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Abstract

Background: Accurately predicting refractive error in children is crucial for detecting amblyopia, which can lead to permanent
visual impairment, but is potentially curable if detected early. Various tools have been adopted to more easily screen a large
number of patients for amblyopia risk.

Objective: For efficient screening, easy access to screening tools and an accurate prediction algorithm are the most important
factors. In this study, we developed an automated deep learning–based system to predict the range of refractive error in children
(mean age 4.32 years, SD 1.87 years) using 305 eccentric photorefraction images captured with a smartphone.

Methods: Photorefraction images were divided into seven classes according to their spherical values as measured by cycloplegic
refraction.

Results: The trained deep learning model had an overall accuracy of 81.6%, with the following accuracies for each refractive
error class: 80.0% for ≤−5.0 diopters (D), 77.8% for >−5.0 D and ≤−3.0 D, 82.0% for >−3.0 D and ≤−0.5 D, 83.3% for >−0.5 D
and <+0.5 D, 82.8% for ≥+0.5 D and <+3.0 D, 79.3% for ≥+3.0 D and <+5.0 D, and 75.0% for ≥+5.0 D. These results indicate
that our deep learning–based system performed sufficiently accurately.

Conclusions: This study demonstrated the potential of precise smartphone-based prediction systems for refractive error using
deep learning and further yielded a robust collection of pediatric photorefraction images.

(JMIR Med Inform 2020;8(5):e16225) doi: 10.2196/16225
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Introduction

Amblyopia is the most common cause of permanent visual
impairment in children, and its worldwide prevalence is

estimated to be approximately 1.6%-5% [1,2]. Refractive error
is one of the leading causes of pediatric amblyopia [3]. Early
detection of refractive error in children plays an important role
in visual prognosis [4,5], and therefore, early pediatric screening
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is recommended by the American Academy of Pediatrics,
American Academy of Pediatric Ophthalmology and Strabismus
(AAPOS), and European Strabismological Association and
Societies [6,7].

Cycloplegic retinoscopic refraction is the standard technique
for measuring refractive error. However, this method has some
limitations. It is difficult to get young children to cooperate
during the procedure, and advanced clinical ophthalmologic
training is required to perform the test (user dependent) [2,8].

Previously, autorefractors were developed for faster and easier
refraction in children. However, autorefraction presents several
difficulties, including maintaining the proper position for testing
and maintaining visual fixation on the target for a sufficient
duration [9,10]. Photorefraction data can confirm the presence
of myopia, hyperopia, astigmatism, and anisometropia by
evaluating the reflection type and the position of eccentric
crescent images on the pupil after projecting a light source onto
the retina [11,12]. Photorefraction is simple and fast, making it
convenient for use in children with poor cooperation ability,
and it is suitable for screening large populations [13,14]. Several
tools have been developed to meet the growing demand to
perform photorefraction in clinical settings [2,15,16]. Easy
availability of these tools and accurate prediction algorithms
are the most important factors for ensuring efficient screening
by photorefraction. Recently, deep learning algorithms have
yielded innovative results in the field of medical imaging
diagnostics [17]. In particular, deep convolutional neural
networks [18] have been widely applied to extract essential
features directly from images without human input. In
ophthalmology, deep convolutional neural networks showed
remarkable performance for detecting various diseases, including
diabetic retinopathy [19-21], glaucoma [22,23], and retinopathy
of prematurity [24]. Deep learning can also capture biological
signs that are difficult for even human experts to detect, such
as retinal findings from fundus images associated with
cardiovascular risk [25]. However, little research has been done
on the application of deep learning to refractive error prediction
among children, using photorefraction images. A previous study
attempted to predict the refractive error from retinal fundus
images using deep learning [26], but the application was limited
because the average participant age was 55 years and a
specialized device was required to obtain the fundus images.

The purpose of this study was to develop an automated deep
learning–based prediction system for refractive error using
eccentric photorefraction images of pediatric patients captured
by a smartphone. We trained our deep convolutional neural
network with photorefraction images to identify various
refractive error ranges. Thereafter, we comparatively evaluated
its performance on our network with conventional cycloplegic
retinoscopic refraction.

