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Abstract

Background: A distributed data network approach combined with distributed regression analysis (DRA) can reduce the risk
of disclosing sensitive individual and institutional information in multicenter studies. However, software that facilitates large-scale
and efficient implementation of DRA is limited.

Objective: This study aimed to assess the precision and operational performance of a DRA application comprising a SAS-based
DRA package and a file transfer workflow developed within the open-source distributed networking software PopMedNet in a
horizontally partitioned distributed data network.

Methods: We executed the SAS-based DRA package to perform distributed linear, logistic, and Cox proportional hazards
regression analysis on a real-world test case with 3 data partners. We used PopMedNet to iteratively and automatically transfer
highly summarized information between the data partners and the analysis center. We compared the DRA results with the results
from standard SAS procedures executed on the pooled individual-level dataset to evaluate the precision of the SAS-based DRA
package. We computed the execution time of each step in the workflow to evaluate the operational performance of the
PopMedNet-driven file transfer workflow.

Results: All DRA results were precise (<10−12), and DRA model fit curves were identical or similar to those obtained from the
corresponding pooled individual-level data analyses. All regression models required less than 20 min for full end-to-end execution.

Conclusions: We integrated a SAS-based DRA package with PopMedNet and successfully tested the new capability within an
active distributed data network. The study demonstrated the validity and feasibility of using DRA to enable more privacy-protecting
analysis in multicenter studies.

(JMIR Med Inform 2020;8(6):e15073) doi: 10.2196/15073
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Introduction

Background and Significance
Distributed regression analysis (DRA) is a suite of methods that
perform multivariable regression analysis in multicenter studies
without the need for pooling individual-level data [1,2]. Data
partners compute highly summarized intermediate statistics (eg,
sums of squares and cross products matrices) of their
individual-level data and share these statistics with a trusted

third-party or analysis center (Figure 1). The analysis center
aggregates the intermediate statistics, assesses model
convergence, and computes the regression parameter estimates.
DRA is mathematically equivalent to the conventional regression
analysis of pooled individual-level data. It achieves the same
level of statistical sophistication using only summary-level
information, thereby offering better protection for individual
and institutional privacy without jeopardizing the scientific rigor
of the analysis.

Figure 1. Distributed regression analysis with horizontally partitioned data.

However, DRA is not widely used in practice due to the
operational challenges in implementing the approach [3]. The
modeling process of common regression analyses (eg, logistic
regression, Cox proportional hazards regression) is iterative and
requires multiple exchanges of highly summarized intermediate
statistics between the data partners and the analysis center.
Manual execution of DRA is labor-intensive and highly
susceptible to human errors (eg, transfer of incorrect files).
There have been efforts to develop capabilities that coordinate
and automate the iterative computation and file transfer process
of DRA to make it a more practical analytical option in
real-world multicenter studies [4-11]. These efforts have focused
primarily on the programming language R and specially
designed applications (eg, Java applets) to facilitate
semiautomated or fully automated file transfers between the
data partners and the analysis center [7-11]. The performance
of these capabilities has largely been tested in simulated or
relatively well-controlled environments [4-8], and no DRA
application has been developed in SAS, another commonly used
statistical software.

In our previous work, we enhanced PopMedNet, an open-source
distributed networking software currently used by several large
national distributed data networks (DDNs), to enable an
automatable and iterative file transfer workflow for routine
implementation of DRA [3]. This workflow coordinates and
automates the iterative transfer of files between the data partners
and the analysis center. We also created a SAS-based DRA
package to conduct distributed linear, logistic, and Cox
proportional hazards regression analysis in horizontally
partitioned DDN [12,13], environments where each data partner
holds information about distinct individuals [14,15]. We
integrated the PopMedNet workflow with the SAS-based DRA
package to create a DRA application.

Objectives
Despite the appealing theoretical properties of DRA,
applications designed to perform the analysis can still be
inoperable or produce biased results in real-world settings due
to unappreciated factors (eg, human errors in execution,
incompatible or different software versions, network or firewall
restrictions, and network conditions). Evaluating the precision
of DRA applications compared with the pooled individual-level
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data analysis and the feasibility of performing the analysis in
reasonable execution times in real-world settings is needed to
demonstrate DRA as a practical and valid analytical method.
In this study, we demonstrate the feasibility of using the
SAS-based DRA package and PopMedNet-driven file transfer
workflow to perform DRA in a real-world horizontally
partitioned DDN. Specifically, we quantify the precision of the
SAS-based DRA package and the operational performance of
the PopMedNet-driven file transfer workflow.

