition to using
fasting blood sugar as the main feature. Many of the
abovementioned studies achieved high prediction performance
with blood tests; however, none of them used only noninvasive
attributesto predict type 2 diabetes. Chung et al [21] devel oped
a model to screen prediabetes using support vector machines
with only noninvasive features, such as age, sex, and family
history of diabetes, and they obtained an AUC of 0.76 in the
external test data; however, further exploration and optimization

https://medinform.jmir.org/2020/6/€15431

Yang et a

are needed to improve type 2 diabetes screening models that
only use noninvasive features.

To better screen potential patients with type 2 diabetes, further
delay disease progression, control relative complications, and
improve human health, in this paper, type 2 diabetes screening
machinelearning modelsand conforming easy ensemble models
were built that require only an individual noninvasive test,
combined with data from body measurements and
guestionnaires, to predict type 2 diabetes based on the National
Health and Nutrition Examination Survey (NHANES) database,
thusavoiding blood testsand clinic visits. Inexpensive screening
of people who have type 2 diabetes without obvious symptoms
may lead to secondary prevention.

Methods

Analysis

The datawere analyzed with R version 3.3.1 for Linux with the
R packages dplyr, caret (Classification And REgression
Training) [22], randomForest [23], pROC [24], 1071 [25],
gplots, unbalanced [26], epiDisplay, and MASS. The Delong
test for 2 correlated receiver operating characteristic (ROC)
curves was used to determine the effects of the easy ensemble
methods; a P value <0.05 was considered significant (2-sided).
The work protocol consisted of 5 steps: data cleaning, sample
selection, chosen features, model training, and validation.

Data

The data were obtained from the NHANES database. The
detailed steps of data cleaning and feature selection are shown
inFigure 1. First, before all the NHANES data were processed,
the database contained 25,054 samplesfrom 2011 to 2016 with
985 features. Second, data samples with missing observations
for baseline variables, such as blood glucose, age, sex, height,
and weight, were removed. Third, 3 new variables were
computed, namely diabetes (whether a person has diabetes:
1=yes, 0=no0), hypertension (whether a person has hypertension:
1=yes, 0=no) and relative leg length. The case group was defined
as having fasting blood glucose levels>7.0 millimoles per liter,
and the fasting blood glucose levels in the control group were
<6.1 mmol/L [1]. Hypertension was defined according to the
American Heart Association criteria as systolic blood pressure
>130 millimeters of mercury or diastolic blood pressure >80
mm Hg obtained on more than 2 occasions [27]. The relative
leg length was the ratio of the upper leg length to the height
multiplied by 100 [28]. Fourth and fifth, we set the inclusion
and exclusion criteriato control for bias. Theinclusion criteria
were as follows: patients aged 18-80 years from the case and
control groups. Thefollowing exclusion criteriawere employed:
patients with cancer, due to the positive association between
hyperglycemia and cancer [29], and patients with liver
conditions, because liver conditions can also influence blood
glucose levels [30]. These individuals were excluded because
they are traditionally asymptomatic and their blood glucose
levels are not representative of the study population. After the
dataprocessing steps (1-5), 10,710 observations and 988 features
without type 2 diabetes were |eft for analysis.
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Figure 1. The data cleaning and feature selection process. Note that the feature selection process was run only in the NHANES 2011-2014 dataset. n:
number of cases. p: number of features.
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feature selection with P<.05; this resulted in 270 remaining
features. Third, the variables whose missing val ueswere greater
The selection of features is one of the most critical stepsin  than 10% were removed, leaving 204 features. Fourth, the
model building. Thus, additional feature selection steps were missing and biased values (including answers in the
taken. First, because only noninvasive features were used, the  questionnaire such as*“refused” and “don’t know”) were deleted,
laboratory variables were deleted, and 756 features were left.  |eaving 8057 samples. Finally, forward conditional logistic
Secondly, we used the t test to select continuous variablesand  regression was employed to further filter the features that were
the chi-square test to select the categorical variables for crude  selected in the former steps with P<.05 only in the NHANES

Feature Selection
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2011-2014 dataset. After the feature selection process, 12
features remained. We separated the final dataset into three
parts: thetraining set (80%, 2011-2014) with 3582 negative and
664 positive observations, the test set (20%, 2011-2014) with
895 negative and 165 positive observations, and the external
validation set (2015-2016) with 2244 negative and 507 positive
observations, the whole 2011-2014 data set was randomly
divided into the training set and test set using the
createDataPartition function in the caret package [22].

