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Abstract

Background: Obesity is one of today’s most visible public health problems worldwide. Although modern bariatric surgery is
ostensibly considered safe, serious complications and mortality still occur in some patients.

Objective: This study aimed to explore whether serious postoperative complications of bariatric surgery recorded in a national
quality registry can be predicted preoperatively using deep learning methods.

Methods: Patients who were registered in the Scandinavian Obesity Surgery Registry (SOReg) between 2010 and 2015 were
included in this study. The patients who underwent a bariatric procedure between 2010 and 2014 were used as training data, and
those who underwent a bariatric procedure in 2015 were used as test data. Postoperative complications were graded according
to the Clavien-Dindo classification, and complications requiring intervention under general anesthesia or resulting in organ failure
or death were considered serious. Three supervised deep learning neural networks were applied and compared in our study:
multilayer perceptron (MLP), convolutional neural network (CNN), and recurrent neural network (RNN). The synthetic minority
oversampling technique (SMOTE) was used to artificially augment the patients with serious complications. The performances
of the neural networks were evaluated using accuracy, sensitivity, specificity, Matthews correlation coefficient, and area under
the receiver operating characteristic curve.

Results: In total, 37,811 and 6250 patients were used as the training data and test data, with incidence rates of serious complication
of 3.2% (1220/37,811) and 3.0% (188/6250), respectively. When trained using the SMOTE data, the MLP appeared to have a
desirable performance, with an area under curve (AUC) of 0.84 (95% CI 0.83-0.85). However, its performance was low for the
test data, with an AUC of 0.54 (95% CI 0.53-0.55). The performance of CNN was similar to that of MLP. It generated AUCs of
0.79 (95% CI 0.78-0.80) and 0.57 (95% CI 0.59-0.61) for the SMOTE data and test data, respectively. Compared with the MLP
and CNN, the RNN showed worse performance, with AUCs of 0.65 (95% CI 0.64-0.66) and 0.55 (95% CI 0.53-0.57) for the
SMOTE data and test data, respectively.

Conclusions: MLP and CNN showed improved, but limited, ability for predicting the postoperative serious complications after
bariatric surgery in the Scandinavian Obesity Surgery Registry data. However, the overfitting issue is still apparent and needs to
be overcome by incorporating intra- and perioperative information.
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Introduction

Background
Obesity is one of today’s most important public health problems
worldwide. With no changes in the current trends, the estimated

prevalence of severe obesity (BMI greater than 35 kg/m2) will
reach 9% for women and 6% for men within a few years [1].
Obesity is associated with an increased risk of several conditions
and diseases, such as type 2 diabetes, heart disease, and many
more, and imposes a major growing threat for global public
health [2]. It is a serious chronic condition that should be
prevented and treated as early as possible [3]. Although medical
weight management and pharmacotherapy are effective options,
modern bariatric surgery offers one of the best chances for
long-term weight loss and the resolution of comorbidity risk
[4].

Although modern bariatric surgery is considered to be ostensibly
safe, serious complications and mortality still occur in some
patients [5-7]. Thus, preoperative risk assessment is one of the
most important components of surgical decision making.
Numerous studies have attempted to predict the risk for
complications after bariatric surgery. Some studies developed
new models based on national databases [5-9], and other studies
applied the obesity surgery mortality risk score, although its
accuracy for prediction is still unclear [7,10-14]. In recent years,
the potential of addressing public health challenges and
advancing medical research through the increasing amount of
information regarding symptoms, diseases, and treatments, in
parallel with the challenges inherent in working with such
sources, are being recognized [15]. A variety of machine
learning (ML) methods, including artificial neural networks
[16], decision trees [17], Bayesian networks [18], and support
vector machines [19], have been widely applied with the aim
of detecting key features of the patient conditions and modeling
the disease progression after treatment from complex health
information and medical datasets. The application of different
ML methods in feature selection and classification in
multidimensional heterogeneous data can provide promising
tools for inference in medical practices [20,21]. These highly
nonlinear approaches have been utilized in medical research for
the development of predictive models, resulting in effective and
accurate decision making [22-24].