Methods

Study Setting: The Sentinel System
Funded by the US Food and Drug Administration, the Sentinel
System is an active surveillance system designed to monitor
the safety of approved medical products using longitudinal,
regularly updated electronic health data from a network of 18
health plans and health care delivery systems [16,17]. Sentinel
data partners transform their data into a common data model
[18], which enables analytical programs and tools to be centrally
developed and executed across data partners with minimal
modifications. Over the years, the system has developed a suite
of version-controlled, customizable, and freely available
modular programs to rapidly query the transformed data across
the DDN [19]. Among the tools is the Cohort Identification and
Descriptive Analysis (CIDA) tool, a SAS program that
assembles cohorts of individuals according to user-specified
study parameters (eg, exposures, outcomes, inclusion and
exclusion criteria) using established coding systems (eg,
International Classification of Diseases, Ninth or Tenth
Revision, Clinical Modification; National Drug Codes). The
CIDA tool can generate a harmonized (ie, with the same
covariates and covariate names) individual-level dataset at each
data partner. Users can employ other tools (eg, Propensity Score
Analysis Tool) or develop ad hoc analytical programs to query
these datasets behind the data partner’s firewall for complex
inferential analyses.

Sentinel uses PopMedNet to facilitate file transfers between the
data partners and the Sentinel Operations Center [20]. The
Sentinel Operations Center, which serves as the analysis center
for all Sentinel queries, uses a Web-based portal to create and
securely distribute queries to data partners via PopMedNet. The
data partners use a locally installed Microsoft Windows
application, known as the DataMart Client, to retrieve the query
and return the requested dataset, usually in aggregate-level
format, to the Sentinel Operations Center. All file transfers
between data partners and the Sentinel Operations Center are
accomplished through secure HTTPS, secure sockets layer, or
transport layer security connections. PopMedNet security and
authentication requirements ensure that only approved queries
are submitted to and responses returned by prespecified and
approved data partners. In addition, the PopMedNet workflow
is agnostic to query types, file formats (RData, sas, .docx, etc)
and can transfer individual file sizes up to 2 GB.

SAS-Based Distributed Regression Analysis
Application
There are numerous algorithms (eg, secure data integration,
secure summation) for DRA in horizontally partitioned DDNs,
environments where each data partner holds information about
distinct patient cohorts [21,22]. In our previous work, we created
a SAS-based DRA package comprising 2 interlinked SAS
packages (one executed at the data partners and the other at the
analysis center) using 2 algorithms: (1) distributed iteratively
reweighted least squares to perform distributed linear and
logistic regression analysis [12], and (2) distributed
Newton-Raphson algorithm to perform distributed Cox
proportional hazards regression analysis using the Efron or
Breslow approximation for tied event times [13]. Both
algorithms utilize a semitrusted third-party as the analysis center
to aggregate the highly summarized intermediate statistics (eg,
sums of squares and cross products matrices) and compute
regression parameter estimates and SEs. We define a semitrusted
third-party as a party that data partners trust with their
summary-level information but not with their individual-level
data. This party does not share data from any data partner with
other data partners without consent, does not attempt to derive
the individual-level data from the intermediate statistics, does
not collude with data partners to derive any information about
other data partners’ individual-level data, and follows the DRA
algorithms [23].

We provide a brief overview of the distributed iteratively
reweighted least squares and the Newton-Raphson algorithms
used to implement the SAS-based DRA package for distributed
linear, logistic, and Cox proportional hazards regression analysis
using the Sentinel Operations Center as the analysis center in
Multimedia Appendix 1. A detailed description of these
algorithms is available elsewhere [12,13].

PopMedNet Enhancements to Enable Automatable
Distributed Regression Analysis
Both the distributed iteratively reweighted least squares and
Newton-Raphson algorithms in the SAS-based DRA package
utilize a master-worker process, where the analysis center directs
the iterative DRA computations and the data partners execute
these computations on their individual-level data with input (eg,
updated regression parameter estimates) from the analysis
center. Thus, an iterative file transfer workflow is required to
transfer the highly summarized intermediate statistics and the
updated regression parameter estimates between the data
partners and the analysis center until the model converges or
the analysis reaches a prespecified maximum number of
iterations.

We previously enhanced PopMedNet to create an iterative and
automatable file transfer workflow to facilitate routine DRA
[3]. In brief, we built a back-end component, referred to as the
DRA-adapter, into PopMedNet to allow the DataMart Client
to upload files automatically and iteratively from and download
files to prespecified folders at the data partners and the analysis
center. We also developed functionalities for folder monitoring
and trigger file creation and deletion in the DataMart Client to
integrate the PopMedNet workflow with the two interlinked
SAS packages of our SAS-based DRA package. A full
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description of the PopMedNet workflow and its integration with
the SAS-based DRA package is available elsewhere [12,13].
We collectively refer to the integration of the SAS-based DRA
package and the PopMedNet-driven file transfer workflow as
the DRA application hereafter.

Distributed Regression Analysis: A 3-Step Process
A typical DRA includes 3 major steps [3]. Step 1 involves the
assembly of a harmonized individual-level analytical dataset at

each data partner. In step 2, the analysis center and each data
partner execute a DRA algorithm locally. Step 3 involves the
iterative transfer of the DRA algorithm outputs between the
data partners and the analysis center until the regression model
converges or the process reaches a prespecified maximum
number of iterations. We used this 3-step process to guide our
execution and evaluation of the DRA application with 3 Sentinel
data partners, with the Sentinel Operations Center serving as
the analysis center (Figure 2).