Methods

Study Approval
This study was performed at a single center according to the
tenets of the Declaration of Helsinki. The Institutional Review

Board of Samsung Medical Center (Seoul, Republic of Korea)
approved this study (SMC 2017-11-114).

Participants
Patients aged 6 months to 8 years who visited the outpatient
clinic for a routine ocular examination were requested to
participate in this study. Written informed consent was provided
by parents prior to participation. All screening tests were
conducted at Samsung Medical Center between June and
September 2018. The exclusion criteria were diseases that could
affect light reflection, such as congenital cataracts and corneal
opacity, diseases involving visual pathways or extraocular
muscles, a medical history of previous ophthalmic surgery (eg,
strabismus, congenital cataract, and congenital glaucoma),
limited cycloplegia, and poor cooperation during study activities.

Data Collection
A total of 305 photorefraction images (191 images from 101
girls and 114 images from 63 boys) were obtained (mean age
4.32 years, SD 1.87 years). All patients underwent a complete
ophthalmologic examination, including visual acuity, motility
evaluation, and anterior segment evaluation. Eccentric
photorefraction images were obtained using a smartphone with
a 16-megapixel camera (LGM-X800K; LG Electronics Inc,
Seoul, Korea) at a 1-meter distance from the front of the patient
in a dark room (<15 lux). The smartphone was placed straight
forward to the face of the children without angulation. All
photorefraction images were acquired in the same setting (in a
dark room and before the cycloplegic procedure). The
smartphone’s built-in flash, present next to the camera lens,
was used as the light source for eccentric photorefraction,
wherein light was refracted and reached the retinal surface and
was then magnified and reflected. When optimal reflection was
achieved, a characteristic crescent-shaped reflection appeared
in the eye. A photograph of the crescent reflection was captured
through LED control [13]. After acquisition of photorefraction
images, 0.5% tropicamide and 0.5% phenylephrine (Tropherine;
Hanmi Pharm, Seoul, Korea) were administered three times at
5-minute intervals. Cycloplegic retinoscopy and fundus
examination to obtain spherical, cylindrical, cylindrical axis,
and spherical equivalent values were performed between 30
and 60 minutes following the first instillation of cycloplegics,
when the pupillary light reflex was eliminated. Both
photorefraction and cycloplegic refraction were performed
sequentially, and the ground truth for images acquired by
photorefraction was labelled according to the values of
cycloplegic refraction. Consequently, the result of cycloplegic
refraction was provided as the ground truth for machine learning
of photorefration images.

The acquired eccentric photorefraction images were divided
into the following seven classes according to the spherical values
measured by cycloplegic refraction: ≤−5.0 diopter (D), >−5.0
D and ≤−3.0 D, >−3.0 D and ≤−0.5 D, >−0.5 D and <+0.5 D,
≥+0.5 D and <+3.0 D, ≥+3.0 D and <+5.0 D, and ≥+5.0 D. The
cutoff values of the seven classes for refractive errors were
determined clinically. Among myopic refraction (minus values),
−5.0 D, −3.0 D, and −0.5 D were considered as thresholds of
high, moderate, and mild myopia, respectively. In other words,
refractive errors ≤−5.0 D indicated high myopia, refractive
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errors >−5.0 D and ≤−3.0 D indicated moderate myopia, and
refractive errors >−3.0 D and ≤−0.5 D indicated mild myopia.
Similarly, +0.5 D, +3.0 D, and +5.0 D were thresholds of mild,
moderate, and high hyperopia, respectively, among plus values.

Image Data Preparation for Training, Validation, and
Testing
Photorefraction images were processed for training our deep
convolutional neural network. Initially, the images were cropped
to capture the pupil. The images were resized to 224×224 pixels,
and the pixel values were scaled from 0 to 1. To overcome an
overfitting issue caused by an insufficiently sized training
dataset, data augmentation was performed by altering brightness,
saturation, hue, and contrast; adding Gaussian noise; and
blurring images using Gaussian kernels. Thereafter, the image
pixel values were normalized by subtracting the mean and
dividing by the SD to ensure that each image had a similar data
distribution and would converge faster during the training
procedure.