In our previous studies, conventional statistical models [8] and
ML methods [9] were used to predict the likelihood of serious
complication after bariatric surgery. Although some potential
risk factors, such as revision surgery, age, lower BMI, larger
waist circumference (WC), and dyspepsia, were associated with
a higher risk for serious postoperative complications by the
multivariate logistic regression model, the sensitivity of the
model for prediction was quite low (<0.01) [8]. When comparing
29 ML algorithms, we found that overfitting was still the
overwhelming problem even though some algorithms showed

both high accuracy >0.95 and an acceptable area under curve
(AUC) >0.90 for the training data [9]. Despite these unfavorable
aspects, our study suggests that deep learning neural networks
(DLNNs) have the potential to improve the predictive capability
and deserve further investigation.

Although there is increasing evidence that the use of ML
methods can improve our understanding of postoperative
progression of bariatric surgery [25-30], few studies have used
DLNNs to predict the prognosis after bariatric surgery, and
validation is needed to select a proper method in clinical
practice.

Objectives
The aim of this study was to examine whether serious
postoperative complications of bariatric surgery can be predicted
preoperatively using DLNNs based on the information available
from a national quality registry. We used the data from the
Scandinavian Obesity Surgery Registry (SOReg) to examine
the performance of 3 widely used DLNNs.

Methods

Patients and Features
The SOReg covers virtually all bariatric surgical procedures
performed in Sweden since 2010 [31]. Patients who were
registered in the SOReg between 2010 and 2015 were included
in this study. Information for the patients who underwent a
bariatric procedure between 2010 and 2014 was used as training
data, and information from those in 2015 was used as test data.
Postoperative complications were graded according to the
Clavien-Dindo classification, and complications requiring
intervention under general anesthesia or resulting in organ
failure or death were considered serious (ie, grade 3b or higher)
[32]. The primary outcome was serious complications occurring
within the first 30 days after bariatric surgery. Details of the
data have been described elsewhere [8,9]. Briefly, 37,811 and
6250 patients were used as the training data and test data, with
incidence rates of serious complication of 3.2% (1220/37,811)
and 3.0% (188/6250), respectively. In general, the patients with
and without serious complication were balanced in baseline
demographic characteristics and comorbidity in the 2 datasets,
except that the patients with serious complications were a little
older (mean 42.9 vs 41.2 years; P<.001) and had greater WCs
(mean 126.2 vs 123.2 cm; P=.009) compared with those without
serious complications in the test dataset [9]. Except for the
outcome variable, 16 features of the patients were used for ML,
including 5 continuous features (age, hemoglobin A1c [HbA1c],
BMI, WC, and operation year) and 11 dichotomous features
(sex; sleep apnea; hypertension; diabetes; dyslipidemia;
dyspepsia; depression; musculoskeletal pain; previous venous
thromboembolism; revisional surgery; and the outcome, serious
postoperative complications).
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The Regional Ethics Committee in Stockholm approved the
study (approval number: 2013/535-31/5).

Deep Learning Neural Networks
Three supervised DLNNs were applied and compared in our
study, comprising multilayer perceptron (MLP), convolutional
neural network (CNN), and recurrent neural network (RNN)
models. For the MLP model, we used 4 dense layers and 2
dropout layers. The initial computation units for the dense layers
were set to 15, 64, 64, and 128, and dropout rate was set to 0.5
for the 2 dropout layers (Multimedia Appendix 1). The rectified
linear unit (relu) activation function was used for the 3 dense
layers, and the sigmoid activation function was used for the last
dense layer. The binary cross-entropy loss function and the root
mean square propagation optimizer were used when compiling
the model [33].

