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Abstract

Background: In the current era of personalized medicine, there is increasing interest in understanding the heterogeneity in
disease populations. Cluster analysis is a method commonly used to identify subtypes in heterogeneous disease populations. The
clinical data used in such applications are typically multimodal, which can make the application of traditional cluster analysis
methods challenging.

Objective: This study aimed to review the research literature on the application of clustering multimodal clinical data to identify
asthma subtypes. We assessed common problems and shortcomings in the application of cluster analysis methods in determining
asthma subtypes, such that they can be brought to the attention of the research community and avoided in future studies.

Methods: We searched PubMed and Scopus bibliographic databases with terms related to cluster analysis and asthma to identify
studies that applied dissimilarity-based cluster analysis methods. We recorded the analytic methods used in each study at each
step of the cluster analysis process.

Results: Our literature search identified 63 studies that applied cluster analysis to multimodal clinical data to identify asthma
subtypes. The features fed into the cluster algorithms were of a mixed type in 47 (75%) studies and continuous in 12 (19%), and
the feature type was unclear in the remaining 4 (6%) studies. A total of 23 (37%) studies used hierarchical clustering with Ward
linkage, and 22 (35%) studies used k-means clustering. Of these 45 studies, 39 had mixed-type features, but only 5 specified
dissimilarity measures that could handle mixed-type features. A further 9 (14%) studies used a preclustering step to create small
clusters to feed on a hierarchical method. The original sample sizes in these 9 studies ranged from 84 to 349. The remaining
studies used hierarchical clustering with other linkages (n=3), medoid-based methods (n=3), spectral clustering (n=1), and multiple
kernel k-means clustering (n=1), and in 1 study, the methods were unclear. Of 63 studies, 54 (86%) explained the methods used
to determine the number of clusters, 24 (38%) studies tested the quality of their cluster solution, and 11 (17%) studies tested the
stability of their solution. Reporting of the cluster analysis was generally poor in terms of the methods employed and their
justification.

Conclusions: This review highlights common issues in the application of cluster analysis to multimodal clinical data to identify
asthma subtypes. Some of these issues were related to the multimodal nature of the data, but many were more general issues in
the application of cluster analysis. Although cluster analysis may be a useful tool for investigating disease subtypes, we recommend
that future studies carefully consider the implications of clustering multimodal data, the cluster analysis process itself, and the
reporting of methods to facilitate replication and interpretation of findings.
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Introduction

Background
There is mounting evidence to suggest that some disease labels
are in fact umbrella terms, which encompass distinct disease
subtypes with different underlying mechanisms and clinical
symptom manifestations [1-3]. This has encouraged the
investigation into heterogeneity within disease populations,
which has received considerable interest across diverse domains
of medicine [4-6]. There are numerous motivations for better
understanding heterogeneity within disease populations, from
the development of targeted therapeutics [6] to the delivery of
more personalized care in clinical practice [7].

It is now understood that asthma is one such umbrella term used
to encompass multiple diverse underlying disease symptoms
and pathophysiology [7]. Asthma is a common chronic condition
characterized by reversible airway obstruction. The Global
Burden of Disease Study 2017 estimated the global prevalence
of asthma (both symptomatic and asymptomatic) to be 273
million [8]. This study estimated that in 2017, there were 43
million new cases of asthma and 495,000 deaths attributed to
asthma [9]. Attempts to categorize asthma into distinct disease
subtypes date back to the 1940s [10] and are ongoing. However,
the methods for discovering these underlying categories have
shifted from observing clinical patterns to using data-driven
approaches such as cluster analysis [11].

Cluster analysis is a statistical technique used to identify
subgroups in data based on multiple variables (for convenience,
herein, we have used the term features). It is an unsupervised
statistical learning method, and the correct number of underlying
clusters is typically unknown a priori [12]. The technique has
found increasing use in recent years because of the practical
unmet clinical need to identify subtypes of disease and stratify
patients to improve health care delivery. This has been made
feasible by the increasing availability of clinical datasets and
the development of statistical software packages facilitating the
application of algorithmic methods.

Clinical datasets are often multimodal; for the purposes of this
paper, we defined a multimodal dataset as a dataset that includes
features from different sources, measured on different scales.
For completeness and to avoid ambiguity, we clarified that the
term multimodal has a different meaning in statistical literature
(ie, features with multiple modes in terms of its distribution);
the use of the term in this study is aligned with clinical literature
(having features from different sources). Popular methods of
cluster analysis such as k-means and hierarchical clustering
with the Ward method have been developed for continuous
features measured on a common scale. In practice, however,
many of these techniques are frequently applied to multimodal
clinical datasets comprising different feature types measured
on different scales, conditions that violate some of the

underlying principles and assumptions made by algorithmic
methods [13]. Although steps can be taken to prepare
multimodal clinical data for cluster analysis [13], the results of
a previous review suggest that these steps are rarely taken in
practice [11]. This previous review focused on the clinical
findings of the studies and touched only briefly on the challenges
of clustering multimodal data specifically.

Objectives
This review aimed to comprehensively explore whether studies
applying cluster analysis to multimodal clinical data to subtype
asthma are using appropriate clustering methodologies. The
contribution of this study is to make recommendations for the
robust application of cluster analysis to multimodal clinical
data. We believed this would be of interest to the ever-growing
number of asthma researchers engaging or planning to engage
in disease subtyping, as well as to the wider community of
researchers applying cluster techniques for the purpose of
disease subtyping.

Methods

Eligibility Criteria and Search Strategy
This review is reported following the Preferred Reporting Items
for Systematic Reviews and Meta-Analyses (PRISMA)
guidelines. Multimedia Appendix 1 shows the completed
PRISMA checklist.