For training, validation, and testing, we used the five-fold
cross-validation approach to build a reliable deep learning model
with a limited dataset. Initially, all the data were subdivided
into five equal-sized folds with the same proportion of different
classes in each fold. Four of the five folds were for training and
validation (3.5 folds for training and 0.5 folds for validation),
and one fold was for testing. After five repetitions of this
process, we were able to evaluate the performance of the entire
dataset because the test folds were independent of each other,
and we confirmed the stability of our model for the entire dataset
using the confusion matrix.

Deep Convolutional Neural Network and Training
We used a deep convolutional neural network to classify
photorefraction images into the most probable class of refractive
error. Among the various types of convolutional neural
networks, we developed Residual Network (ResNet-18) [27]

to avoid problems that occur when deep neural network depth
increases, such as vanishing or exploding gradients and accuracy
degradation. Residual Network addresses these issues using
identity mapping with shortcut connections. The shortcut
connections allow networks to skip over layers and also enable
speed training. Figure 1 illustrates the overall structure of the
deep learning approach we propose in this work. The basic block
consists of two 3×3 convolutional layers, and the shortcut
connection enables the network to learn identity mapping
(Figure 2).

Because we did not have a sufficiently large training dataset,
we performed transfer learning to capture low-level features,
such as edge and color, without wasting image data [28].
Accordingly, pretrained parameters of Residual Network on the
ImageNet [29] datasets were reused as starting points for our
model. The pretrained Residual Network was available on
Pytorch [30]. We then replaced the last fully connected layer
to output seven predicted probabilities for each refractive error
class (≤−5.0 D, >−5.0 D and ≤−3.0 D, >−3.0 D and ≤−0.5 D,
>−0.5 D and <+0.5 D, ≥+0.5 D and <+3.0 D, ≥+3.0 D and <+5.0
D, and ≥+5.0 D). During the training process, the first layer was
frozen, and the learning rates for the subsequent layers were
increased from 1e-10 to 1e-5 to finetune our network for
preventing an overfitting issue. Furthermore, we designed the
loss function as a weighted sum of cross-entropy by class,
wherein the weight for each class was the reciprocal of the
proportion of that class’s images in the training dataset. This
technique was useful to achieve balanced accuracy for all
classes, despite having an imbalanced training dataset. For
convergence of network training, the learning rate was decayed
by a factor of 0.95 every 10 epoch, and we trained the
parameters of networks using stochastic gradient descent [31]
with 0.9 momentum. We set the maximum training epoch as
500 and the minibatch size of training images as 16. All codes
were implemented using Pytorch 1.2.0 [30]. Details of the
network structure are shown in Table 1.

Figure 1. Overview of the proposed deep convolutional neural network architecture. The photorefraction image inputs pass through 17 convolutional
layers and one fully connected layer, and the outputs of the network assign the probabilities for each refractive error class given the image. We also
generate the localization map highlighting the important regions from the final convolutional feature maps of the layer i (i=1, 2, 3, or 4).
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Figure 2. Structure of the basic block and the shortcut connection. The basic block consists of two 3×3 convolutional layers, two Batch Normalization
layers, and a Rectified Linear Unit (ReLU) activation function. The shortcut connection adds the input vector of the basic block to the output of the
basic block.
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Table 1. Configuration of the deep convolutional network.