Figure 2. Three-step process to conduct distributed regression analysis with PopMedNet. CIDA: Cohort Identification and Descriptive Analysis Tool;
DRA: Distributed Regression Analysis; SOC: Sentinel Operations Center.

Step 1: Assemble a Harmonized Individual-Level
Analytical Dataset at Each Data Partner
We used the CIDA tool (version 3.3.6) to assemble a
harmonized individual-level analytical dataset of adult patients
aged 18-79 years who received sleeve gastrectomy or
Roux-en-Y gastric bypass in any care setting between January
1, 2010 and September 30, 2015 at 3 Sentinel data partners. To
be eligible for cohort inclusion, patients must be continuously
enrolled in a health plan with medical and drug coverage for at
least 1 year before the index bariatric surgery, have at least one
weight and height measurement that corresponded to a BMI

≥35 kg/m2 in the year before surgery, and have at least one
height and weight measurement in the year after surgery. We
excluded patients with any bariatric procedure during the 1-year
period before the index bariatric surgery. We also excluded
patients with gastrointestinal cancer or a revised bariatric surgery
procedure on the day of surgery. For each regression analysis,
follow-up started on the day of the index bariatric surgery and
continued until the occurrence of the outcome of interest (see
below), death, end of health plan enrollment, or end of the study
period. For distributed linear regression analysis, the outcome
was a change in BMI within 1-year postsurgery, defined by
subtracting the BMI measurement closest to the end of the
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1-year postsurgery date from the last BMI measurement before
surgery. For logistic regression, we created a binary outcome
variable indicating 1 if the patient had weight loss ≥20% within

1-year postsurgery, and 0 if otherwise. For Cox regression
analysis, we computed the time to weight loss ≥20% within the
1-year post-surgery period (Table 1).

Table 1. Analytical datasets and variables.

Variables (exposure and confounders)Outcome variable (within
1-year postsurgery)

Regression model type

Bariatric surgery exposure, age at surgery, sex, race and ethnicity, combined Charlson-
Elixhauser comorbidity score, number of ambulatory visits, number of other ambulatory
visits, number of inpatient stays, number of nonacute institutional stays, number of emergency
department visits, BMI before bariatric surgery, number of days between last weight and
height measurement and bariatric surgery, and data partner

Change in BMILinear

Same as aboveWeight loss ≥20%Logistic

Same as aboveTime to weight loss
≥20%

Cox

Step 2: Locally Execute the Distributed Regression
Analysis Application at Each Data Partner and the
Analysis Center
We assembled 3 separate SAS-based DRA packages to perform
distributed linear, logistic, or Cox regression analyses and
assessed the association between bariatric procedure (sleeve
gastrectomy vs Roux-en-Y gastric bypass) and weight loss
within 1-year postsurgery, adjusting for prespecified
confounders (Table 1). For Cox regression analysis, we used
the Efron approximation to handle tied event times. To be
consistent with the standard SAS regression procedures, we
prespecified a convergence criterion of <0.01 and a maximum
of 25 iterations for distributed logistic and Cox regression
analyses.

We distributed each SAS-based DRA package to the 3 data
partners through PopMedNet (version 6.7). We instructed the
data partners to (1) initiate the automated PopMedNet workflow,
allowing the DataMart Client (version 6.7) to automatically
download and unzip the SAS-based DRA package to a
prespecified local directory, (2) manually place the
individual-level analytical dataset created in step 1 in a
prespecified local folder, (3) specify the file path to the
SAS-based DRA package, and (4) execute the SAS-based DRA
package in batch mode. Similarly, we instructed the Sentinel
Operations Center to (1) initiate the automated PopMedNet
workflow, (2) manually place the SAS-based DRA package for
the analysis center in a prespecified local directory, (3) specify
the file path to the SAS-based DRA package, and (4) execute
the SAS-based DRA package in batch mode. Full details of
these packages and examples of their execution have been
previously described [12,13].

Step 3: Iteratively Transfer Distributed Regression
Analysis Files Between the Data Partners and the
Analysis Center
Once the data partners and the analysis center executed their
SAS-based DRA package, the package ran continuously,
awaiting input files (eg, updated regression parameter estimates
or intermediate statistics) and DRA computation directions (eg,
compute intermediate statistics, residuals, and SEs) from the
Sentinel Operations Center. We used the PopMedNet workflow

to transfer input files and computation directions iteratively and
automatically between the data partners and the Sentinel
Operations Center.