We sought to identify studies that applied cluster analysis to
multimodal clinical data with the aim of identifying subtypes
of asthma. One researcher (EH) searched PubMed and Scopus
databases (search queries are provided in Textbox 1) to retrieve
studies focusing on patients diagnosed with asthma, which
included the term cluster analysis or clustering. Our search was
restricted to studies published between January 1, 2008, and
May 23, 2019, as Haldar et al’s study [14] is widely
acknowledged to be the first to apply cluster analysis to identify
subtypes of asthma. Our search excluded comment articles,
editorials, letters, reviews, and meta-analyses. We excluded
articles that were not written in English.

We excluded nonrelevant studies by first screening the abstracts,
then referring to the full text where necessary. We excluded
studies in which (1) none of the aims or objectives were to
identify subtypes of asthma (studies looking exclusively at, eg,
childhood wheeze were excluded); (2) the data were not
multimodal (ie, were measured from a common source and on
a common scale); and (3) none of the features were considered
clinical (eg, studies concerned only with -omics data). Finally,
we excluded studies that used latent class analysis or mixture
models to group their data to narrow the scope of this review
to methods that cluster samples based on pairwise dissimilarities.
The use of latent class analysis to distinguish asthma phenotypes
has been reviewed previously by Howard et al [15].
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Textbox 1. Search query to identify studies to include in this review.

• The following query was inserted in PubMed on May 23, 2019:

English[Language] AND (“2008/01/01”[Date - Publication] : “2019/05/23”[Date - Publication]) AND (“cluster
analysis”[Text Word] OR “clustering*”[Text Word]) AND “asthma*”[Text Word] NOT (comment[Publication Type]
OR editorial[Publication Type] OR letter[Publication Type] OR review[Publication Type] OR
meta-analysis[Publication Type])

• The following query was inserted in Scopus on May 23, 2019:

PUBYEAR > 2007 AND (TITLE-ABS-KEY ( “cluster analysis” ) OR TITLE-ABS-KEY(“clustering*”)) AND
TITLE-ABS-KEY (“asthma*”) AND SRCTYPE (“j”) AND DOCTYPE (“ar”) AND LANGUAGE (“English”)

Data Extraction
In total, 2 researchers (EH and HT) independently extracted
information from the full text and supplementary material of
each study. Information was extracted following the steps
outlined in the following Cluster Analysis Steps section. The
data dictionary, which provides details of all items extracted,
is presented in Multimedia Appendix 2.

Cluster Analysis Steps
To provide context for this review, we outlined the key steps
in the application of cluster analysis to multimodal clinical data.
Figure 1 summarizes the steps in the order in which they
generally occur, but as with most analytic processes, this
depends on the context, and the process may be somewhat
iterative.

Figure 1. Schematic of the typical cluster analysis steps.
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Initial Considerations

Identify Candidate Features

The first step is to identify the set of features of interest, which
we referred to as candidate features. These may be identified
based on previous studies or clinical input using domain
expertise. In some cases, all the candidate features may be used
in the cluster analysis (we referred to the features used in cluster
analysis as cluster features). In other cases, formal feature
selection processes may be applied to the candidate features to
identify the cluster features, as covered in the Feature Selection
section.

Missing Data

Most common cluster analysis methods use complete case
analysis (ie, the cluster features have no missing entries, which,
in practice, might be achieved by removing samples for which
any cluster feature entry is missing). However, it may be more
data efficient to develop a strategy to work around missing
entries instead of discarding samples. Missing values may be
handled through the calculation of dissimilarities, as described
by Hastie et al [16]. Alternatively, missing data could be
imputed, or for categorical features, a missing category could
be introduced.

Sample Size

Despite the widespread use of cluster analysis, at present, there
is no consensus regarding the minimum sample size required
to ensure stable and meaningful clustering. Dolnicar et al [17]
suggested that 70 samples per cluster feature is adequate, based
on the findings of their simulation study. Small sample sizes
may obscure the true clustering by causing the user to pick the
wrong number of clusters (see the Choosing the Number of
Clusters section) or by producing solutions that are neither
reproducible nor stable (see the Stability and Quality
subsections).

Feature Engineering

Feature Types

The features that we may want to use in a clustering algorithm
often come from multimodal clinical data. Hence, they may be
of different types (eg, continuous, nominal, ordinal, binary, etc)
and are likely to be measured on different scales (eg, kilogram
for mass, years for age). Most dissimilarity measures and
clustering algorithms assume that the features are of the same
type and are measured on a common scale. These requirements
can be addressed using feature encoding and feature scaling.

Feature Encoding

When dealing with categorical features, it is vital to consider
how these are encoded (nominal, ordinal, or binary), as this
determines how they are treated in the calculation of
dissimilarities and in the clustering algorithm. A common
approach is to encode ordinal features as integers and to encode
nominal features as dummy binary features [18].

Feature Scaling

Feature scaling may be used to address 3 issues related to
continuous features. The first is that continuous features may
be measured in different units and should therefore be rescaled

to bring them onto a common scale before calculating
dissimilarities. The second is that continuous features measured
in the same units may have different variances. In some cases,
the differences in variance may be useful for clustering, but in
others, these may obscure the true underlying cluster structure
in the data. In the latter case, the continuous features should be
rescaled. Common approaches to these 2 issues are to
standardize features to have 0 mean and unit variance (referred
to as z-scores) or to use range normalization techniques, for
example, to scale each feature so that it is in the interval of 0
to 1.

The third issue is that the features may not follow the desired
probability distribution properties for further analysis (eg, having
Gaussian-distributed features). This issue needs to be considered
when statistical methods make distributional assumptions.
Although few dissimilarity-based clustering methods make
distributional assumptions, several methods involve the
calculation of cluster means (eg, k-means, hierarchical clustering
with the Ward linkage). The mean is a poor choice of summary
statistic for a feature that is skewed (or a feature with multiple
modes), so a power transformation may be advantageous as a
preprocessing step when using such clustering methods.