Learning ratePaddingStrideKernelFiltersLayer type, feature map

Input

0.0 (freeze)————a224×224×3

Convolutional

0.0 (freeze)327×7×364112×112×64

Batch normalization

0.0 (freeze)————112×112×64

Max pooling

0.0 (freeze)123×3156×56×64

Layer 1

Basic block 1-1

0.0 (freeze)113×3×646456×56×64

0.0 (freeze)113×3×646456×56×64

Basic block 1-2

0.0 (freeze)113×3×646456×56×64

0.0 (freeze)113×3×646456×56×64

Layer 2

Basic block 2-1

1e-10123×3×6412828×28×128

1e-10113×3×12812828×28×128

1e-10021×1×6412828×28×128

Basic block 2-2

1e-10113×3×12812828×28×128

1e-10113×3×12812828×28×128

Layer 3

Basic block 3-1

1e-8123×3×12825614×14×256

1e-8113×3×25625614×14×256

1e-8021×1×12825614×14×256

Basic block 3-2

1e-8113×3×25625614×14×256

1e-8113×3×25625614×14×256

Layer 4

Basic block 4-1

1e-6123×3×2565127×7×512

1e-6113×3×5125127×7×512

1e-6021×1×645127×7×512

Basic block 4-2

1e-6113×3×5125127×7×512

1e-6113×3×5125127×7×512

Average pooling

—077×711×1×512

Fully connected layer
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Learning ratePaddingStrideKernelFiltersLayer type, feature map

1e-5————1×7

Softmax

—————1×7

aNot applicable.

Results

Image Dataset Demographics
A total of 305 photorefraction images from 191 girls and 114
boys were acquired. The mean age was 4.32 years (SD 1.87
years), and the median age was 4 years (range 0-8 years). The
mean spherical equivalent was 0.13 D (SD 2.27 D; range −5.50
to 6.75 D), and the mean astigmatism was −1.50 D (SD 1.38
D; range −6.50 to 0 D), according to cycloplegic refraction.

According to cycloplegic refraction results, 25 photorefraction
images had a refractive error ≤−5.0 D, 18 had an error >−5.0 D
and ≤−3.0 D, 50 had an error >−3.0 D and ≤−0.5 D, 84 had an
error >−0.5 D and <+0.5 D, 87 had an error ≥+0.5 D and <+3.0
D, 29 had an error ≥+3.0 D and <+5.0 D, and 12 had an error
≥+5.0 D. Table 2 summarizes patient demographics in detail,
and examples of photorefraction images according to the
refractive error class are shown in Figure 3.

Figure 3. Examples of photorefraction images from the seven different refractor error classes. A bright crescent appears in the pupillary reflex, and its
size and shape indicate the diopter (D) value.

Table 2. Dataset participant demographics.

ValueCharacteristic

305Total images, n

Refractive error, n

25≤−5.0 Da

18>−5.0 D and ≤−3.0 D

50>−3.0 D and ≤−0.5 D

84>−0.5 D and <+0.5 D

87≥+0.5 D and <+3.0 D

29≥+3.0 D and <+5.0 D

12≥+5.0 D

191 (62.6)Girls, n (%)

4.32 (1.87)Age, mean (SD)

aD: diopters.
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Performance of the Proposed Deep Convolutional
Neural Network
We used five-fold cross-validation to evaluate our network’s
performance. Training, validation, and testing were
independently iterated five times. In each iteration, there were
213 training images, 31 validation images, and 61 testing

images. We chose the network with the highest validation
accuracy when loss of training was saturated. Thereafter, we
measured the classification accuracy of the network in the test
fold. All five networks, which were established in the training
phase, had an accuracy of more than 80% for each validation
set. Similarly, the performances of the five testing folds were
83.6%, 80.3%, 82.0%, 78.7%, and 83.6% (Table 3).

Table 3. Results for five-fold cross-validation.

Test accuracy (%) (N=61)Validation accuracy (%) (N=31)Iterationa

83.687.1First iteration

80.380.6Second iteration

82.080.6Third iteration

78.783.9Fourth iteration

83.683.9Fifth iteration

81.683.2Average

aIn each iteration, our network was trained using the rest of the validation and test dataset (213 training images).

In the five-fold test, our network had the following accuracies:
80.0% for class ≤−5.0 D, 77.8% for class >−5.0 D and ≤−3.0
D, 82.0% for class >−3.0 D and ≤−0.5 D, 83.3% for class >−0.5
D and <+0.5 D, 82.8% for class ≥+0.5 D and <+3.0 D, 79.3%
for class ≥+3.0 D and <+5.0 D, and 75% for class ≥+5.0 D
(Table 4). Despite the imbalanced dataset, our model achieved
consistent performance for all classes.

In addition, our network maintained the stability of prediction
for refractive error, as shown in the confusion matrix (Table 5).
Overall, 85.7% (48/56) of total misclassifications were within
one class difference and 98.2% (55/56) of total misclassifications
were within two class differences.