Machine L earning and the Easy Ensemble M ethod

In this study, binary logistic regression was used to select the
risk factors for diabetes, and the linear discriminant analysis,
random forest, and support vector machine methods as well as
their ensemble methods were devel oped to classify the caseand
control groups according to the selected features. The linear
discriminant analysis structure was based on the Ida function
of the R package MASS, the support vector machine structure
was based on the svm function of the R package 1071, and the
random forest structure was based on the rf function of the R
package randomForest. The parameter adjustments of the
support vector machine and random forest were applied with
the R package caret. We used 80% of the 2011-2014 NHANES
data for model training under 100 repeated 5-fold
cross-validations. The remaining 20% of the 2011-2014
NHANES data were used as the test set, and the 2015-2016
NHANES data were reserved as the validation set for
performance measurement.

Logistic Regression

As an extension of linear regression, logistic regression is a
commonly used method to obtain the risk or protection factors
for disease in epidemiology [31,32]. According to the
experimental design, this logic function was divided into
unconditional and conditional logistic regressions; according
to the type of dependent variables, it was divided into binary
logistic regression and multiplelogistic regression. Thelogistic
function is an effective method for classification problems and
givesthe oddsratio (OR) of the significance variable according
to the dependent variable.

In this study, binary unconditional logistic regression was used
to select the risk factors for or relative features of diabetes. In
the logistic regression, the 204 attributes chosen from the t test
and chi-sguare test were considered asthe independent variables,
and whether a person has diabetes was the dependent variable.
Twelve features were | eft.

Linear Discriminant Analysis

Linear discriminant analysiswasfirst introduced by Fisher [33]
in 1936 to address taxonomic problems. Generadly, it is a
combination of analysis of variance and regression analysis.
Linear discriminant analysis is based on the theory of
transformation from high dimensions to low dimensions. Asa
classification algorithm, itstheoretical basisisthat the protection
points of each type of dataare ascloseto each other aspossible,
while the distance between different kinds of data are as far
apart as possible. In this case, the classification was based on
whether aperson has diabetes. Therefore, the linear discriminant
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analysis reduced the 12 features to the 1(k—1, k=2) dimension
to discriminate patients with diabetes.

Random Forest

Random forest, which is based on decision trees [34], is a
well-known ensemble learning method that uses the bagging
method [35]. The basic theory of the bagging method is as
follows. assuming a dataset contains N observations, for
example, 100 subsets can be extracted wherein every subset
comprises n (n=N) observations that were sampled randomly
with replacement from the original dataset, and 100 base
classifiers can be built with these 100 subsets to vote for the
classification of every sample in the dataset. The decision trees
are the base classifier in the bagging method in the random
forest. This basic algorithm can be considered as a single tree
model with if-then structures. Each decision tree of the RF yields
its own classification outcome and “vote,” and the average of
all the resultsisthe final taxonomy.

The caret package in R was applied to search for the best
parameter in the random forest with 5-fold cross-validation
repeated 100 times. The number of trees was 500, and the best
number of variables randomly sampled as candidates at each
split was 4 after the parameter selection.

Support Vector Machine

Support vector machines [36] are among the most popular
supervised learning techniques in the machine learning field.
A support vector machine reflects the data to a
higher-dimensional space with a kernel function. The
classification mission relies on the training data, which are
called support vectors. For general 2-class problems, the
observations are determined by a hyperplane with the
maximizing margin through the nearest support vectors.