When dealing with mixed-type data, it may be necessary to
scale the categorical features to avoid assigning categorical
features greater weight over continuous features or vice versa.
This issue is discussed in detail in the context of dissimilarity
measures by Hennig and Liao [13].

Dimensionality Reduction

There are generally 2 motivations for reducing the
dimensionality of a dataset before applying cluster analysis.
First, as previously mentioned in the Sample Size subsection,
datasets with a high feature to sample ratio may not produce
stable cluster results. Second, the cluster structure may only be
apparent using a subset of the information available in the data.
Using all available information may introduce noise, which
could obscure the true underlying cluster structure [19]. There
are 2 approaches to dimensionality reduction: feature selection
and feature transformation.

Feature Selection

Feature selection involves selecting a subset of the available
features for use in cluster analysis. Herein, we have referred to
the features selected for the cluster analysis as cluster features.

Feature Transformation

Feature transformation involves combining original features to
create new features. Generally, a subset of these new features
is selected for inclusion in the analysis. It is beyond the scope
of this review to provide in-depth details on the methods of
feature transformation (also known as feature extraction); we
referred to van der Maaten et al’s [20] work for a comprehensive
review. Here, we briefly outlined principal component analysis
(PCA), which is the most commonly used method for linear
data projection. PCA may be applied to p continuous, correlated
features to extract m<p continuous, and uncorrelated features
(known as principal components), each being a linear function
of the original cluster features [21]. Related methods include
factor analysis for continuous data, multiple correspondence
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analysis (MCA) for categorical data [22], and multiple factor
analysis for mixed-type data [23].

Cluster Analysis

Dissimilarity Measures

Model-free clustering methods rely on a dissimilarity measure
to quantify how dissimilar 2 samples are from one another.
Dissimilarity may also be referred to as a distance measure if
it satisfies the triangle inequality. The most widely used
dissimilarity measure is the squared Euclidean distance
(henceforth referred to as Euclidean distance), which is intended
for use with continuous features. A dissimilarity measure that
can handle both categorical and continuous features is the Gower
distance [24].

Cluster Analysis Methods

There are many different methods of cluster analysis (eg,
k-means, hierarchical clustering with the Ward linkage, spectral
clustering), and each method may be implemented using
different algorithms. A comprehensive overview of the wide
range of clustering methods can be found elsewhere [25].

Postprocessing

Choosing the Number of Clusters

A key challenge in cluster analysis is choosing the number of
clusters to present in the final solution, which is typically
unknown a priori. Often, researchers use their preferred
clustering methods, running them for 2 to k clusters (where k
is an integer number indicating the number of clusters) and then
have a strategy to determine k.

Providing a detailed commentary on these strategies is beyond
the scope of this review. An overview of strategies for choosing
k is provided by Everitt et al [23]. Graphical techniques include
dendrograms (when using hierarchical clustering methods) and
silhouette plots [26]. An alternative approach is to choose the
number of clusters that gives the most stable solution [27]. In
practice, a key determinant in choosing the number of clusters
is often the clinical interpretation of the solutions.

We highlighted the possibility that there might not be
meaningful clustering of the data to form groups, and thus, the
entire dataset is treated as 1 cluster. This may reflect the lack
of statistical power (sufficiently large sample size) to determine
clusters or that the investigated problem using that dataset is
not amenable to clustering using the available sample size and
features. Some statistics used for choosing k, such as the Gap
statistic [28], can be calculated for k=1. However, statistics that
require the calculation of between cluster differences or

distances, such as the silhouette statistic, are not defined for
k=1 [26].

Stability

Assessing the quality of a clustering solution produced using
any cluster algorithm is challenging. Unlike supervised learning
setups, there is no ground truth against which one can formally
test their findings. However, there are several ways in which
one can assess the integrity of their findings.

Most importantly, it is crucial to assess the stability of the
resulting clusters. A definition of cluster stability, given by von
Luxburg [27], is whether clustering different datasets sampled
from the same underlying joint distribution will result in
producing the same clusters. There are several ways in which
this may be assessed in practice (eg, by comparing the cluster
results of a dataset that has been randomly split into 2 or more
subsets, and each subset is independently fed into the cluster
algorithm).

Quality

Beyond stability, there are numerous steps one may take to
ensure the integrity of their cluster analysis findings, for
example, repeating the analysis in a different cohort or at a
different time point, or altering the encoding of a feature. These
steps are often referred to as reproducibility testing. However,
we avoided this term because it implies that we seek the exact
same results, which we do not feel is reasonable in all scenarios.
To extract this information from the studies in this review, 2
reviewers independently extracted details of postprocessing
methods, which we felt assessed the quality of the cluster results,
but did not come under stability. In our schematic and results,
we referred to these methods as testing the quality of the cluster
results.

Results

Literature Search Outcomes
We identified 63 studies that used cluster analysis to identify
subtypes of asthma using multimodal clinical data (Figure 2).
One of the excluded articles satisfied our inclusion criteria but
investigated 85 combinations of cluster analysis steps in a
hierarchical cluster analysis of 383 children with asthma [29].
We excluded this study from our review as including all 85
combinations of methods was deemed infeasible. For the 2
studies in which cluster analysis was carried out in multiple
populations [14,28], we included only the analysis of the larger
population. The characteristics of each study are presented in
Multimedia Appendix 3.
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Figure 2. Flow of studies into review.

Initial Considerations

Identifying Candidate Features
A total of 42 (67%) studies identified candidate features based
on previous studies or clinical input (relevance to asthma
subtypes, avoiding clinical redundancy, and easily measured in
clinical practice). The numbers used in each method are
summarized in Table 1.

Missing Data
A total of 42 (67%) studies detailed their methods for dealing
with missing data; the methods used are shown in Table 1. The
most common method was to carry out a complete case analysis
by excluding all patients with any missing cluster feature entries
(35% of studies).
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Table 1. Initial considerations across the asthma studies we have included in this review (N=63).