Evaluation of Precision and Operational Performance
We requested all data partners to securely transfer their
deidentified individual-level analytical datasets to the Sentinel
Operations Center. We assessed the precision of the SAS-based
DRA package by comparing the DRA parameter estimates and
SEs to those obtained from the pooled individual-level data
analyses using standard SAS procedures. For distributed linear

regression, we compared the model fit statistics R2, Akaike
information criterion (AIC), Sawa’s Bayesian information
criterion (BIC), and Schwarz BIC to the statistics obtained from
a PROC REG run with the pooled individual-level data. For
distributed logistic regression, we compared the model fit
statistics log-likelihood, AIC, and Sawa’s BIC to the statistics
obtained from a PROC LOGISTIC run with the pooled
individual-level data. For distributed Cox proportional hazards
regression, we compared the model fit statistics log-likelihood,
AIC, and Schwarz BIC to the statistics obtained from a PROC
PHREG run with the pooled individual-level data. We
considered the integration successful if the DRA parameter
estimates and SEs and model fit statistics were precise to the
results from the corresponding pooled individual-level data

analyses (10−6).

For distributed logistic regression, we also compared the receiver
operating characteristic (ROC) curve and the area under the
ROC curve with the corresponding curve and area obtained
from a PROC LOGISTIC run with the pooled individual-level
data. We considered the integration successful if the ROC curves
were similar in likeliness and if the areas under the curves were
comparable. To offer better privacy protection, we summarized
individual-level predicted values for the distributed logistic
regression analysis in bins of 6. Full details of this
approximation method can be found elsewhere [12]. For
distributed Cox proportional hazards analysis, we also compared
the survival function curve with the curve obtained from a
PROC PHREG run with the pooled individual-level data. We
considered the integration successful if the survival function
curves were similar in likeliness and if the median times to
weight loss ≥20% were equivalent.
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We extracted time stamps of status changes from PopMedNet
and computed the average download, upload, SAS execution,
and transfer time at the data partners and the analysis center to
evaluate the operational performance of the DRA application.
We also reported the average iteration time for each regression
model type, and the time required to perform an end-to-end
DRA in our test case.

We executed all SAS-based DRA packages in SAS versions
9.3 or 9.4, on a Windows desktop or server routinely used to
perform Sentinel queries. All machines used to execute the
SAS-based DRA packages and DataMart Client instance
operated on a Windows 7 platform, with multiple Intel core
processors ranging from 2.3 to 3.4 GHz, and 8 to 16 GB of
RAM (Multimedia Appendix 2).

Results

Overview
We identified 5452 eligible patients among the 3 participating
data partners (n1=1706, n2=2728, and n3=1018). Of these, 981
patients received sleeve gastrectomy, whereas 4471 patients
received Roux-en-Y gastric bypass during the study period.
Within 1-year postsurgery, the BMI decreased on average by

9.8 kg/m2 in sleeve gastrectomy patients and 18.7 kg/m2 in

Roux-en-Y gastric bypass patients. Five-hundred eighty-two of
the 981 (59.3%) patients who had undergone sleeve gastrectomy
and 3617 of the 4471 (80.10%) patients who had undergone
Roux-en-Y gastric bypass had a weight loss ≥20% within the
1-year postsurgery period. The median time to a weight loss
≥20% was 223.9 days for patients who had undergone sleeve
gastrectomy and 196.2 days for patients who had undergone
Roux-en-Y gastric bypass.

Precision
Tables 2-4 summarize the precision of distributed linear, logistic,
and Cox proportional hazards regression analyses. Table 5 shows
the model fit statistics of the 3 regression models. All DRA
parameter estimates, SEs, and model fit statistics were highly
comparable to the estimates obtained from the pooled
individual-level analyses that used standard SAS regression
procedures. The ROC curve in distributed logistic regression
(Figure 3) and the survival function in distributed Cox regression
(Figure 4) were similar to those obtained from the pooled
individual-level data analyses. The DRA application reported
an area under the curve (AUC) of 0.6591 for logistic regression
(vs 0.6592 from the pooled individual-level data analysis) and
184 days for Cox proportional hazards analysis (vs 184 days
from the pooled individual-level data analysis) as the median
time to weight loss ≥20%.
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Table 2. Distributed linear regression vs pooled individual-level linear regression.

Difference in
SE

Difference in pa-
rameter estimate

Pooled individual-level

analysis

Distributed regression

analysis

Covariates

SEParameter

estimate

SEParameter

estimate

−9.14 x 10−133.66 x 10−120.6107534.039350.6107534.03935Intercept

−4.30 x 10−13−4.15 x 10−130.287232.047140.287232.04714Exposure

−1.25 x 10−14−3.68 x 10−140.00837−0.033340.00837−0.03334Age

−7.44 x 10−16−6.00 x 10−150.00050−0.999830.00050−0.99983Preindex BMI

−1.04 x 10−133.59 x 10−150.069490.043880.069490.04388Combined comorbidity score

−1.51 x 10−14−6.59 x 10−170.01008−0.030680.01008−0.03068Number of ambulatory visits

−1.31 x 10−13−2.79 x 10−140.087490.103290.087490.10329Number of emergency department visits

−3.89 x 10−13−6.51 x 10−130.259760.887250.259760.88725Number of inpatient visits

−2.68 x 10−124.21 x 10−131.790561.323381.790561.32338Number of nonacute institutional stay