In this study, the radial basis kernel was chosen. The caret
package of R was also used to match the parameter with the
best AUC performance in the support vector machine model
with 5-fold cross-validation repeated 100 times. The optimal
cost and gamma parameter values obtained for the model were
0.137 and 0.012, respectively.

Easy Ensemble Method

Type 2 diabetes screening is an unbalanced problem because
there are fewer patients than healthy individuals. To address
the unbalanced issue, we employed the easy ensemble method
[37]. In short, we randomly sampled the same number of all
positive observations from the negative observations and made
the two groups correspond to a minor dataset in the train set.
We then repeated the above step 100 times to generate 100
minor datasets. Next, we built 100 same-method models based
on these datasets. Furthermore, for 5-fold cross-validation, the
preval ence probability of every sample was averaged by these
100 models in every validation for both the test set and
validation set.

Model Evaluation

In this article, we used the ROC curve, AUC, sensitivity,
specificity, accuracy, and positive predictive value (PPV) to
measure the performance of the models. The cutoff value was
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selected based on the maximal value of the Youden index [38]
in the training set.

Results

After the data cleaning and feature sel ection process, the dataset
included 8057 cases that were divided into three sets: 80% of
the NHANES 2011-2014 data for the training set, 20% of the

Table 1. Factors associated with diabetes used to build the models.

Yang et a

NHANES 2011-2014 data for the test set, and the NHANES
2015-2016 data for the validation set. After crude feature
selection with the t test and chi-sgquare test in the 2011-2014
NHANES dataset, logistic regression analysis was further
performed to assess the related factors of type 2 diabetes; this
process ensuresthat therewill be no overfitting or generalization
of the model for future patients. The 12 selected factors are
shown in Table 1.

Feature Crude® ORP (95% CI) Adjusted® OR (95% Cl) Pvalue
Age 1.05 (1.05-1.06) 1.05 (1.04-1.06) <.001
Sex 0.82 (0.70-0.97) 0.62 (0.50-0.76) <.001
Waistline 1.04 (1.03-1.05) 0.99 (0.97-1.01) 27
Sagittal abdominal diameter 1.20(1.18-1.22) 1.16 (1.09-1.24) <.001
Relative leg length 0.70 (0.66-0.74) 0.85 (0.79-0.91) <.001
60 second pulse 1.02 (1.01-1.02) 1.02 (1.01-1.03) <.001
Smoking 0.74 (0.63-0.88) 1.13(0.92-1.38) 26
Alcohol 1.43(1.19-1.72) 1.31 (1.04-1.66) .02
Hypertension 3.26 (2.72-3.90) 1.02 (0.82-1.27) .86
Family history 0.28 (0.24-0.34) 0.32 (0.26-0.39) <.001
General health condition 2.05 (1.88-2.24) 1.59 (1.44-1.76) <.001
Control or loss of weight 0.42 (0.35-0.51) 0.55 (0.44-0.69) <.001

8Crude: 1-way logistic regression.
POR: odds radio.
CAdjusted: multiple logistic regression.

Therisk of having type 2 diabetesincreases with increased age
(95% CI 1.04-1.06, P<.001), sagittal abdominal diameter (95%
Cl 1.09-1.24, P<.001), pulse (95% CI 1.01-1.03, P<.001), and
alcohol use (95% ClI 1.04-1.66, P=.02) aswell as poorer general
health condition (95% Cl 1.44-1.76, P<.001). In contrast, female
sex, longer relative leg length, lack of type 2 diabetes family
history, and control of weight are the protection factors of type
2 diabetes (95% ClI 0.50-0.76, 0.79-0.91, 0.26-0.39, and
0.44-0.69, respectively; P<.001 in all cases). We built three
different models using linear discriminant analysis, random
forest, and support vector machine methods to determine type
2 diabetes risk using the training set with these noninvasive
tests. Afterward, the test set and external validation set were
used to measure the predictive ability of the models.