Values, n (%)aMethod

Identifying candidate features

33 (52)Clinical intuition and understanding

15 (24)Avoid clinical redundancy

15 (24)Previous studies

8 (13)Easily measured in clinical practice

Missing data

22 (35)Complete case analysis

14 (22)Features with >x%b missing values removed

11 (17)Imputed

5 (8)Patients with >x%b missing values removed

2 (3)No missing data present

1 (2)Clustering methods handle missing data

aOne study may use multiple methods; some studies may use no methods.
bx>0.

Sample Size
The sample sizes for cluster analysis ranged from 40 to 3612,
with a median of 195 patients. Figure 3 presents a scatter plot
of the number of patients in the cluster analysis versus the final
number of cluster features. The straight line corresponds to the
number of samples per feature as recommended by Dolnicar et

al [17]. As this estimate was derived from simulation studies
using k-means as the clustering method, different markers are
used for the studies which used clustering techniques other than
k-means. Note that the studies that did not specify the final
number of cluster features were omitted from the plot. Six
studies (10%) had at least 70 times as many patients as cluster
features, as recommended by Dolnicar et al [17].

Figure 3. Number of patients versus final number of cluster features. The line corresponds to the number of patients that is equal to 70 times the number
of features.
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Feature Engineering

Feature Scaling and Encoding
Judging whether feature scaling and encoding were appropriate

depends on the methods of cluster analysis used and vice versa.
Therefore, we reported the methods of feature scaling and
encoding alongside the methods of cluster analysis in Tables
2-4 and Multimedia Appendix 4.

Table 2. Breakdown of methods used by studies applying hierarchical clustering with Ward's linkage (N=23).

Value, n (%)Categorical features encoded as binary?Data type, dissimilarity, and scaling of continuous features

Continuous

Euclidean assumed

1 (4)N/AaNot detailed

Mixed

Euclidean assumed

1 (4)

1 (4)

Yes

No

Scaled but method unspecified

1 (4)YesScaled to lie in the interval of 0 to 1

1 (4)

1 (4)

Yes

No

z-scores

3 (13)

6 (26)

Yes

No

Not detailed

Euclidean stated

2 (9)

1 (4)

Yes

No

z-scores

Gowerb

3 (13)NoGower standardisation

1 (4)NoScaled but method unspecified

treeClust

1 (4)NoNot detailed

aN/A: not applicable (irrelevant for continuous features).
bComputing the Gower coefficient normalizes the distance between feature samples by dividing by the feature range. Therefore, it is not necessary to
normalize continuous features prior to computing the Gower coefficient.
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Table 3. Breakdown of methods used by studies applying k-means (N=22).

Value, n (%)Categorical features encoded as binary?Data type, dissimilarity, and scaling of continuous features

Continuous

Euclidean assumed

1 (5)N/Aaz-scores for one feature

3 (14)N/ANo details

Euclidean stated

1 (5)N/ANo details

Mixed

Euclidean assumed

1 (5)NoScaled but method unspecified

6 (27)Yesz-scores

1 (5)Noz-scores for one feature

1 (5)

2 (9)

Yes

No

No details

Euclidean stated

1 (5)Yesz-scores

1 (5)NoNo details

Unclear

Euclidean assumed

3 (14)NoNo details

Euclidean stated

1 (5)Noz-scores

aN/A: not applicable (irrelevant for continuous features).

Table 4. Breakdown of methods used by studies applying SPSS TwoStep (N=7).

Value, n (%)Categorical features encoded as binary?Data type, dissimilarity, and scaling of continuous features

Continuous

Euclidean assumed

1 (14)N/AaNo details

Mixed

Log-likelihood assumed

1 (14)YesScaled to lie in the interval 0 to 1

1 (14)Noz-scores

2 (29)YesNo details

Log-likelihood stated

1 (14)NoScaled but method unspecified

1 (14)NoNo details

aN/A: not applicable (irrelevant for continuous features).

Univariate Feature Transformation
A total 23 (37%) studies applied univariate feature
transformation to bring features closer to a normal distribution.
The most common univariate feature transformation was
logarithmic transformation, applied to nonnormally distributed

features in 33% of studies. Lefaudeux et al [30] applied the
Box-Cox transformation to all features, whereas Khusial et al
[31] stated that data were transformed if necessary but gave no
further details.
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Feature Selection
A total of 22 (35%) studies detailed methods of feature selection
to identify their cluster features. The number of features selected
in the 63 studies included in this review ranged from 2 to 120,
with a median of 12 features. In addition, 47 (75%) studies had
mixed-type features, and 12 (19%) had continuous features, and
in 4 (6%) studies, the type of features was unclear. Methods for
feature selection are listed in Table 5.

A total of 13 (20%) studies used PCA or factor analysis for
feature selection. These are not typically methods that should
be used for feature selection; we defer further elaboration on
the topic for the Discussion. All but one of these studies
computed the components (or factors) that represent an
underlying latent feature structure, then selected 1 (or in some
cases multiple [32,33]) original feature corresponding to each
component (or factor) of the latent feature structure. Just et al
[34] stated that they used PCA to select features according to
statistical significance. As PCA does not involve the

computation of statistical significance (P values), more detail
would be required here to fully understand the methods used
for feature selection in this paper. Pérez-Losada et al [35] stated
PCA based on Euclidean distances was carried out. It is unclear
whether this was an error in reporting or whether PCA was
applied to the matrix of Euclidean distances between features
instead of the covariance matrix. To implement the latter
approach, the Euclidean distances would have to be converted
to similarities. Moreover, the authors stated that PCA was used
to identify key clinical components relevant to asthma diagnosis
and assessment. Overall, it is not clear how the authors
processed the data using PCA, and there was no justification
for using Euclidean distances in that computation. Although
the application of PCA leads to the computation of features
(principal components) that maximally explain the (remaining)
variance in the data, there is no guarantee that the resulting
principal components will be highly predictive of an outcome
(in this case, asthma diagnosis and assessment).

