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Abstract

Background: Preeclampsia and intrauterine growth restriction are placental dysfunction–related disorders (PDDs) that require
a referral decision be made within a certain time period. An appropriate prediction model should be developed for these diseases.
However, previous models did not demonstrate robust performances and/or they were developed from datasets with highly
imbalanced classes.

Objective: In this study, we developed a predictive model of PDDs by machine learning that uses features at 24-37 weeks’
gestation, including maternal characteristics, uterine artery (UtA) Doppler measures, soluble fms-like tyrosine kinase receptor-1
(sFlt-1), and placental growth factor (PlGF).

Methods: A public dataset was taken from a prospective cohort study that included pregnant women with PDDs (66/95, 69%)
and a control group (29/95, 31%). Preliminary selection of features was based on a statistical analysis using SAS 9.4 (SAS
Institute). We used Weka (Waikato Environment for Knowledge Analysis) 3.8.3 (The University of Waikato, Hamilton, NZ) to
automatically select the best model using its optimization algorithm. We also manually selected the best of 23 white-box models.
Models, including those from recent studies, were also compared by interval estimation of evaluation metrics. We used the
Matthew correlation coefficient (MCC) as the main metric. It is not overoptimistic to evaluate the performance of a prediction
model developed from a dataset with a class imbalance. Repeated 10-fold cross-validation was applied.

Results: The classification via regression model was chosen as the best model. Our model had a robust MCC (.93, 95% CI
.87-1.00, vs .64, 95% CI .57-.71) and specificity (100%, 95% CI 100-100, vs 90%, 95% CI 90-90) compared to each metric of
the best models from recent studies. The sensitivity of this model was not inferior (95%, 95% CI 91-100, vs 100%, 95% CI
92-100). The area under the receiver operating characteristic curve was also competitive (0.970, 95% CI 0.966-0.974, vs 0.987,
95% CI 0.980-0.994). Features in the best model were maternal weight, BMI, pulsatility index of the UtA, sFlt-1, and PlGF. The
most important feature was the sFlt-1/PlGF ratio. This model used an M5P algorithm consisting of a decision tree and four linear
models with different thresholds. Our study was also better than the best ones among recent studies in terms of the class balance
and the size of the case class (66/95, 69%, vs 27/239, 11.3%).

Conclusions: Our model had a robust predictive performance. It was also developed to deal with the problem of a class imbalance.
In the context of clinical management, this model may improve maternal mortality and neonatal morbidity and reduce health care
costs.

(JMIR Med Inform 2020;8(5):e15411) doi: 10.2196/15411
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Introduction

Preeclampsia and intrauterine growth restriction (IUGR) are
called placental dysfunction–related disorders (PDDs). These
diseases have similar pathogeneses, biomarkers, and referral
consequences [1,2]. However, they have different phenotypes
and various correlations among biomarkers [3]. Subtypes of
preeclampsia demonstrate heterogeneous gene expressions, yet
a multiomics approach delineated no serological biomarkers
[4]. These situations may cause difficulties in developing a
robust prediction model for these diseases.

Preeclampsia prevalence ranges from 3% to 5% worldwide as
a common disease contributing to maternal mortality [5]. The
fetus of a pregnant woman with or without preeclampsia may
undergo IUGR, which is associated with neonatal morbidity
[6,7]. In spite of difficulties in distinguishing between these two
diseases, both of them have similar consequences. They require
referral to a hospital accompanied by advanced maternal and
neonatal care within a certain time period [8]. Being able to
predict PDDs would greatly support clinicians in making referral
decisions, which should eventually improve both maternal and
neonatal outcomes.