In the initial CNN, we used a 7-layer model with 2
one-dimensional (1D) convolution layers (with 10 filters for
each), 2 1D max pooling layers, 1 flatten layer, and 2 dense
layers (with 1000 computation units). The relu activation
function was used for the 2 1D convolution layers and the first
dense layers, and the sigmoid activation function was used for
the last dense layer. The binary cross-entropy loss function and
the adaptive moment estimation (Adam) optimizer were used
when compiling the model (Multimedia Appendix 2) [34].

In view of the temporal feature of the data, we also used the
RNN for prediction. To minimize computation time, the initial
model only included 1 long short-term memory (LSTM) layer
and 1 dense layer. The initial dimensionality of the LSTM layer
was set to 32. To tackle overfitting, we randomly dropped out
inputs and recurrent connections in the LSTM layer to break
happenstance correlations in the training data that the layer was
exposed to. The dropout rates for inputs and recurrent
connections were set to 0.2. The activation functions for input
connection and recurrent connection were hyperbolic tangent
and hard sigmoid, respectively. The activation function for the
dense layer was sigmoid. The binary cross-entropy loss function
and the Adam optimizer were used when compiling the model.

Feature Scaling
For the training data, the binary features were converted into
dummy variables, and the continuous features were standardized
to have mean 0 and SD 1 before they enter the model. For the
test data, the continuous features were standardized using the
corresponding means and standardizations from the training
data. HbA1c was log transformed before standardization because
of its asymmetrical distribution. In sensitivity analysis, the
normalizer and min-max scaler were also used to evaluate the
influence of scalers on the models’ performance.

Data Augmentation
As the incidence rate of serious complications is very low (only
3.2%), the extreme imbalance would result in serious bias in
the performance metrics [35]. Therefore, we used the synthetic
minority oversampling technique (SMOTE) to artificially
augment the proportion of patients with serious complications.
SMOTE generates a synthetic instance by interpolating the m
instances (for a given integer value m) of the minority class that

lies close enough to each other to achieve the desired ratio
between the majority and minority classes [36]. In our study, a
SMOTE dataset with a 1:1 ratio between the patients with and
without serious complications was generated and used for
training.

Performance Metrics
The performances of the three neural networks were evaluated
using accuracy, sensitivity, specificity, Matthews correlation
coefficient (MCC) [37], and area under the receiver operating
characteristic (ROC) curve. Terminology and derivations of the
metrics are given in detail elsewhere [9]. A successful prediction
model was defined as with an AUC greater than 0.7 [38,39].

Validation During Model Training
To find optimal high-level parameters (such as the number, size,
and type of layers in the networks) and lower-level parameters
(such as the number of epochs, choice of loss function and
activation function, and optimization procedure) in the DLNN
models, the K-fold cross-validation method was used during
the training phase. K-fold cross-validation is currently
considered as a minimum requirement to handle the problems
such as overfitting when applying only 1 single dataset in ML
[40]. In this study, we split the training data into 5 partitions,
instantiated 5 identical models, and trained each one on 4
partitions while evaluating the remaining partition. We then
computed the average performance metrics over the 5 folds. In
the end, the choice of the parameters was a compromise between
the neural network’s performance and computation time: the
model with a larger ratio of AUC to logarithmic computation
time or no significant difference (ΔAUC≤0.01) found between
the models’ performance. An example of parameters selection
by grid searching for MLP model is given in Multimedia
Appendix 3.

Software and Hardware
The descriptive and inferential statistical analyses were
performed using Stata 15.1 (StataCorp LLC, College Station).
The DLNN models were achieved using packages scikit-learn
0.19.1 and Keras 2.1.6 in Python 3.6 (Python Software
Foundation). The 95% CI of AUC was calculated using the
package pROC in R 3.61 (R Foundation for Statistical
Computing).

All the computation was conducted using a computer with the
64-bit Windows 7 Enterprise operating system (Service Pack
1), Intel Core TM i5-4210U CPU of 2.40 GHz, and 16.0 GB
installed random access memory.