Table 5. Feature engineering methods used in the asthma studies included in this review.

Values, n (%)aMethod

Univariate feature transformation

21 (33)Logarithmic transformation

1 (2)Box-Cox transformation

1 (2)Method not explained

Feature selection

8 (13)Factor analysisb

5 (8)Principal component analysisb

3 (5)Avoid collinearity

3 (5)Avoid multicollinearity

2 (3)Supervised learning methods

1 (2)Multiple correspondence analysis

Feature transformation

4 (6)Principal component analysis

1 (2)Factor analysis

1 (2)Multiple correspondence analysis

aAs a percentage of all 63 studies.
bThese are not typically methods of feature selection but have been used in these studies.

Three (5%) studies considered collinearity via pairwise
correlations, although the exact criteria for selection features
based on this were unclear [36-38]. In addition, 3 (5%) studies
avoided multicollinearity, but none detailed their methods for
doing so [39-41].

Furthermore, 2 (3%) studies selected features using statistical
hypothesis tests with respect to the outcome of interest.
Sakagami et al [42] used mean annual decline in forced
expiratory volume in 1 second as the outcome feature in a
multiple regression analysis using stepwise feature selection.
All features with coefficients statistically significantly different
to 0 in the multiple regression model were included as cluster

features. Seino et al [43] grouped participants according to
whether or not they had symptoms of depression. Features were
selected for cluster analysis if the difference between the 2
groups (tested using a Wilcoxon rank-sum or chi-square test
for continuous and categorical features, respectively) was
statistically significant.

Feature Transformation
A total of 6 (10%) studies performed feature transformation
before cluster analysis; the methods are summarized in Table
5. Of the 4 studies that used PCA for feature transformation, 3
used continuous input features [30,44,45], whereas the fourth
used mixed-type input features [46]. None of the studies stated
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whether the covariance or correlation matrix was used as input
for PCA. Only Newby et al [45] specified the number of
transformed features retained, and the proportion of original
variance accounted for.

Khusial et al [31] performed factor analysis on a subset of the
selected features; it is unclear whether categorical features are
included in this subset. Although the resulting factors were
scaled to z-scores, the authors did not provide further
information regarding whether the features were scaled before
factor analysis. Four factors were retained, but neither the
proportion of variance explained by these factors nor a table of
the factor loadings is given.

Sendín-Hernández et al [47] performed MCA to transform 5
continuous and 14 categorical features. They gave the proportion
of variance explained by the transformed features but gave
neither the number of transformed features retained nor a table
of the feature loadings.

Cluster Analysis

Hierarchical Clustering
A total of 23 (37%) studies applied hierarchical clustering with
the Ward method [48] as the principal clustering technique. A
breakdown of the methods used by these studies is given in
Table 2. One study applied these methods to continuous data,
and the remaining 22 studies used mixed-type data. Three
studies stated that the Euclidean distance was used, 4 used
Gower coefficient (issues with the Gower coefficient combined
with the Ward method are addressed in the Discussion section),
and 1 used tree-based dissimilarity measure [49]. For the
remaining 15 studies, we assumed that the Euclidean distance
was used. Of the 23 studies, 11 did not detail whether the
features were rescaled. Of the 17 studies using the Euclidean
distance with mixed-type features, 8 encoded categorical
features as binary features.

A total of 3 (5%) further studies (in addition to the 23 studies
introduced at the start of the paragraph) applied hierarchical
clustering to continuous data. Amore et al [39] used the average
linkage and the Euclidean distance, whereas 2 studies used
hierarchical clustering but did not specify the linkage or
dissimilarity measure used [44,50].

k-Means
A total of 22 (35%) studies used k-means clustering as the
principal clustering technique. A breakdown of the methods
used by these 3 studies is given in Multimedia Appendix 4. A
breakdown of the methods used by these studies is given in
Table 3. Five studies applied k-means to continuous data, and
13 studies applied it to mixed-type data. In 3 studies, the cluster
features were not explicitly stated, and the data types therefore
were unclear. Of the 22 studies, 4 explicitly stated that the
Euclidean distance was used. As no other dissimilarity metrics
were mentioned, we assumed that the Euclidean distance was
used in the remaining 18 studies because it is often the default
option for most algorithmic packages. Of the 22, 11 studies did
not detail whether continuous features were scaled before cluster
analysis. Of the 13 studies with mixed-type data, 8 encoded
categorical features as binary features.

Preclustering Methods
When dealing with very large sample sizes, it can be
advantageous to introduce a precluster step. The aim is to group
samples and to use these groups or preclusters as input to a
follow-on clustering algorithm (ie, using 2 steps with cascaded
cluster algorithms). This step is used to reduce the computation
time required to compute the cluster results.

A total of 7 (11%) studies used the SPSS TwoStep clustering
method [51,52]. A breakdown of the preprocessing methods
and distance measures used by these studies is given in Table
4. In the first (precluster) step, a cluster feature tree is identified.
In the second step, the preclusters are merged stepwise until all
clusters are in 1 cluster using the Euclidean or log-likelihood
distance for continuous or mixed-type features, respectively.
An advantage of the log-likelihood distance measure is that it
is designed to handle mixed-type features. However, in doing
so, it assumes that continuous (categorical) features follow a
normal (multinomial) distribution within clusters.

None of the studies in this review adequately considered the
distributional assumptions made by the SPSS TwoStep method.
Ruggieri et al [53] acknowledged that the method assumes
continuous features are normally distributed, but they did not
explicitly report whether these assumptions were satisfied.
Although Newby et al [45] acknowledged that the method
assumes cluster features are statistically independent within
clusters, they only go as far as to ensure that their cluster features
are uncorrelated (by applying PCA), which does not necessarily
imply independence. The remaining 5 studies that used the SPSS
TwoStep method did not reference distributional assumptions.