−1.31 x 10−141.22 x 10−140.008730.021590.008730.02159Number of other ambulatory visits

−8.48 x 10−153.92 x 10−150.005670.012070.005670.01207
Days between BMI measurement and index
procedure

Racea

−4.02 x 10−13−4.16 x 10−130.268410.942120.268410.94212Unknown

−1.04 x 10−12−2.39 x 10−130.69817−0.309480.69817−0.30948American Indian or Alaska Native

−9.42 x 10−13−4.52 x 10−130.63001−0.168530.63001−0.16853Asian

−4.37 x 10−13−9.95 x 10−140.292061.519610.292061.51961Black or African American

−1.57 x 10−12−4.11 x 10−131.04973−1.223151.04973−1.22315Native Hawaiian or other Pacific Islander

−3.47 x 10−13−5.33 x 10−130.23205−1.223660.23205−1.22366Female

Surgery yeara

−4.54 x 10−13−5.94 x 10−130.303610.151500.303610.151502011

−4.54 x 10−13−6.47 x 10−130.30372−0.249040.30372−0.249042012

−4.52 x 10−13−6.08 x 10−130.30223−0.023080.30223−0.023082013

−4.58 x 10−13−5.93 x 10−130.306090.327670.306090.327672014

−4.99 x 10−13−6.18 x 10−130.33352−0.257670.33352−0.257672015

Data partner sitea

−4.69 x 10−132.89 x 10−150.31373−1.105590.31373−1.105592

−4.54 x 10−13−2.07 x 10−130.30341−0.109900.30341−0.109903

aReference groups: race (white), surgery year (2010), and data partner site (1).
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Table 3. Distributed logistic regression vs pooled individual-level logistic regression.

Difference in
SE

Difference in pa-
rameter estimate

Pooled individual-level analysisDistributed regression analysisCovariates

SEParameter

estimate

SEParameter

estimate

−1.00 x 10−14−6.22 x 10−150.228332.115730.228332.11573Intercept

−1.80 x 10−16−2.00 x 10−150.09895−1.067110.098951.06711Exposure

−1.57 x 10−16−4.51 x 10−170.00316−0.016070.00316−0.01606Age

2.44 x 10−196.51 x 10−190.000200.000030.000200.00003Preindex BMI

−3.12 x 10−17−6.97 x 10−160.02561−0.026230.02561−0.02623Combined comorbidity score

1.13 x 10−176.25 x 10−170.004470.011550.004470.01155Number of ambulatory visits

1.39 x 10−173.05 x 10−160.03133−0.062300.03132−0.06230Number of emergency department visits

−2.36 x 10−161.75 x 10−150.08940−0.120980.08940−0.12098Number of inpatient visits

−3.33 x 10−16−2.00 x 10−150.788090.425100.788090.42510Number of nonacute institutional stay

−2.91 x 10−173.17 x 10−170.003400.003810.003400.00381Number of other ambulatory visits

−4.77 x 10−183.90 x 10−170.00201−0.002660.00201−0.00266
Days between BMI measurement and
index procedure

Racea

−2.50 x 10−160.00 x 10+000.09485−0.396850.09485−0.39685Unknown

5.55 x 10−17−1.11 x 10−160.26230−0.139380.26230−0.13938American Indian or Alaska Native

2.78 x 10−17−3.04 x 10−140.22341−0.372570.22341−0.37257Asian

−9.71 x 10−17−3.33 x 10−160.10507−0.296170.10507−0.29617Black or African American

0.00 x 10+00−6.14 x 10−160.40543−0.029100.40543−0.02910
Native Hawaiian or Other Pacific
Islander

−3.61 x 10−16−1.80 x 10−150.084220.199930.084220.19993Female

Surgery yeara

−5.55 x 10−176.37 x 10−150.11684−0.102690.11683−0.102692011

−1.67 x 10−165.45 x 10−150.118970.055470.118970.055472012

−1.94 x 10−166.80 x 10−150.11382−0.119560.11382−0.119562013

−1.80 x 10−164.36 x 10−150.11617−0.109560.11617−0.109562014

−2.50 x 10−166.47 x 10−150.127980.037010.127980.037012015

Data partner sitea

−9.99 x 10−164.51 x 10−150.11751−0.104330.11751−0.104332

−2.50 x 10−162.11 x 10−150.125770.755060.125770.755063

aReference groups: Race (white), surgery year (2010), and data partner site (1).
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Table 4. Distributed Cox proportional hazards regression vs pooled individual-level Cox proportional hazards regression.