Compared to the traditional first-trimester screening, a prediction
model is more reliable for women in several countries if it uses
predictors in the second or third trimester. In those countries,
women have low numbers of first visits in the first trimester
[9]. Meanwhile, models for predicting PDDs have been
developed mostly for preeclampsia at 11-13 weeks’ gestation.
This period is considered the best time window for its prediction
and the most effective prevention method [10,11]. Therefore,
if using only the first-trimester prediction, pregnant women in
those countries lose the chance to undergo early screening of
preeclampsia. Although prevention is still not available after
the first trimester, the second- or third-trimester prediction will
still impart benefits in the context of clinical management [12].
Decision on early delivery, including by cesarean section, was
recommended in the cases of deteriorated maternal or fetal
condition [13]. Pregnant women who are more likely to develop
preeclampsia can achieve benefit by reaching out to hospitals
with advanced maternal care within a certain time period if this
condition was well predicted. This benefit is still achieved,
although risk of preeclampsia is lately identified at the third
trimester, particularly before term (ie, <37 weeks’ gestation),
in which early delivery will increase prematurity. Even though
the babies were delivered at term from pregnant women who
have developed IUGR, they still need advanced neonatal care.
It is because low birth weight and in-hospital deaths were found
to be more prevalent in those babies compared to those delivered
from pregnant women without IUGR [14,15]. Nonetheless,
previous models did not demonstrate robust predictive
performances using features in any trimester and/or they were
developed from datasets with highly imbalanced classes [16-27].

Predictive modeling using conventional statistical methods may
be difficult for preeclampsia, since there are various correlations

among its predictors [3]. As this disease has heterogeneous gene
expressions, another possible difficulty is the noisy class of
outcomes [4]. Machine learning methods are capable of dealing
with such problems [28]. In addition, a common problem with
preeclampsia and/or IUGR is a class imbalance, as models were
shown to develop overoptimistic predictions [29]. This study
attempted to develop a prediction method for PDDs by machine
learning that uses features at 24-37 weeks’ gestation, including
maternal characteristics, uterine artery (UtA) Doppler measures,
soluble fms-like tyrosine kinase receptor-1 (sFlt-1), and
placental growth factor (PlGF).

Methods

Study Design
We developed a machine learning model and report it based on
Guidelines for Developing and Reporting Machine Learning
Predictive Models in Biomedical Research [30]. Our study
utilized a public dataset from a prospective cohort study based
on STROBE (STrengthening the Reporting of OBservational
studies in Epidemiology) guidelines [3]. We developed this
model to predict a prognosis of pregnancy outcomes. The
prediction model should solve a classification task between a
control group and a cohort with a PDD, either preeclampsia or
IUGR. A referral decision to a hospital with advanced care is
a consequence related to an under- or overprediction of these
diseases. Eventually, underprediction may increase maternal
mortality and neonatal morbidity, while overprediction may
increase health care costs as burdens to either patients or health
insurance companies. We intended to avoid both of these
scenarios. This goal can be considered to have been achieved
if the prediction model demonstrates a higher Matthew
correlation coefficient (MCC) than those of recent studies. The
range of MCCs is from –1 (worst) to 1 (best). This metric can
imply trade-off between underprediction (ie, lower sensitivity
and higher specificity) and overprediction (ie, higher sensitivity
and lower specificity). This trade-off is commonly evaluated
by area under the receiver operating characteristic (ROC) curve
(AUC) and accuracy. However, these metrics cannot fairly
imply predictive performance in datasets with imbalanced
classes [29], like preeclampsia and IUGR. For example, in a
low-prevalence event (ie, 10/100, 10%), the predictive
performances are still high in terms of sensitivity (ie, 9/10, 90%)
and specificity (ie, 81/90, 90%) as parts of AUC. The accuracy
(ie, 90/100, 90%) is also still high, but the MCC is not (ie, .62).