Results

Overview of the Performance of the 3 Deep Learning
Neutral Networks
The incidence of serious complications after bariatric surgery
in our study was 3.2%, which is similar to other studies [12,41].
The 3 DLNNs showed quite similar performance for our original
training data, with specificity=1.00, sensitivity=0, and AUC≤0.6
(Table 1). Although the models’ specificity dropped when
trained using SMOTE data, the sensitivity increased significantly
from 0 to 0.97 in the MLP model and 0.70 in the CNN model
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(Table 1), and AUC also achieved an acceptable level (>0.7).
The finding confirms our previous assumption that DLNNs
trained by SMOTE data might have better performance in
predicting serious complications after bariatric surgery [9].
However, the performance of the 3 DLNNs in the test data was
still low; the highest AUC was only 0.23 for the MLP trained

by the SMOTE data (Table 1). MCC measures indicate that the
MLP trained by the SMOTE data showed promising prediction
(MCC=0.44) for the training data; however, the performance
of the 3 DLNNs was only slightly better than random prediction
(MCC=0.02, 0.03, and 0.05 for MLP, CNN, and RNN,
respectively) for the test data (Table 1).

Table 1. Performance metrics of the models.

Test dataTraining dataModel

AUC

(95% CI)

MCCSensitivitySpecificityAccuracyAUCb

(95% CI)

MCCaSensitivitySpecificityAccuracy

0.57

(0.55-0.59)

0.000.001.000.970.60

(0.59-0.61)

0.000.001.000.97MLPc

0.54

(0.53-0.55)

0.020.230.820.840.84

(0.83-0.85)

0.440.970.390.68MLPd

0.55

(0.54-0.56)

0.000.001.000.970.58

(0.56-0.60)

0.000.001.000.97CNNe

0.57

(0.59-0.61)

0.030.060.970.950.79

(0.78-0.80)

0.260.700.560.63CNNd

0.56

(0.55-0.57)

0.000.001.000.970.58

(0.57-0.59)

0.000.001.000.97RNNf

0.55

(0.53-0.57)

0.050.140.930.910.65

(0.64-0.66)

0.150.490.660.58RNNd

aMCC: Matthews correlation coefficient.
bAUC: area under curve.
cMLP: multilayer perceptron.
dTrained using synthetic minority oversampling technique data.
eCNN: convolutional neural network.
fRNN: recurrent neural network.

Performance of Multilayer Perception
There were myriad combinations of high- and low-level
parameters used during model training, and most of them
resulted in constant performance after given values. Therefore,
we only show the trend of the MLP model’s accuracy with
number of epochs for model training while keeping other
parameters unchanged in Figure 1. When learning from the
original data, the accuracy almost did not change along with
the number of epochs, which was a constant value 0.968 (Figure
1, left panel). The reason is that the incidence rate of serious
complications was only 3.2%; therefore, although the model
always predicted a patient as having a serious complication, it
achieved high accuracy (>0.96), whereas in the SMOTE data
where the numbers of patients with and without serious
complications are equal, the choice of number of epochs shows
a significant influence on accuracy. When the epochs are less
than 20, the accuracy is smaller than 0.8, and it approximates
to 0.85 when epochs are greater than 80 and remains almost
constant afterward (Figure 1, right panel). As the computing

time is proportional to the number of epochs, we selected epochs
80 for model training.

The performance of the MLP was not optimal for the original
training data and test data. The AUCs were barely higher than
a random guess, that is, 0.5, which were 0.60 (95% CI 0.59-0.61)
and 0.57 (95% CI 0.55-0.59) for the training data and test data,
respectively (Figure 2, left panel). When trained using the
SMOTE data, the performance of the MLP improved notably,
with an AUC of 0.84 (95% CI 0.83-0.85). However, its
performance was still low for the test data, with an AUC of 0.54
(95% CI 0.53-0.55; Figure 2, left panel).