Two (3%) further studies preclustered samples (Just et al [34]
specified k-means, and Ye et al [54] did not specify the
precluster method) and then applied hierarchical clustering with
the Ward linkage method on the preclusters. A breakdown of
the methods used by these 2 studies is given in Multimedia
Appendix 4.

k-Medoid Methods
Three studies used k-medoid methods. A breakdown of the
methods used by these 3 studies is given in Multimedia
Appendix 4. Two used k-medoids implemented by the Partition
Around Medoids algorithm [55]. Lefaudeux et al [30] used the
Euclidean distance with center-scaled continuous data, and
Sekiya et al [56] used the Gower metric with mixed-type data.
Loza et al [57] applied fuzzy partition-around-medoid clustering
with the Euclidean distance to continuous data scaled with
average absolute deviation.

Kernel k-Means and Spectral Clustering
Kernel k-means and spectral clustering are different but related
methods, which may be used to identify clusters that are not
linearly separable in the input feature space [58]. As these
methods were used by only 1 study each (Wu et al used multiple
kernel k-means [59], and Howrylak et al used spectral clustering
[37]), we do not explore them in detail in this review. However,
details of the feature scaling, encoding, and distance measures
used by these 2 studies is given in Multimedia Appendix 4.
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Unclear Methods
Wang et al [41] described a 2-step clustering method in which
the first step was to carry out hierarchical clustering using the
Ward method, but with the log-likelihood distance in place of
the Euclidean distance. This first step was used to determine
the number of clusters, which was then used in the k-means
method in the second step. However, the authors cite the SPSS
TwoStep method [52], which is different from that described
previously. It was therefore ambiguous which clustering method
was applied in this study.

Postprocessing

Choosing the Number of Clusters
A total of 54 (86%) studies explained in detail the methods used
to select the number of clusters. Of these, 20 (32%) studies used
more than one method for choosing the number of clusters. The
maximum number of methods used was 6.

A total of 27 (43%) studies used a dendrogram to choose the
number of clusters to include in their study (Table 6). Note that
18 of the 22 studies that applied k-means clustering used
hierarchical cluster as a first step to identify the likely number
of clusters. Of these 18 studies, 11 explicitly stated that the
dendrogram was used to choose the number of clusters.

Of the 8 (13%) studies that specified a maximum number of
clusters, the maximum number ranged between 2 and 15

clusters. Seven (11%) studies used a statistic (or multiple
statistics), including the c-index [60], Gap statistic [37],
deviation from ideal stability [30], Calinski and Harabasz index
[30], Dunn’s partition [57], cubic cluster criterion (CCC) statistic
[28], pseudo-F statistic [28,36], and pseudo-T2 statistic [28,36].

Four studies (6%) avoided very small clusters. Approaches to
this include merging 2 clusters containing 6 and 12 samples
[61], omitting small clusters containing 1 [35] and 6 [62]
samples, and choosing the number such that no cluster contained
less than 10% of the total samples [63].

Stability
A total of 11 (17%) studies tested the stability of their cluster
solution; the methods are detailed in Table 6. Of these, 1 study
used 2 methods, and the remaining 10 each used only 1 method
to test stability.

Quality
A total of 24 (38%) studies assessed the quality of their solution
using methods beyond those assessing stability. The methods
are detailed in Table 6. Of these, 3 used more than one method.
The maximum number of methods used in this study was 4.

Of the 30 studies that assessed the stability or quality of their
cluster analysis, 21 (70%) reported their findings. However, the
reporting of these results was in many cases brief, consisting
of statements such as “the clusters were shown to be stable”
without providing supporting evidence.
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Table 6. Postprocessing methods used in the asthma studies included in this review.

Values, n (%)aMethod

Choosing the number of clusters

27 (43)Dendrogram

19 (30)Hierarchical clustering with Ward linkage

8 (13)Specify a maximum number of clustersb

7 (11)Statistic(s)

5 (8)Silhouette plot or average silhouette width

4 (6)Bayesian information criterion

4 (6)Specify a minimum size of smallest clusterb

3 (5)Previous studies

3 (5)Unclear

2 (3)Clinical interpretation

1 (2)Scree plot

Stability

3 (5)Repeated in random subset

3 (5)Leave-one-out cross-validation

3 (5)Bootstrap methods

2 (3)Unclear methods

1 (2)Train and test set

Quality

8 (13)Repeated in selected subset

6 (10)Repeated with difference methods

5 (8)Repeated with different initial configurations

4 (6)Repeated in separate cohort

3 (5)Repeated with altered features

3 (5)Repeated at different time point

1 (2)Repeated with different software

aStudies may have used more than 1 method.
bThese methods were not included when calculating the number of methods used to choose the number of clusters.

Discussion

Principal Findings
We identified 63 studies that applied cluster analysis to
multimodal clinical data to identify subtypes of asthma. We
explored the clustering methodologies and their limitations in
detail. The principal finding of this review was that the majority
of the reviewed studies have flaws in the application of cluster
analysis. Although some of these flaws were related to the
multimodal nature of the clinical data, they extended to aspects
of cluster analysis, which are agnostic of data type, such as
sample size, stability, and reporting of the results.

These findings build on a previous review, which identified
limitations such as lack of robustness in feature selection and
neglect to specify distance measures in studies using cluster
analysis to contribute to our understanding of the spectrum of

asthma syndrome [11]. Our review investigated the methods of
feature engineering more generally and identified not only
neglect to specify dissimilarity measures but also instances in
which the dissimilarity measure was inappropriate for the data
to which it was applied. In addition, we identified issues related
to sample size, cluster analysis methods, choosing the number
of clusters, and testing the stability and quality of results. These
issues are discussed in the following paragraphs.