Data Source
The dataset used in this study is a public dataset in the Mendeley
Data repository [31]. This dataset belongs to a study conducted
at the University Medical Centre Ljubljana, Slovenia [3]. It was
approved by the Republic of Slovenia National Medical Ethics
Committee (No. 104/04/12). The original study collected data
from September 2012 to January 2015. We downloaded this
public dataset on March 11, 2019. Inclusion criteria were ≥24
weeks’ gestation at the time of data collection and similar
proportions of <34 or ≥34 weeks’ gestation at delivery between
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the PDD and control groups. For all women with a PDD, the
time interval was 48 hours at maximum for the gestational age
between data collection and delivery. Exclusion criteria were
signs of prepregnancy hypertension, prepregnancy diabetes,
hypertensive disorders during pregnancy, or gestational diabetes.

This dataset provides features (ie, predictors) consisting of
maternal age (years), parity (nulliparous vs parous), maternal
weight before pregnancy (kg), maternal height (m), BMI before

pregnancy (kg/m2), UtA Doppler measures, sFlt-1 (µg/L), PlGF
(µg/L), and the sFlt-1/PlGF ratio. The UtA Doppler measures
included the resistivity index (RI) of the UtA (RI-UtA),
pulsatility index (PI) of the UtA (PI-UtA), and peak systolic
velocity of the UtA (PSV-UtA). Each measure was taken for
both the right and left UtAs. The average of both UtAs was
calculated. In addition, the presence or absence of a bilateral
notch was also included. The class (ie, outcome) consisted of
29 control subjects and 66 women with PDDs: 32 (48%) with
both preeclampsia and IUGR, 12 (18%) with IUGR without
preeclampsia, and 22 (33%) with preeclampsia without IUGR.
Therefore, the ratio of positive (ie, PDD) to negative (ie, control)
classes was 7:3. Detailed criteria for the ultrasound examination,
blood sampling, and diagnosis of either preeclampsia or IUGR
were previously described [3].

There were missing values in one subject for maternal weight,
height, and BMI. However, the BMI classification was inferred
from the report for that subject (ie, overweight) [3]. Considering
the distribution of BMI before pregnancy, a feature was added

by discretization (<25 kg/m2 [underweight + normal] vs ≥25

kg/m2 [overweight + obese]).

Feature Selection
We used SAS 9.4 (SAS Institute) to conduct preliminary
statistical analyses. These intended to identify the relevancy of
candidate features by their association with the class. The dataset
with relevant features was initially used for comparison with
machine learning models. To improve their predictive
performance, we also used a built-in algorithm of feature
selection in each model. Redundant features were removed
using this algorithm. In addition, we compared the selected
features with those from previous studies.

The association tests to identify the relevancy were conducted
based on the data type. For categorical features, we used the
Fisher exact test. For continuous features, the association test
depended on the distributions in each class using the
Kolmogorov-Smirnov normality test. Continuous features that
were normally distributed in both classes (P≥.05) would be
tested by an independent t test. If the variance was equal (P≥.05),
we used the pooled method. Otherwise, we used the
Satterthwaite method. For continuous features that were not
normally distributed (P<.05), we used the Wilcoxon rank test.
The features were significantly associated with the class if
P<.05.

In addition to the association tests for scheme-independent
feature selection or the filter method, we also conducted
scheme-specific feature selection or the wrapper method using
built-in algorithms in models as described in the Model
Development section. Details on the algorithms of feature

selection were meticulously described in Witten et al [32].
Complex model configurations, including to apply the
algorithms, can be reproduced by entering the configuration
code for each model (see Multimedia Appendix 1).

Model Development
We used Weka (Waikato Environment for Knowledge Analysis)
3.8.3 (The University of Waikato, Hamilton, NZ) to develop
machine learning models. We chose this software because of
its practical ability to compare multiple models at once. The
predictive performance of a machine learning model can be
affected by its configuration uncertainty. Considering this issue,
we used an add-on package of Weka—Auto-Weka 2.6.1 (The
University of British Columbia, Vancouver, CA). It
automatically selects the best machine learning model [33]. Its
algorithm optimizes the configuration of each model within a
predefined time period based on a predefined evaluation metric.
We defined the time period as 12 hours and the metric as the
AUC. However, this package shows only the best model, which
is not necessarily a white-box model that is easier for humans
to understand. Therefore, we also manually selected the best
among 23 white-box models. These models were in a default
configuration. Details on configurations for automatically and
manually selected models were described (see Multimedia
Appendix 1).