The performance of MLP was significantly influenced by the
number of computation units in the SMOTE data but not in the
test data. For example, when the computation units of the first
layer ranged from 4 to 500, the AUC increased rapidly from
0.55 to 0.80. Within the range from 500 to 1000, the AUC
increased slowly from 0.80 to 0.85 and kept fluctuating around
0.85 afterward (Figure 3). However, the AUC kept fluctuating
around 0.55 in the test data no matter how many units were used
(Figure 3).
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Figure 1. Change of accuracy with the number of epochs in multilayer perceptron. MLP: multilayer perceptron; SMOTE: synthetic minority oversampling
technique.

Figure 2. Area under curve of multilayer perceptron with initial setting. MLP: multilayer perceptron.
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Figure 3. Performance of multilayer perceptron using the synthetic minority oversampling technique and test data with different numbers of computation
units in the first hidden layer. MLP: multilayer perceptron; ROC: receiver operating characteristic; SMOTE: synthetic minority oversampling technique.

Performance of Convolutional Neutral Network
The performance of CNN appeared to be similar to that of MLP.
The AUCs were 0.58 (95% CI 0.56-0.60) and 0.55 (95% CI
0.54-0.56) for the training data and test data, respectively (Figure
4, left panel). When trained using the SMOTE data, the AUCs
were 0.79 (95% CI 0.78-0.80) and 0.57 (95% CI 0.59-0.61),
respectively (Figure 4, right panel). Again, although the model’s
performance seems to be improved significantly after training
by the artificially balanced SMOTE data, its performance on
the unseen test data still appears low.

The number of output filters in the convolution (or the
dimensionality of the output space) has a significant influence
on the CNN model’s performance in the SMOTE data but not
in the training data and test data. The AUC of CNN increased
rapidly from 0.63 to 0.80 when we set the number of filters
from 5 to 50. However, the larger number of filters contributes
no further improvement (Figure 5). The CNN model trained by
the SMOTE data always gave an AUC around 0.52 in the test
data (Figure 5).

Figure 4. Area under curve of convolutional neural network with initial setting. CNN: convolutional neural network.
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Figure 5. Performance of convolutional neural network using the synthetic minority oversampling technique and test data with different numbers of
filters. CNN: convolutional neural network; ROC: receiver operating characteristic; SMOTE: synthetic minority oversampling technique.

Performance of Recurrent Neutral Network
Compared with the MLP and CNN, the RNN showed even
worse performance. AUCs of RNN for the original training data
and test data were 0.58 (95% CI 0.57-0.59) and 0.56 (95% CI
0.55-0.57), respectively (Figure 6, left panel). For the SMOTE

data, the AUC was only 0.65 (95% CI 0.64-0.66; Figure 6, right
panel), which was significantly lower than those derived from
MLP (AUC=0.83) and CNN (AUC=0.81). The AUC of RNN
trained by the SMOTE data was only 0.55 (95% CI 0.53-0.57)
for the test data.

Figure 6. Area under curve of recurrent neural network with initial setting. RNN: recurrent neural network.

The performance of the RNN model was influenced by the
dimensionality of the LSTM layer. The AUC changed from
0.50 to 0.60 rapidly when the dimensionality grew from 2 to
20 and kept fluctuating around 0.61 afterward (Figure 7).

Although other hyperparameters, such as kernel initializer and
regularizer, also had an influence on the RNN’s performance,
their impacts were not as notable as the dimensionality of layer.
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Figure 7. Performance of recurrent neural network using the synthetic minority oversampling technique and test data with different dimensionalities
of long short-term memory. LSTM: long short-term memory; ROC: receiver operating characteristic; SMOTE: synthetic minority oversampling
technique.

Sensitivity Analysis and Computing Time
In the sensitivity analysis, we tried different scalers and
optimizers in data preparation and model compiling, and we
tried thousands of combinations of hyperparameters for each
model using the exhaustive grid search method [42]. Although
they showed more or less influence on the models’performance,
the influence was negligible compared with the exponentially
increased computing time. Therefore, we only show the results
of the model with the optimal hyperparameters in the figures
above.