Table 4. Performance of our deep convolutional neural network with the overall test dataset.

Accuracy (%)NumberClass

80.025≤−5.0 Da

77.818>−5.0 D and ≤−3.0 D

82.050>−3.0 D and ≤−0.5 D

83.384>−0.5 D and <+0.5 D

82.887≥+0.5 D and <+3.0 D

79.329≥+3.0 D and <+5.0 D

75.012≥+5.0 D

81.6305Total

aD: diopter.

For performance comparison, we developed the following five
baseline models and calculated the performances: (1) pretrained
VGG-11 [32]; (2) pretrained squeezeNet [33]; (3) Support
Vector Machine (SVM) [34]; (4) Random Forest [35]; and (5)
simple convolutional neural network. VGG-11 and squeezeNet
were pretrained on the ImageNet [29] datasets, and their
parameters were frozen, except the last four convolutional layers
during training. Moreover, we designed the following two
traditional machine learning approaches: SVM and Random
Forest. SVM has a radial basis function kernel, 1.0 regularization
parameter, and three degrees of the kernel function. Random
Forests has 500 trees, the Gini index criterion, and two samples

required to split an internal node. Lastly, the simple
convolutional neural network has three convolutional layers
with six kernels (8×8size, two strides), 16 kernels (5×5size, two
strides), and 24 kernels (3×3 size, one stride), respectively; a
max-pooling layer (2×2 size and two strides) after each
convolutional layer; and three fully connected layers with 120,
84, and 7 hidden units, respectively, in a row at the end of the
network. We evaluated the performances of the five baseline
models using five-fold cross-validation, and the results of
performance comparison are shown in Table 6. We confirmed
that the proposed deep convolutional neural network
outperformed all baseline models.
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Table 5. Confusion matrix for refractive error classification of our deep convolutional neural network.

Accuracy (%)Predictive valueGround truth

≥+5.0 D≥+3.0 D and
<+5.0 D

≥+0.5 D and
<+3.0 D

>−0.5 D and
<+0.5 D

>−3.0 D and
≤−0.5 D

>−5.0 D and
≤−3.0 D

≤−5.0 Da

80.000002320b≤−5.0 D

77.80010214b1>−5.0 D and
≤−3.0 D

82.0000441b41>−3.0 D and
≤−0.5 D

83.301870b500>−0.5 D and
<+0.5 D

82.80472b10100≥+0.5 D and
<+3.0 D

79.3123b41000≥+3.0 D and
<+5.0 D

75.09b210000≥+5.0 D

81.6———————cOverall accuracy
(%)

aD: diopter.
bNumber of correct predictions of our deep convolutional neural network.
cNot applicable.

Table 6. Performance comparison of the proposed model and baseline models.

Accuracy (%)Model

81.6The proposed deep convolutional neural network

70.8Pretrained VGG-11

77.4Pretrained SqueezeNet

65.2Support Vector Machine

62.9Random Forest

70.8Simple convolutional neural network

Additionally, we produced heatmaps using gradient-weighted
class activation mapping (Grad-CAM) [36] to provide visual
explanations for each screening decision. This technique is
crucial for interpreting network output and validating whether
the network learned meaningful features. The activation map
visualizes where the network considered the critical locations

to be within photorefraction images for detecting refractive
error. Figure 4 shows the activated regions from four layers in
the photorefraction images. Notably, we observed the heatmap
from the fourth layer, which captured important features for
classifying refractive error, particularly the region of the crescent
in the pupil.
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Figure 4. Examples of photorefraction images correctly classified by deep neural networks. (A), (B), (C) were identified as ≥+0.5 D and <+3.0 D,
≥+3.0 D and <+5.0 D, and ≥+5.0 D, respectively. The first layers captured low-level features, such as edge and color. With deeper layers, the network
focused on high-level features that were regarded as important aspects for classification.