We generated six models with three different machinelearning
methods as well as corresponding ensemble methods in the
training set. The 5-fold cross-validation resultsin Table 2 show
that the linear discriminant analysis method yielded the best
AUC compared with the random forest and support vector
machine methods not only with the ssmple methods but also
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with the easy ensemble methods. However, the ensemble method
improvements in the different methods are in the order of
support vector machine > random forest > linear discriminant
analysis. In 5-fold cross-validation, the simple linear
discriminant analysis method showed 0.844 AUC, 74.1%
sensitivity, 79.5% specificity, 78.7% accuracy, and 40.2% PPV;
the ensembl e linear discriminant analysis method showed 0.845
AUC, 79.7% sensitivity, 73.5% specificity, 74.5% accuracy,
and 35.8% PPV. The simple random forest method showed
0.823 AUC, 86.2% sensitivity, 61.2% specificity, 65.1%
accuracy, and 29.2% PPV; its ensemble method showed 0.834
AUC, 78.4% sensitivity, 73.2% specificity, 74.0% accuracy,
and 35.2% PPV. The simple support vector machine method
showed 0.808 AUC, 69.2% sensitivity, 81.1% specificity, 79.2%
accuracy, and 40.5% PPV; the ensembl e support vector machine
method showed 0.842 AUC, 78.7% sensitivity, 74.8%
specificity, 75.4% accuracy, and 36.7% PPV. Theline graphin
Figure 2 shows that the AUC improved with accumulation of
themodels, and the values remained stable after the composition
of approximately 10 models.

JMIR Med Inform 2020 | vol. 8 | iss. 6 | €15431 | p. 5
(page number not for citation purposes)


http://www.w3.org/Style/XSL
http://www.renderx.com/

JMIR MEDICAL INFORMATICS Yang et a
Table 2. Average results (SD) of the 5-fold cross-validation of the modelsin the training set.
Method AUC2 Sensitivity Specificity Accuracy PPVP
Simple methods
Linear discriminant analysis 0.844 (0.016) 0.741 (0.035) 0.795 (0.015) 0.787 (0.013) 0.402 (0.020)
Random forest 0.823 (0.016) 0.862 (0.029) 0.612(0.019)  0.651 (0.015) 0.292 (0.011)
Support vector machine 0.808 (0.015) 0.692 (0.035) 0.811(0.017)  0.792 (0.014) 0.405 (0.023)
Ensemble methods
EES linear discriminant analysis 0.845 (0.016) 0.797 (0.032) 0.735(0.016)  0.745 (0.014) 0.358 (0.017)
EE random forest 0.834 (0.016) 0.784 (0.033) 0.732(0.016)  0.740 (0.014) 0.352 (0.016)
EE support vector machine 0.842 (0.016) 0.787 (0.034) 0.748(0.017)  0.754 (0.014) 0.367 (0.018)

8AUC: area under the curve.
bppy/; positive predictive value.
EE: easy ensemble method.

Figure2. Comparison of the top 50 models with the easy ensemble method and the simple method with different machine learning methods and 5-fold
cross-validation in the training set. AUC: area under the curve. LDA: linear discriminant analysis. RF: random forest. SVM: support vector machine.
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The 5-fold cross-validation indicated that the different models
show reliable capability. Similarly, the AUCs of the developed
models range from 0.810-0.850 in the test and validation
datasets, indicating their stability and extensibility for predicting
therisk of new patientswith type 2 diabetes. Furthermore, when
considering the performance of the easy ensemble methodsin
the test set (Table 3), these methods appeared to predict type 2
diabetes more efficiently than the other methods. For the random
forest and support vector machine methods, the easy ensemble
methods provided significantly better AUC values than the
respective simple methods (absolute AUC improvement 0.014,
z=3.062, P=.002 and 0.07, z=5.010, P<.001, respectively), as
determined by the Delong test for two correlated ROC curves
(2-sided). However, the LDA improvement was not significant
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(z=1.252, P=.21) according to the Delong test. In the validation
set (Table 3), we found a similar pattern. The easy ensemble
methods improved the overall predictive performance by 0.004
(z=2.734, P=.006) for linear discriminant analysis, 0.008
(z=2.991, P=.002) for random forest, and 0.037 (z=5.908,
P<.001) for support vector machine.