Manual selection to decide the best white-box model consisted
of three steps. In step 1, we analyzed models that had greater
or equal predictive performance compared to the logistic
regression as the baseline. We used a corrected resampled t test,
which was modified from the conventional paired t test, as
previously developed [32]. The modification was intended to
correct the significance of the difference in each evaluation
metric that increases because of an increasing k fold. To
calculate the t statistic (see Equation 1), we calculated the
difference (∆µ = µj1 – µj2) between the means of the metric from
the first model (µj1) and those from the second model (µj2)
trained by ik and validated by jk from k-fold validation as
described in the Model Validation section. The variance was
estimated by the average of the squared differences between

the jk metric for each model and the mean of both models: σδ
2

= (∑ [xj1 − µj] + ∑ [xj2 − µj]) ÷ (2 × nj). The number of instances
for the validation set was denoted as nj.

t = ∆µ ÷ √ [ ( 1 ÷ k + nj ÷ ni ) × σδ
2 ] (1)

In step 2, after the list of compared models no longer shrank
using the t test, we used interval estimates with a decimal point
precision to further shrink it. In the last step, we chose the best
model by focusing on its sensitivity, interpretability, and
trade-off between sensitivity and specificity.

Since customization is not provided by Weka in some
circumstances, we optimized the best model from the manual
selection by determining a custom threshold. All subjects of the
dataset were used to determine an initial threshold. We then
adjusted it by cross-validation to pursue expected sensitivity
and specificity that were empirically reliable for unobserved
data. Only training subsets were used to adjust the threshold,
while validation subsets were only used to evaluate the
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predictive performances applying the predefined threshold.
Details on the optimization procedure were also described (see
Multimedia Appendix 1).

Model Validation
Internal validation was conducted by repeated 10-fold
cross-validation. The dataset was randomized and split up into
10 subsets with similar class balances. We used nine subsets to
train a model in each fold, while the remaining subsets were
used to validate it. We repeated these folds for 100 iterations
with different seeds of randomization sequences.
Cross-validation estimates the predictive performance of
external validation [34]. This method of internal validation also
improves the reliability of the reported predictive performance
[35].

In addition, we also validated the best model with a custom
threshold. The validation set consisted of 10 new subsets (n=35)
taken from the original dataset (N=95) by stratified random
sampling in SAS 9.4. The class balance was similar among
subsets. These subsets were used to customize a threshold in
pursuit of expected sensitivity and specificity that were reliable
in most of the subsets.

Evaluation Metrics
We applied multiple metrics to the model evaluation. These
were calculated from a confusion matrix, which consists of true
positives (TPs), true negatives (TNs), false negatives (FNs),
and false positives (FPs). We calculated all of these metrics
from recent studies because all of the metrics had not been
reported. We inferred a confusion matrix from each study based
on their sensitivity, specificity, and sample size of either
positives (Ps) or negatives (Ns) (see Equations 2-5).

TP = P × Sensitivity (%) (2)

FN = P – TP (3)

TN = N × Specificity (%) (4)

FP = N – TN (5)

Point and interval estimates were used for comparison of each
evaluation metric. Model selection was evaluated by the AUC,
the area under the precision-recall curve (PRC), accuracy (see
Equation 6), and sensitivity (see Equation 7). In addition, we
evaluated the Akaike information criterion (AIC) to describe
the trade-off between predictive performance and risk of
overfitting relatively among models in the end of selection. The
corrected AIC (AICC) was used, considering the small training
set, as previously described [36,37]. The best model was also
evaluated by a calibration plot. We then demonstrated an ROC
curve of the well-calibrated model. Comparing our model to
those from recent studies, we used the AUC, sensitivity, and

specificity (see Equation 8), in addition to the selected metric,
which was the MCC (see Equation 9), because those metrics
were widely used. However, an evaluation by the MCC prevents
misleading predictive performances, particularly in a model
developed from datasets with imbalanced classes [29]. Class
imbalance is a common situation in preeclampsia and IUGR
studies. In this situation, the MCC can provide a fair evaluation
when comparing prediction models in order to choose the one
that shows optimal performances on both sensitivity and
specificity.