A widespread limitation in the reviewed studies was the small
sample size. Studies had overall sample sizes as small as 40
patients, with clusters as small as 6 patients. We argue that there
is limited utility in clustering data with such small sample sizes:
they may result in clusters that are unstable [64] and may
therefore lead to selecting fewer clusters than are present in the
underlying population from which the data are sampled.

In the following paragraphs, we discussed the limitations of 3
of the feature selection approaches applied by the reviewed
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studies. The first approach was to avoid collinearity or
multicollinearity or excluding features that were considered to
be clinically redundant. Although one should avoid including
features that are redundant (can be completely deduced from a
combination of the other cluster features), this is rarely the case.
Therefore, removing features inevitably leads to loss of
information. We suggest that the removal of features based on
redundancy needs to be carefully considered, for example, 2 or
more features (some of which may appear univariately
redundant) may jointly contribute toward determining a cluster
(or similarly toward the estimation of a clinical outcome in a
standard supervised learning setup).

The second was the use of PCA or factor analysis to select
features, which has a similar motivation to the concept described
earlier for discarding statistically correlated features. There are
methodological justifications for the use of PCA, factor analysis,
or other nonlinear embedding methods for feature transformation
[19]. They aim to jointly combine the original features and
project them in a new feature space, which may have some
useful properties, including interpretation, determining latent
feature structure, and improving the clustering or statistical
mapping outcomes [16]. However, we suggest exercising caution
toward using these methods for feature selection as described
in some of the studies summarized in the Results section of this
review because they were fundamentally developed toward
different aims. Haldar et al used PCA for feature selection in
the first publication to apply cluster analysis to identify asthma
subtypes [14]. It is possible that other studies used this as a point
of reference for these methods, leading to the common
application of these methods in the field of asthma subtyping.

The third approach to feature selection was the use of statistical
hypothesis tests with respect to outcomes of interest, as done
in 2 studies [42,43]. Methods in which an outcome of interest
is used to guide feature selection in cluster analysis have been
described previously [65,66]. Although these approaches may
be useful for situations in which there exists an outcome of
particular interest to the clustering problem, the user should be
aware of and acknowledge the assumptions made in the process.
In the context of the 2 reviewed studies that used this approach,
Sakagami et al did not acknowledge the linearity assumption
in linear regression [42], whereas Seino et al’s method does not
account for potentially highly correlated features [43], a concept
that is key in feature selection for cluster analysis.

Feature transformation was applied in only 6 studies, and the
methods were generally poorly reported. As with cluster
analysis, feature encoding and scaling are important
considerations in feature transformation, but none of the studies
gave adequate details in their methods. The results of feature
transformation were also poorly reported. Although the key
reason for applying feature transformation methods is to reduce
the dimensionality of the dataset, only 2 [31,45] of the 6 studies
provided details on the number of features retained. We suggest
that the results of PCA, factor analysis, or MCA should include
a table of component (or factor) loadings, the number of features
retained, and the proportion of variance accounted for in the
transformed features.

Most studies explicitly stated the clustering method that they
used but were less explicit regarding the preprocessing steps
and choice of dissimilarity measure. Hastie et al [16] state,
“Specifying an appropriate dissimilarity measure is far more
important in obtaining success with clustering than choice of
clustering algorithm.”

We expand on this statement, further adding that preprocessing
steps such as feature scaling and feature encoding are also more
important in obtaining success than the choice clustering
algorithm. This is in line with the conclusions of Prosperi et al,
who demonstrated that clustering using different feature sets
and encodings in asthma datasets can lead to different cluster
solutions [29]. Both preprocessing steps and dissimilarity
measures, along with their relation to clustering algorithms,
have been given poor consideration in clustering applications
in asthma, as discussed in the following 3 paragraphs.

First, the Euclidean distance was used with mixed-type data in
over half of the studies (54%). Although the Euclidean distance
is intended for use with continuous data, problems associated
with applying it to mixed-type data may be mitigated by
carefully considering feature scaling and feature encoding.
However, in our review, we found that many studies did not
specify their methods for rescaling, and many studies included
ordinal and nominal categorical features but did not specify
how these would be treated when calculating the Euclidean
distances. The lack of consideration of feature scaling and
encoding in these cases may have resulted in assigning an
unintended weight structure to the cluster features.

Second, 4 studies used Gower coefficient in hierarchical
clustering with Ward linkage [36,67-69], and 1 used tree-based
distances [49,70]. These studies should be given some credit
for using dissimilarities that can handle mixed-type data.
However, the application of hierarchical clustering with Ward
linkage relies on the properties of the Euclidean distance in the
computations. These properties do not hold for Gower
coefficient, and hence, errors are perpetuated at each level of
the hierarchy. An example that demonstrates this issue is given
in Multimedia Appendix 5.

A final point in the use of k-means and hierarchical clustering
using the Ward method with mixed cluster features is that the
theory underpinning these methods involves the calculation of
cluster means. The mean is not an appropriate summary statistic
for categorical features, which are more typically summarized
by the mode. For this reason, we suggest that k-medoids may
be a more appropriate method for mixed-type features used in
clustering. Instead of computing each cluster’s mean (as with
hierarchical clustering using Ward’s method and k-means),
k-medoids compute each cluster’s medoid, defined as the sample
in the cluster for which the average dissimilarity to all other
samples in the cluster is minimized [55]. In addition, k-medoids
do not rely on the properties of the Euclidean distance in the
computations, thus avoiding the issue described in the previous
paragraph. Despite these advantages, only 2 studies in this
review used k-medoids [30,56].