The results indicate that the ensemble methods can be used to
screen large populations for type 2 diabetes based on their
significantly improved performance in the tests for the random
forest and support vector machine methods and in the external
validation set for thelinear discriminant analysis, random forest,
and support vector machine methods. For better and easier
application of type 2 diabetes screening, a screening website
based on the ensemble method has been established [39].
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Table 3. Performance of the simple and ensemble methods in the text and validation sets.

Method AUC2 Sensitivity Specificity Accuracy PPVP
Test set
Simple methods
Linear discriminant analysis 0.864 0.697 0.829 0.808 0.429
Random forest 0.836 0.830 0.648 0.676 0.303
Support vector machine 0.796 0.630 0.864 0.827 0.460
Ensemble methods
EEC linear discriminant analysis 0.867 0.758 0.777 0.774 0.385
EE random forest 0.850 0.776 0.770 0.771 0.383
EE support vector machine 0.861 0.752 0.783 0.778 0.390
Validation set
Simple methods
Linear discriminant analysis 0.846 0.759 0.762 0.761 0.418
Random forest 0.828 0.888 0.594 0.648 0.331
Support vector machine 0.811 0.720 0.789 0.776 0.435
Ensemble methods
EES linear discriminant analysis 0.849 0.819 0.709 0.730 0.389
EE random forest 0.836 0.813 0.713 0.731 0.390
EE support vector machine 0.848 0.824 0.714 0.734 0.394

8AUC: area under the curve.
bppy: positive predictive value.
CEE: easy ensemble method.

Discussion

Comparison With Prior Work

The results of one analysis predicted that the world ranking of
the number of years of life lost due to diabetes will increase
from 15th to 7th [40] by 2040. The fact that type 2 diabetes
damages health conditions deserves specia attention. In this
article, we generated type 2 diabetes screening models and
applied them to alarge population. Although some researchers
[16-20] have studied machine learning models for screening
and predicting type 2 diabetes, most of their studiesfocused on
improving performance by selecting many features, such as
blood test results, instead of considering the practical
significance of cost and flexibility. In contrast, we used a
noninvasive test covering demographic factors, body
measurements, and questionnaire variablesto build our models;
this addresses the shortcomings of using invasivetests. Jai Won
Chung et al [21] also adopted noninvasive features to predict
prediabetes, including age, gender, family history of diabetes,
hypertension, alcohol intake, BMI, smoking status, waist
circumference, and physical activity; they obtained abest AUC
of 0.76 in the external test data. However, the attributes they
chose were relatively traditional compared with those chosen
in this study; in addition, the similarities between prediabetes
and healthy casescan resultinlower AUC values. Thevalidation
of our modes indicates that body measurements and
guestionnaire questions can be used to predict whether aperson
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hastype 2 diabetes. In the case of further effects resulting from
high blood sugar conditions, the models can be used to screen
the identified people.

Principal Results

In the feature selection processin this study, traditional analyses
such asthet test, chi-square test, and binary logistic regression
were used. We extracted unusua attributes related to type 2
diabetes, such as sagittal abdominal diameter, relativeleg length,
and heart rate, which were proven to be significant in similar
studies [28,41,42], in addition to some common risk factors,
such asage, sex, alcohal use, and family history [43,44]. Among
thesefeatures, relativeleg length was an interesting clueto type
2 diabetes that has not previously been used in type 2 diabetes
prediction; this feature was selected by t test and forward
conditional logistic regression. Epidemiological studies from
various settings indicate that humans with shorter legs relative
to their stature have higher risk for type 2 diabetes [ 28]. Relative
leg length can be easily determined and has a strong correlation
with type 2 diabetes; therefore, it may be a useful new attribute
in model building or epidemiology research. With increasing
adoption of this feature, our model will be more accurate and
dependable.