Difference in
SE

Difference in pa-
rameter estimate

Pooled individual-level analysisDistributed regression analysisCovariates

SEParameter

estimate

SEParameter

estimate

−8.33 x 10−176.66 x 10−160.05275−0.581600.05275−0.58160Exposure

−9.11 x 10−181.39 x 10−170.00146−0.011070.00146−0.01107Age

−1.49 x 10−192.85 x 10−190.00009−0.000060.00009−0.00006Preindex BMI

−1.04 x 10−17−3.64 x 10−170.01205−0.007870.01205−0.00787Combined comorbidity score

1.08 x 10−18−2.95 x 10−170.001580.005840.001580.00584Number of ambulatory visits

−2.43 x 10−171.56 x 10−160.00158−0.018730.01679−0.01873Number of emergency department visits

−1.25 x 10−16−9.58 x 10−160.04580−0.085870.04580−0.08587Number of inpatient visits

−3.33 x 10−163.75 x 10−160.292660.066260.292660.06626Number of nonacute institutional stay

−1.52 x 10−184.03 x 10−170.001340.002790.001340.00279Number of other ambulatory visits

−2.17 x 10−182.39 x 10−170.00096−0.002210.00096−0.00221
Days between BMI measurement and
index procedure

Racea

0.00 x 10+005.27 x 10−160.04765−0.188980.04765−0.18898Unknown

2.78 x 10−171.25 x 10−160.12019−0.074760.12019−0.07476American Indian or Alaska Native

6.94 x 10−17−2.78 x 10−170.10933−0.223090.10933−0.22309Asian

−1.39 x 10−171.94 x 10−160.05116−0.184570.05116−0.18457Black or African American

2.78 x 10−171.42 x 10−150.17333−0.197480.17333−0.19748
Native Hawaiian or Other Pacific
Islander

−3.47 x 10−17−1.24 x 10−150.04052−0.008870.04052−0.00887Female

Surgery yeara

1.11 x 10−168.60 x 10−160.05176−0.080210.05176−0.080212011

7.63 x 10−174.61 x 10−160.05136−0.025470.05136−0.025472012

4.86 x 10−171.17 x 10−150.05195−0.095190.05195−0.095192013

1.18 x 10−168.60 x 10−160.05235−0.168660.05235−0.168662014

1.04 x 10−163.89 x 10−160.056400.247630.056400.247632015

Data partner sitea

-6.94 x 10−182.11 x 10−150.05188−0.152700.05188−0.152702

2.08 x 10−178.33 x 10−160.051610.334400.051610.334403

aReference groups: race (white), surgery year (2010), and data partner site (1).
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Table 5. Comparison of model fit statistics between distributed regression and pooled individual-level data analysis.

Difference in model fit statisticsPooled individual-level data
analysis

Distributed regression
analysis

Regression model type and statistic or test

Linear

3.89 x 10−150.99870.9987R 2

−1.59 x 10−0820089.653820089.6538Akaike information criterion

−1.59 x 10−0820091.871020091.8710Sawa's Bayesian information criterion

−1.59 x 10−0820247.586820247.5868Schwarz's Bayesian information criterion

Logistic

1.36 x 10−115423.24915423.2491-2 log-likelihood

1.36 x 10−115471.24915471.2491Akaike information criterion

1.36 x 10−115629.52655629.5265Sawa's Bayesian information criterion

−1.00 x 10−040.65920.6591Area under the ROCa curve

−2.19 x 10−011.55961.3405Hosmer-Lemeshow (chi-square statistics)

3.38 x 10−03.991 (8).995 (8)Hosmer-Lemeshow, P value (df)

Cox

1.46 x 10−1166217.727066217.7270-2 log-likelihood

1.46 x 10−1166263.727066263.7270Akaike information criterion

1.46 x 10−1166409.607066409.6070Schwarz's Bayesian information criterion

0184184Median time to event (days)

aROC: receiver operating characteristic.

Figure 3. Comparison of receiver operating characteristic curves between distributed logistic regression (left) and pooled individual-level logistic
regression (right). To offer better privacy-protecting, individual-level predicted values were summarized in bins of 6 and transferred to the analysis
center for aggregation in the distributed logistic regression analysis. The size of the bin is user-specified. ROC: receiver operating characteristic.
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Figure 4. Comparison of survival functions between distributed cox proportional hazards regression (left) and pooled individual-level cox proportional
hazards regression (right). The survival curves were evaluated at the mean value of covariates for patients with events.

Operational Performance
As expected, the closed-form solution of distributed linear
regression analysis required only two iterations, one for
computing the regression parameter estimates and SEs and the
other for computing the model fit statistics. Both logistic and
Cox proportional hazards regression analyses required 6
iterations for model convergence in our test case. Each file
transfer process transferred between 3 and 10 files with sizes
of 1 to 800 KB.

We extracted 111, 271, and 271 time stamps of status changes
from PopMedNet for distributed linear, logistic, and Cox
analysis, respectively. Table 6 summarizes the operational
performance of the DRA application. It took an average of 102.4
s to complete one DRA iteration across all regression model
types. The file transfer workflow (file upload, download, and
transfer to the reciprocal party) accounted for 89% of the
iteration time. Downloading and uploading the DRA files at the

Sentinel Operations Center required an average of 28.6 and 9.8
s, respectively. File transfer from the Sentinel Operations Center
to the data partners took on average 9.4 s. Downloading and
uploading the DRA files at the data partners required an average
of 10.1 and 15.5 s, respectively. File transfer from the data
partners to the Sentinel Operations Center took an average 22.1
s. Computing the intermediate statistics at the data partners
required an average of 8.0 s, whereas computing the updated
regression parameters took an average of 3.8 s at the Sentinel
Operations Center.