Accuracy (%) = ( TP + TN ) ÷ ( TP + FN + TN + FP
) × 100% (6)

Sensitivity (%) = ( TP ) ÷ ( TP + FN ) × 100% (7)

Specificity (%) = ( TN ) ÷ ( TN + FP ) × 100% (8)

MCC = ( TP × TN – FN × FP ) ÷ √ ( P × [ TP + FP ]
× N × [ TN + FN ] ) (9)

Results

Selected Features
Several features were selected based on a preliminary statistical
analysis (see Table 1). Selected maternal characteristics were

maternal weight before pregnancy, BMI values (kg/m2), and

BMI categories (<25 kg/m2 vs ≥25 kg/m2). Other features
included three measures of the RI-UtA, three measures of the
PI-UtA, the presence or absence of a bilateral notch, sFlt-1,
PlGF, and the sFlt-1/PlGF ratio. The best model was
automatically selected by a correlation-based feature selection
of subset evaluation. It was combined with a backward greedy
stepwise search algorithm.

The selected features were extracted from mostly similar
measures in recent studies (see Table 2). These were maternal
characteristics, PI-UtA, sFlt-1, and PlGF, but not the bilateral
notch. The sFlt-1/PlGF ratio turned out to be the most important
feature in the best model (see Figure 1) as previously described
[1,38,39].

However, the best model by manual selection was the right
PI-UtA over the mean value. This choice is counterintuitive if
the placental side is contralateral to the side on which the PI-UtA
was measured. A previous study found that the PI-UtA was
lower on the side ipsilateral to the placental side [40]. We then
added the lowest value as a feature to provide an acceptable
measure of the PI-UtA regardless of the placental laterality. We
also demonstrated the proportion of the PI-UtA as the lowest
value in either the right or left UtA (see Table 1). In this study,
most of the lowest PI-UtA values were found in the right UtA
(66/95, 69%).
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Table 1. Descriptive and comparative analyses.

P valueClassFeature

PDDsa (n=66)Control (n=29)

Maternal characteristics

.23c32.6 (32.4-32.7)31.2 (30.9-31.5)Maternal age (years), mean (95% CI)b

.10eParity, n (%)d

47 (71)15 (52)Nulliparous

19 (29)14 (48)Parous

.001g,h68.0 (60.0-76.0)58.0 (55.0-65.0)Maternal weight (kg), median (IQR)f

.51c1.65 (1.651-1.655)1.66 (1.658-1.666)Maternal height (m), mean (95% CI)

<.001g,h,i24.4 (23.0-28.2)21.6 (19.9-22.5)BMI (kg/m2), median (IQR)

.01e,gBMI, n (%)

36 (55)24 (83)<25 kg/m2

30 (45)5 (17)≥25 kg/m2

Uterine artery (UtA) Doppler measures, median (IQR)