The SPSS TwoStep method was used in 7 of the 63 studies
investigated here. We see 2 key limitations with the application
of this method across the reviewed studies. First, none of the
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studies gave adequate consideration to the distributional
assumptions made when using the log-likelihood distance, and
most did not mention the assumptions at all. Second, this method
is designed for clustering several millions of samples with many
features within an acceptable time and makes a key compromise
in doing so [52]. This compromise is that the data are not stored
in the main memory but are read sequentially, hence making
the solution sensitive to the ordering of the data. None of the
studies acknowledged this inherent shortcoming, nor did they
confirm that their data were in a random order. Perhaps, more
concerningly, the studies that applied these methods actually
had very small datasets (range 84-349 samples) that could easily
be stored, therefore making other standard techniques more
appropriate. In our view, this compromise was therefore
unnecessary.

Only 1 study [57] used a method that obtains a fuzzy cluster
solution (in which a patient may be assigned a membership
value to multiple clusters), as opposed to a hard cluster solution
(in which each patient is assigned to a single cluster) [23]. A
fuzzy cluster solution can indicate where a patient membership
value is similar across multiple clusters, whereas this
information is lost (or leads to lack of stability) in a hard cluster
solution. Owing to the noisy nature of clinical data and the
clinical complexity of grouping patients into distinct groups,
we suggest that fuzzy cluster solutions may be more appropriate
than hard cluster solutions in the review applications in asthma.
However, it is important to acknowledge that there are added
challenges in the interpretation and communication of fuzzy
cluster solutions and that the methods may be more
computationally intensive [71].

Selecting the number of clusters can be challenging and depends
largely on the context of the application. In the case of the
reviewed applications in asthma, the true number of clusters is
unknown, and the analyses are exploratory. Although 86% of
the review studies gave some details regarding their methods
for choosing the number of clusters (k), they were generally
poorly reported. The most popular approach was the
dendrogram, but only Labor et al [72] specified their criteria
for cutting the dendrogram. In 14 studies, the dendrogram was
the only method mentioned. We suggest that more than one
method should be used to select the number of clusters to
validate this decision.

Our review shows that studies rarely tested the stability and
quality of their results, with a particular lack of emphasis on
stability. This is concerning, as many studies use methods such
as k-means, which reach local minima, and apply them to small
sample sizes, thus increasing the risk of obtaining unstable
results. We argue that because of the unsupervised nature of
cluster analysis, testing the stability and quality of the results
should be a key theme and would like to urge researchers and
peer reviewers in this research field to carefully consider these
aspects. However, we do appreciate that assessing the stability
and quality of a solution in the absence of ground truth is
challenging and that there are currently no well-established
frameworks for doing so [27].

Although this review focused on applications in subtyping
asthma, the identified issues have been found in studies using

cluster analysis to subtype other diseases. For example, recent
studies in autism [73] and hypersomnolence [74] have applied
cluster analysis to very small samples (55 and 17 patients,
respectively). A recent study on Parkinson disease [75] stated
in the main text that a model-based cluster analysis method was
used, whereas the supplementary materials revealed that the
method was in fact k-means, which is not model-based. In
addition, supplementary materials listed 3 methods for choosing
the number of clusters (CCC, pseudo-F, and R-squared statistics)
but did not present the results from these 3 methods anywhere
in the main text or supplementary materials. These findings
demonstrate the widespread nature of the issues that this review
has highlighted, and that the issues are not restricted to
asthma-related studies.

For a recent example of a well-considered and well-reported
application of cluster analysis to multimodal clinical data, we
refer the reader to Pikoula et al’s study of Chronic Obstructive
Pulmonary Disease subtypes [76]. The main text and
supplementary materials provide a transparent report of the
methodology with respect to feature engineering and cluster
analysis methods. In particular, Pikoula et al performed a
rigorous assessment of the stability, reproducibility, and
sensitivity of the resulting clusters, which could be used as a
framework for future studies. The results that were key to the
study’s conclusions (eg, MCA feature loadings, silhouette plots,
results from stability, reproducibility, and sensitivity analyses)
are correctly reported in the manuscript, enabling readers to
have a thorough understanding of the study’s findings.

Limitations
The literature search presented in this study is comprehensive
but practically cannot be exhaustive. We restricted the search
to articles that included the terms cluster analysis or clustering*.
Although it is not strictly speaking correct to do so, some studies
in the medical literature use the term classification to refer to
cluster analysis, often confusing the 2 terms and sometimes
using them almost interchangeably, for example, see the studies
by Just et al [34] and Kim et al [46]. Widening the search to
identify studies that use the term classification would have
greatly increased the initial number of results of the PubMed
search, but we suspect that the increase in the number of eligible
studies for cluster analysis identified would have been small.
Similarly, the terms latent class analysis and mixture model
analysis might sometimes be erroneously used to refer to cluster
analysis: we clarify that these terms were not included in our
search strategy. As this is not a systematic review, we feel that
our search criteria are fully sufficient for this study’s purposes.

We did not fully explore multiple kernel k-means [77] or
spectral clustering [78] methods, each used by 1 study in this
review. As with all other cluster analysis methods mentioned
here, careful consideration must be taken when applying these
methods to mixed-type data. There are numerous other
considerations that are important to these methods, such as the
choice of kernel function, but these are beyond the scope of this
review.
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Conclusions
This review highlights a number of issues in previous
applications of cluster analysis to multimodal clinical data in
asthma. We make the following key recommendations based
on these findings:

• Careful consideration should be given to the preprocessing
of multimodal clinical data and how the scaling and
encoding of features may affect their weighting in the
analysis.

• The choice of dissimilarity measures and cluster analysis
methods are dependent on one another as well as on the
scaling and encoding of the data. Certain combinations of
these data analytics components may be incompatible and
give unreliable results.

• The stability and quality of the cluster results should be
thoroughly evaluated.

The abovementioned recommendations focus on the application
of cluster analysis, but we put similar emphasis on the clear
reporting of each of the abovementioned points, as this was also
found to be lacking in the reviewed papers.
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