The computing time for the models was largely dependent on
the number of DLNN layers and hyperparameter settings of the
layers, number of epochs and batch size for training, and
obviously software and hardware used. In our study, with the
model structures and hyperparameters described above, the
running time ranged from 82 seconds for the MLP model
(computational units=64, epochs=80, batch size=128, and
trained by original data) to more than 10 hours for the CNN
model (filters=400, epochs=100, batch size=128, and trained
by SMOTE data with cross-validation and grid search) on our
computer.

Discussion

Principal Findings
Several studies have explored using ML methods to predict the
risks after bariatric surgery. Razzaghi et al [27] evaluated 6 of
the most popular classification methods to predict 4 common
outcomes (diabetes, angina, heart failure, and stroke) using
11,636 patients from the Premier Healthcare Database of the
United States. The study also applied the SMOTE technique to
handle the imbalance issue in the data, and the results indicate
that random forest and bagging methods outperform other
methods [27]. However, the study did not test methods using

outer unseen data. Therefore, the real performance of the
methods is questionable. Thomas et al [28] predicted the
long-term weight status after bariatric surgery in 478 patients
using 8 neural networks. Their neural networks yielded an AUC
of 0.77 to 0.78 in predicting weight loss success. However, the
types of the neural networks used were not reported. It seems
as if the authors only used 1 neural network but with different
variables as input. Pedersen et al [25] used neural networks
integrating clinical and genomic biomarkers for 268 patients to
rank factors involved in type 2 diabetes remission after bariatric
surgery, and Hayes et al [26] used the decision tree and the
Naive Bayes to establish independent predictors for the
resolution of type 2 diabetes in 130 patients. However, the
sample sizes of both studies seem too small for nonlinear ML
algorithms; therefore, models might only have a high internal
validity but not external validity [43]. In our previous study,
we trained and compared 29 basic ML algorithms using
information from 37,811 patients to predict serious
complications after bariatric surgery. Although several ensemble
algorithms, such as random forest, gradient regression tree, and
bagging k-nearest neighbor, showed favorable performance,
the overfitting problem was apparent [9].

In this study, we applied and compared 3 DLNN models for
predicting serious complications after bariatric surgery. MLP
is the classical type of neural network, which consists of multiple
layers of computational units. The layers are interconnected in
a feedforward way, where the information moves only forward,
that is, from input nodes, through hidden nodes and to output
nodes, and the connections between the nodes do not form a
cycle [44]. CNN is a regularized version of MLP, which was
inspired by biological processes where the connectivity pattern
between neurons resembles the organization of the animal’s
visual cortex [45]. Although not specifically developed for
nonimage data, CNN may achieve state-of-the-art results for
classification prediction problems using time series data or
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sequence input data. The CNN input is traditionally
two-dimensional but can also be changed to be 1D, allowing it
to develop an internal representation of a 1D sequence. RNN
is designed to work with sequence prediction problems and
traditionally difficult to train, where connections between nodes
form a directed graph along a temporal sequence, which allows
it to exhibit temporal dynamic behavior. Unlike feedforward
neural networks, RNN can use its internal state (memory) to
process sequences of inputs. In effect, an RNN is a type of
neural network that has an internal loop. It loops over time steps,
and at each time step, it considers its current state at t and input
at t and combines them to obtain the output at t [46]. RNN is
traditionally difficult to train, but the LSTM network overcomes
the problems of training a recurrent network and, in turn, has
been perhaps the most successful and widely applied. Therefore,
we adopted the LSTM network in this study. Regarding the
choice of the number of layers in DLNNs, there is no universally
agreed upon threshold, but most researchers in the field agree
that DLNN has multiple nonlinear layers with a credit
assignment path (CAP) >2, and Schmidhuber [44] considers
CAP >10 to be very deep learning. To address a specific
real-world predictive modeling problem, in general, we cannot
analytically calculate the number of layers or the number of
nodes in a DLNN and have to use systematic experimentation
to discover what works best for our specific dataset.