Reliabletype 2 diabetes screening model s based on noninvasive
tests and machine learning algorithms were established and
validated in this study. All the easy ensemble methods yielded
higher predictive performance (AUC=0.85 and AUC=0.83,
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respectively) in the test set and validation set than the simple
methods, indicating the efficiency of the ensemble methods.
Screening model s based on popul ation are always an unbal anced
problem, with more negative samples and fewer positive samples
in the whole dataset. In other words, the learning ability of the
models is not satisfied by the positive samples. We randomly
matched a negative sample for every positive sample and
generated 100 base models. Thistype of repeated learning from
the positive samples may improve the results of the models. In
addition to AUC, the application of the ensemble can increase
the steadiness of the performance; this was exhibited by other
measurements, such as sensitivity, specificity, accuracy, and
PPV. Compared with different machine learning methods, the
ensemble method improvement islimited; thissuggeststhat the
dataset and features are more essential. In recent research, the
results show that individuals with screen-detected type 2
diabetes were diagnosed earlier and had better outcomes than
those who were clinically detected with regard to al-cause
mortality, cerebrovascular disease, rena disease, and retinopathy
[45]. In addition to earlier ordina treatment, Ej et al [46]
introduced a method to recover the function of islets by diet
control. Regardless of treatment, quality of life improvement
and decreased disease burden are important.

Limitations

Thereare several limitations of our research project. The World
Health Organization definition of diabetesis inferior to proper
diagnosis by an experienced physician; aso, we cannot clearly
separate type 1 diabetes from type 2 diabetes, which would
cause bias because of their different epidemiological attributes.
After removing the baseline missing values and executing the
inclusion and exclusion criteria, there were 10,710 samplesin
the entire database. Additionally, 2653 missing and biased
values were removed. The proportion of patients with diabetes
to patients without diabetesis approximately 1.5; therefore, the
increased amount of abandoned diabetes data may reduce the
predictive ability of the model. Reproducibility remains doubtful
given the variable demographics of the different datasets. Only
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a study using noninvasive features to screen for diabetes can
minimize the impact of demographic changes such as those
considered in large population health studies and nutrition
surveys. The best PPV was only 0.435 in the validation set; this
indicates that only approximately 40% of true positive samples
from the people detected positively by these models were
patients with type 2 diabetes. A higher false-positive value
increasesthefinancial expenses of the health care systeminthe
beginning; however, thistype of screening program canimprove
the overall health of the population, and earlier diagnosis can
decrease the disease burden, ultimately decreasing health care
expenses related to diabetes. On one hand, although the easy
ensemble method [37] applied here addresses the unbalanced
problem in one sense, more positive observations may yield
better performance; on the other hand, the building of type 2
diabetes screening models is always an imbalanced problem
when screening patients with type 2 diabetes from a large
population. Therefore, we cannot solve the unbalanced problem
completely. After considering all the other possible biases
influencing the performance of the models, the key point isto
further explore and optimize the unbalanced problem.

Conclusions

Accurate models with low-cost variables based on NHANES
datafor screening type 2 diabetes were established; the models
performed better with the application of ensemble methods.
The use of NHANES data by the models ensured a sufficient
sample size, and the models can be atool to determinethe health
conditions of people who were not included in the survey.
Compared with prior literature, this study has certain advantages,
such as noninvasive features and reliable model performance.
However, we still obtained low PPV results for the unbalanced
problem and could not completely solve the missing value
problem. Furthermore, we can not only optimize the method
by incorporating more quality data from medical schools but
can aso combine our study with a cohort study to achieve
primary prevention.
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