<.001g,h0.71 (0.63-0.78)0.57 (0.49-0.61)Right resistivity index (RI)-UtA

<.001g,h0.73 (0.61-0.78)0.59 (0.53-0.64)Left RI-UtA

<.001g,h0.71 (0.61-0.77)0.57 (0.52-0.62)Mean RI-UtA

<.001g,h,i1.24 (0.79-1.56)0.66 (0.60-0.71)Right pulsatility index (PI)-UtA

<.001g,h1.33 (0.82-1.59)0.70 (0.67-0.75)Left PI-UtA

<.001g,h,i1.26 (0.86-1.57)0.68 (0.63-0.71)Mean PI-UtA

.09h59.25 (56.80-64.18)58.30 (55.10-62.40)Right peak systolic velocity (PSV)-UtA

.99h60.05 (57.10-63.80)60.20 (59.10-64.10)Left PSV-UtA

.31h60.38 (57.54-64.06)59.55 (58.25-61.40)Mean PSV-UtA

<.001e,g,iBilateral notch, n (%)

47 (71)0 (0)Nulliparous

19 (29)29 (100)Parous

<.001g,h,j1.16 (0.74-1.53)0.65 (0.57-0.69)Lowest PI-UtA, median (IQR)

.23eLaterality of lowest PI-UtA, n (%)

43 (65)23 (79)Right UtA

23 (35)6 (21)Left UtA

sFlt-1k and PlGF l, median (IQR)

<.001g,h,i13,961 (8893-22,218)3014 (1852-4116)sFlt-1 (µg/L)

<.001g,h,i68.4 (42.9-150.1)626.9 (281.3-752.8)PlGF (µg/L)

<.001g,h,i230.1 (100.8-483.0)4.7 (2.6-15.1)sFlt-1/PlGF ratio

aPDD: placental dysfunction–related disorder.
bMean and 95% CI were calculated for numerical values with a normal distribution.
cIndependent t test.
dNumbers and column proportions (%) were calculated for categorical values.
eFisher exact test.
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fMedian and IQR were calculated for numerical values without a normal distribution.
gStatistically significant (alpha=.05).
hWilcoxon rank test.
iSelected feature for the best model from automatic selection.
jUsed for manual selection only.
ksFlt-1: soluble fms-like tyrosine kinase receptor-1.
lPlGF: placental growth factor.

Table 2. Features used by the models in this study compared to those from previous studies.a

Features, n (for maternal characteristics) or + (used by the model) or – (not used by the model)Gestational age
at prediction

Source

PAPP-AfPlGFesFlt-1dBilateral
notch

PI-UtAcMAPbMaternal characteristics

This study

–++–+–224-37 weeksCVRg1 (right PI-UtA)

–++++–224-37 weeksCVR2 (mean PI-UtA)

–++–+–224-37 weeksCVR3 (lowest PI-UtA)

–++++–124-37 weeks158-tree random forest

Previous studies

–++–+–1011-13 weeksWright A et al (2019) [26]

–++–++1111-13 weeksWright D et al (2019) [27]

–+––++1111-13 weeksTan MY et al (2018) [25]

++––+–1011-13 weeksSonek J et al (2018) [24]

–++––+327-28 weeksPerales A et al (2017) [23]

++––+–N/Ah11-13 weeksNuriyeva G et al (2017) [22]

++––++1111-13 weeksO'Gorman N et al (2017) [21]

–++–++1119-24 weeksGallo DM et al (2016) [18]

–++–––1130-34 weeksTsiakkas A et al (2016) [19]

–++–++1135-37 weeksAndrietti S et al (2016) [20]

++––++1011-13 weeksO'Gorman N et al (2016) [17]

––––––1111-13 weeksWright D et al (2015) [16]

aModels that showed the best sensitivity and an acceptable specificity in each study.
bMAP: mean arterial pressure.
cPI-UtA: pulsatility index of the uterine artery.
dsFlt-1: soluble fms-like tyrosine kinase receptor-1.
ePlGF: placental growth factor.
fPAPP-A: pregnancy-associated plasma protein-A.
gCVR: classification via regression.
hN/A: not applicable.
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Figure 1. Characteristics of the classification via regression model using the lowest pulsatility index of the uterine artery (PI-UtA). Fractions in leaf
nodes consist of true predicted numbers (numerators) and all predicted ones (denominators). A ratio of true predicted numbers is shown for control (C),
both intrauterine growth restriction (IUGR) and preeclampsia (IP), IUGR only (I), and preeclampsia only (P). BMI_bP: body mass index before pregnancy

(kg/m2); LM: linear model; low_PIUtA: the lowest pulsatility index of the uterine artery; MW_bP: maternal weight before pregnancy (kg); PDD:
placental dysfunction–related disorder; PlGF: placental growth factor; sFlt: soluble fms-like tyrosine kinase receptor.