Although the results from the MLP and CNN models seem
promising in the SMOTE training data, the overfitting problem
still exists, which was reflected in the poor performance of the
3 models in the test data (see Table 1 and the left panels in
Figures 2, 4, and 6). It means that although we have identified
potential risk factors related to serious complication after
bariatric surgery at the population level [8], using current data
available to predict whether an individual patient has a serious
complication after bariatric surgery is still far from clinically
applicable. Thus, despite using the most promising methods of
ML, these results support a previous review of standard
statistical methods for the prediction of complications in
bariatric surgery, where models based only on factors known
before surgery were insufficient to predict postoperative
complications [47]. The main reason for this insufficiency is
likely to be that all such methods are missing information on
intraoperative adverse events, surgical experience, and
perioperative optimization of patients, which are well-known
important risk factors for adverse postoperative outcome
[7,47-49].

We also noticed that the RNN performed worse than MLP and
RNN for our data. The possible reason might be that the
sequential pattern or temporal trend in our data cannot be
represented by the features currently available in our data, or
there is no dependency between the patients or events in the
time-series. Even if the trend can be captured by the RNN, it
might be weak, and the past status contributed noise rather than
information to current status.

Although increasing the number of computational units in the
layers or adding more layers may increase the model’s capacity,
the trade-off between computational expensiveness and
representational power is seen everywhere in ML. Limited by

the computing power, we tried to avoid complicated networks
such as applying multiple RNN layers or combining CNN and
RNN, but it deserves investigation in the future with data having
more variables and apparent temporal trend.

Advantages and Limitations
Compared with previous studies, there are several advantages
in our study. First, we used DLNNs rather than traditional ML
techniques. The biggest advantage of DLNNs is that they try
to learn high-level features from data in an incremental manner.
They need less human domain expertise for hard-core feature
extraction [50]. In contrast, in traditional ML techniques, most
of the applied features have to be identified by domain experts
to reduce the complexity of the data and make patterns more
visible to learning algorithms to work [44]. Second, the study
is based on a national quality register with extensive coverage
(97%) of the target population, with a very high follow-up rate
for the studied outcome. Therefore, on the one hand, the
selection bias is minimized in the study, and the much larger
sample size may ensure the external validity of the nonlinear
ML algorithms. Third, we conducted different types of
sensitivity analyses for feature scaling, hyperparameters
optimization, and model compiling during data training, which
ensure the efficiency and internal validity of our models.
However, we also have to admit that there are still some
limitations in our study. First, because of the low predictive
ability of the features available in SOReg in terms of the

Nagelkerke R2 and AUC [8,9], we failed to diminish overfitting
of the DLNN models. We hope to solve this problem by
incorporating extra variables on perioperative care in the future.
Including these factors is likely to improve the predictive ability;
however, these models would not allow guidance in the
preoperative setting. Second, although the DLNN models are
efficient and able to formulate an adequate solution to the
particular question, they are highly specialized to the specific
domain, and retraining is usually necessary for the questions
that do not pertain to the identical domain [51]. For example,
if we want to predict a specific serious complication such as
pulmonary embolism after bariatric surgery, we have to modify
the layers and readjust hyperparameters in the model because
the original models were not trained differentially for the
different outcomes. Third, DL requires a large amount of
computing power. The high-performance hardwire such as the
multicore graphics processing unit is usually needed. It is time
consuming and costly, and we have to give up some of the more
complicated models because of extreme time inefficiency and
leave them for future investigation when more efficient
algorithms or more powerful hardware become available.

Conclusions
Compared with the results from our previous study using
traditional ML algorithms to predict the postoperative serious
complication after bariatric surgery using SOReg data, the MLP
and CNN showed improved, but limited, predictive ability,
which deserves further investigation. The overfitting issue is
still apparent and needs to be overcome by incorporating more
patient features, for example, intra- and perioperative
information, from other data resources.
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WC: waist circumference
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