The distributed Cox regression required the greatest amount of
iteration time (113.5 s), followed by logistic regression (95.0
s) and linear regression (91.5 s). Overall, distributed linear
regression analysis with our bariatric surgery test case required
440.7 s to complete, whereas logistic and Cox proportional
hazards regression analysis required 925.5 and 1016.0 s,
respectively.

Table 6. Operational performance of the distributed regression analysis application.

OverallCoxLogisticLinearPerformance metric

—a662Required number of iterations for model convergence

—1,016.0925.5440.7Total run time

102.4 (3.8)113.5 (5.2)95 (3.1)91.5 (10.5)Average iteration time, mean (SE)

Sentinel operations center (analysis center)

28.6 (3.2)39.4 (4)20.6 (1.3)20.5 (5.4)Average download time, mean (SE)

3.8 (0.6)4.4 (0.4)3 (1.1)4.3 (2.6)Average computation time, mean (SE)

9.8 (0.4)9.9 (0.6)10.2 (0.7)8.4 (1.1)Average upload time, mean (SE)

9.4 (0.3)9.4 (0.5)9.1 (0.5)10.5 (0.4)Average file transfer time (to data partners), mean (SE)

Data partners

10.1 (0.4)10.3 (0.8)10.3 (0.6)8.6 (1.2)Average download time, mean (SE)

8 (0.2)8 (0.3)7.9 (0.4)8.2 (0.8)Average computation time, mean (SE)

15.5 (0.3)15.1 (0.3)15.9 (0.6)15.6 (1.2)Average upload time, mean (SE)

22.1 (1.0)23.1 (1.2)21.8 (1.9)20 (0.8)Average file transfer time (to analysis center), mean (SE)

aN/A: not applicable.
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Discussion

Principal Findings
We have successfully integrated a SAS-based DRA package
with PopMedNet, an open-source distributed networking
software, and performed DRA in select data partners within a
real-world DDN. Our application was able to compute regression
parameters, SEs, model fit statistics, and model fit graphics of
3 regression model types (linear, logistic, and Cox proportional
hazards) that were within machine precision or similar in
likeliness to those produced using standard SAS regression
procedures, without the need to share any individual-level data,
in under 20 min. The study demonstrated the feasibility and
validity of performing multivariable regression analysis in a
multicenter setting while limiting the risk of disclosing sensitive
individual or institutional information.

Previous Studies
Previous studies have used simulated or relatively
well-controlled distributed environments to demonstrate the
ability to perform DRA with only summary-level information
[4-8]. These studies have consistently reported that DRA

produced precise (generally <10−12) results compared with the
results from the pooled individual-level data analysis. However,
information on the operational performance (computation and
file transfer time) of DRA algorithms or workflows is scarce.
The closest experience to our DRA application is a Web-based
DRA software developed by the SCAlable National Network
for Effectiveness Research (SCANNER) [11]. This software is
composed of a network portal with a set of Web services and
virtual machines that host data from data-contributing sites and
several libraries of analytical programs. At the time of our
analysis, 3 method libraries were available in the SCANNER
software: a cohort discovery tool, an algorithm to perform
meta-analyses with distributed data, and an algorithm to perform
distributed logistic regression analysis (Grid Binary LOgistic
Regression, GLORE) [6]. The authors reported that GLORE
produced results equivalent to those from the pooled
individual-level data analysis, and software response times of
0.015 s with a dataset of 580 records (with a binary outcome
variable, a treatment indicator variable, and 24 covariates) and
27.02 s with a dataset of 10,000 records (with a binary outcome
variable and 5 covariates) partitioned among 3 different
institutions.

Our DRA application required significantly more time for model
convergence than the SCANNER software. However, this
additional time for model convergence may be considered
marginal in practice, where other aspects of a multicenter study
are typically more time-consuming. For example, developing
a study protocol and analysis plan or assembling an analytical
dataset at each participating data partner for DRA may require
considerably more time than the time required to perform DRA.
There are also several key differences between our application
and the SCANNER software that may explain the difference in
operational performance. Specifically, the SCANNER software
requires users to install a virtual machine and open ports to the
master node hosting the SCANNER hub. This design may have
shorter file upload, transfer, and download times between the

execution nodes, as files are only transferred between
homogeneous virtual machines on the server and not subject to
impediments such as firewall security protocols, additional
workload, and upload, transfer, and download speeds.