Discussion

The primary purpose of refractive error screening is the early
detection of a refractive error to allow interventions that can
reduce the risk of amblyopia. Early detection and treatment of
refractive error can lead to better visual outcomes and reduce
the prevalence and severity of amblyopia in children [4,37].
The cycloplegic refraction test has been an essential tool to
accurately measure refractive error, because pediatric patients
are more accommodating than adults [38]. However, young
children tend not to cooperate well during the refraction test,
and the test requires a skilled ophthalmic practitioner [2,8].
Additionally, the eye drops used during cycloplegia can cause
side effects, such as flushing, fever, drowsiness, and red eye
[39]. For these reasons, cycloplegic refraction is not suitable
for large screening of refractive error and amblyopia [12].
Currently, smartphones are ubiquitous devices that allow
physicians and other related medical professionals to overcome
common diagnostic barriers in many clinical settings [40]. A
photorefraction screening test using a smartphone is an easy
and effective way to screen most young children. The
photorefractive method is simple and takes no longer than a
second to test both eyes simultaneously. The test requires
minimal space (just a meter of distance between the subject and
the testing device) and removes the need for cycloplegia, thereby
greatly reducing side effects and testing time. Moreover, it does
not require expert knowledge or experience to perform [6].
These advantages make the photorefractive method ideal for
measuring refractive error, especially for poorly cooperative
young children.

Several studies have compared the accuracy of photoscreeners
for detecting various amblyopia risk factors [40-42]. One study
evaluated a smartphone photoscreening application
(GoCheckKids) and reported 76% sensitivity and 67.2%
specificity [15] for detecting amblyopia risk factors using the
2013 AAPOS guidelines. Because we evaluated the accuracy

of predicting refractive errors and not amblyopia risk factors,
we were limited in our ability to directly compare the
performance of our method against that of GoCheckKids.
Instead, our deep convolutional neural network achieved
satisfactory accuracy for predicting categories of refractive error
using only a small image dataset. The results showed the
potential for developing precise smartphone-based prediction
systems for refractive error using deep learning. With further
collection of pediatric photorefraction image data, more precise
prediction of refractive error and effective detection of
amblyopia would be possible.

This study compared refractive error estimation with
precycloplegic photorefraction images and cycloplegic
refraction. The results showed consistent measurements between
the two methods. Dubious results regarding estimation of
refractive error using photorefractors have been uncovered by
previous studies [12,14,42]. Erdurmus et al reported that
noncycloplegic photorefraction (Plusoptix CR03; PlusoptiX
GMBH, Nurnberg, Germany) tended to overestimate negative
refraction in children, resulting in overdiagnosis of myopia
(−0.70 D) [12]. Lim et al reported similar results and showed
that refractive error measured by a photorefractor without
cycloplegia (PlusoptiX S09; PlusoptiX GmbH) tended to be
more myopic compared with cycloplegic refractive error [42].
On the other hand, Schimizek et al claimed that noncycloplegic
refraction using a photorefractometer (Power Refractor;
PlusoptiX GmbH) resulted in underestimation of spherical
equivalents owing to uncontrolled accommodation [14]. Another
study showed that cycloplegic refraction results and
photorefractor Plusoptix S08 (Plusoptix GmbH, Nurnberg,
Germany) results were similar [2]. In this study, photorefraction
results without cycloplegia showed reasonable agreement with
cycloplegic refraction, suggesting that our deep learning–based
system achieved considerably accurate performance under
noncycloplegic conditions.
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This study has several limitations. First, manifest refraction was
not performed in all subjects. Since photorefractive refraction
tests were performed without the use of a cycloplegic agent,
useful information might have been obtained if the number of
manifest refraction results without cycloplegia were enough to
compare with photorefraction data in the same patient. Second,
the number of photorefraction images was relatively small and
the model could only predict a range of refractive errors (not a
specific value). Third, all children involved in the study were
Korean. Thus, a trained model using the eyes of Korean children
may not be applicable to the eyes of pediatric patients having

different ethnicities [43,44]. Future studies with more patients
of multiple ethnicities and a greater range of refractive errors
would be beneficial for providing a more precise clinical
perspective.

In conclusion, this study showed that our deep learning–based
system successfully yielded accurate and precise refractive
measurements. This further demonstrates the potential for
developing simplified smartphone-based prediction systems for
refractive error using deep learning with large-scale collection
of pediatric photorefraction images from patients with various
ages and refractive errors.
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