The operational performance of the SCANNER software makes
it a desirable option for DRA in networks that are amenable to
installing the required software and applications. We previously
found that most Sentinel data partners were unwilling to install
new software or make modifications to their existing hardware
configurations to perform DRA [3]. We chose to develop the
DRA application using SAS and PopMedNet because all
Sentinel data partners have both software in their systems. In
addition, several other large DDNs, including the National
Patient-Centered Clinical Research Network [24] and the
National Institutes of Health’s Health Care Systems Research
Collaboratory [25], use PopMedNet as their file transfer
software. In other words, our DRA application requires no new
software installation or modifications to existing hardware
configurations in DDNs that employ SAS as their statistical
software and PopMedNet as their file transfer software. The 3
data partners that participated in this project are also members
of numerous PopMedNet-based DDNs. Therefore, the successful
integration of our SAS-based DRA package with PopMedNet
and execution of DRA with these data partners have the potential
to extend DRA beyond the Sentinel System.

Limitations
Our study is not without limitations. First, DRA requires
infrastructure and processes beyond the algorithms and
technology described in this paper. For example, DRA with our
application requires harmonized individual-level datasets. Since
its inception, Sentinel has continuously enhanced its common
data model, routine analytical tools, and data quality assurance
processes. Thus, Sentinel data partners can rapidly create
harmonized analytical datasets for DRA. Research networks
and investigators without the same infrastructure may not be
able to perform DRA with our application as easily, even if data
partners are willing to use PopMedNet as their data-sharing
software.

Second, we tested the DRA application with only 3 Sentinel
data partners, and all tests were completed in a Windows version
of SAS (desktop or server). It is possible that different hardware
configurations not found at these data partners or different
versions of SAS (Linux or Unix) could change the precision
and operational performance or even inhibit the execution of
our DRA application. However, we previously found only 3
different configurations of the required hardware components
(DataMart Client, SAS software, and the common folder
structure) among Sentinel data partners [3]. All 3 hardware
configurations were represented among the 3 data partners in
this study. We also found the reconfiguration of these
components to be relatively straightforward. Therefore, it may
be possible to have data partners with other configurations make
minor changes to implement our DRA application. During the
development of the DRA application, we were able to
successfully execute our application on a Linux server with a
fourth data partner, by placing the application on a Linux server
directory accessible to the DataMart Client as a mapped
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Windows network drive. This allowed the DataMart Client to
access the same file system as the DRA application. Overall,
additional testing with more data partners with different
hardware configurations and different versions of SAS is needed
to fully ensure that our DRA application is operable across
different DDNs, research networks, operation systems, and
environments.

Third, our precision and operational performances were based
on a small sample of successful end-to-end executions of our
DRA application. These executions were limited to regression
models with 23 variables and analytical datasets ranging from
1000 to 3000 patients distributed among 3 data partners. Future
work should include more end-to-end executions, regression
models with more variables, datasets of larger sample sizes,
and more data partners. However, we found that 89% of the
iteration time was attributed to file transfer time, which was
largely driven by the number of files, size of the files transferred,
and network conditions (upload, download, and transfer speeds,
firewall security protocols, and workload). Because the files
contain highly summarized information, increasing the number
of variables or patients will not increase the number of files or
substantially increase the size of the files to be transferred. In
this study, each file transfer process transferred files that were
less than 1 MB. Our internal testing of analyses with more
variables, patients, and data partners did not result in file sizes
larger than a few MBs or increased the iteration time. Thus, we
do not anticipate DRA with more variables, patients, and data
partners in a real-world setting to have a considerable impact
on the operational performance of our DRA application. In
addition, network conditions at each data partner can vary
depending on the workload. We could not vary network
conditions at each data partner to formally analyze its impact
on the operational performance. However, we did complete our

experiments with 3 Sentinel data partners, with machines that
are routinely used to fulfill Sentinel query requests. Thus, our
results on precision and operational performance likely represent
what potential users of DRA will experience in practice.

Fourth, our bariatric surgery test case was relatively simplistic
and not as sophisticated as an actual clinical or epidemiologic
study. For example, we did not include all the potential
confounders. Therefore, the results of our analysis did not have
any causal interpretation.

Finally, although DRA uses the intermediate statistics at each
data partner to perform multivariable regression analysis, the
risk of reidentifying specific individuals is not 0. Under certain
conditions (eg, uncommon individual attributes coded with
indicator variables), there could be leakage of personal
information that could be used to infer or identify specific
individuals [26]. To further protect privacy, DRA can be
performed using more secure algorithms, such as encrypting or
perturbing the intermediate statistics. Future work should
explore the integration of these more secure DRA algorithms
into our DRA application.

Conclusions
We have successfully developed and integrated a SAS-based
DRA package with an iterative and automatable
PopMedNet-driven file transfer workflow to create a DRA
application and conduct DRA in select data partners within a
real-world DDN. The application produced results that were
within machine precision to the results from the pooled
individual-level data analyses using standard SAS regression
procedures. The end-to-end execution times were reasonable,
demonstrating that DRA can be a practical and valid analytical
method in real-world settings.
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