Selected Machine Learning Models
We focused on the sensitivity to ensure minimum miss rates,
which should improve maternal and neonatal outcomes. This
resulted in the seven best machine learning models as shown
in Table 3. The best model was the random forest from
automatic selection; however, it is not a white-box model. We
then also manually selected the best white-box model.

Classification via regression (CVR) classifies an outcome based
on an M5P regression algorithm. It combines a pruned decision
tree with smoothed linear models. There is also a built-in
algorithm in CVR for selecting important features. A feature at
the root node of the decision tree is the most important. Each
leaf node has different linear models (LMs), which can be set
to use different thresholds [32]. Optimization of this model was
conducted by determining these thresholds (see Multimedia
Appendix 1).

We developed CVR using only the mean values of UtA Doppler
measures, in addition to this model using the right PI-UtA. We
also developed CVR using the lowest PI-UtA value without
other UtA Doppler measures. In the end, the model using the
lowest PI-UtA value (see Figure 1) was the best, followed by
that using either the right or mean PI-UtA (see Multimedia
Appendices 2 and 3). We provided an interactive interface for
readers to apply the model using the lowest PI-UtA value (see
Multimedia Appendix 4).

We demonstrated characteristics of the best CVR using selected
features from all subjects of the dataset (see Figure 1). LM1,
LM3, and LM4 perfectly classified outcomes. However, a
subpopulation of subjects was misclassified as the control
instead of as having isolated preeclampsia. It consisted of
subjects with sFlt-1/PlGF of ≤115.85, sFlt-1 of >2482.5 µg/L,

and a BMI of ≤25.585 kg/m2.

Calibration plots are shown for CVR models using different
types of PI-UtA (see Figure 2). Positive samples gathered higher
values of both predicted and true probabilities from all of the
CVR models. Then, classification biases were higher on positive
samples from these models. However, all of the biases remained
low because the root mean square error (RMSE) was only 0.076
at the maximum upper bound of the subsets, particularly from
CVR using the mean PI-UtA. Therefore, these models were
well calibrated. They also indicated robust positive predictive
values (PPVs) or information retrieval (IR) precision.

ROC curves are also shown for the CVR models (see Figure
3). C-statistics of 10 subsets are represented by an AUC that is
shown for each CVR model. An average sensitivity was
calculated for each distinct value of FP rates in order to measure
the AUCs. The greatest AUC was for the CVR model that used
the lowest PI-UtA (see Table 4). It significantly differs from
that of the model using the right or mean PI-UtA value.
Applying different thresholds for each LM, each CVR model
has an acceptable trade-off between sensitivity and specificity
without compromising its MCC.
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Table 3. The seven best machine learning models.

Performance metrics and rankModel

Sensitivity (%)∆i AICC
cAccuracy (%)Area under the PRCbArea under the ROCa curve

90.7 (1)0 (1)92.6 (1)0.958 (1)0.976 (1)Automatic selection: random forest

Manual selection

89.7 (2)15 (4)90.6 (4)0.922 (3)0.954 (5)CVRd

89.0 (3)25 (5)90.2 (5)0.928 (2)0.960 (2)Naïve Bayes

88.2 (4)6 (2)90.9 (2)0.921 (4)0.958 (3)Simple logistic

88.0 (5)7 (3)90.8 (3)0.920 (5)0.957 (4)Logistic model tree

86.8 (6)30 (6)89.9 (6)0.868 (6)0.932 (6)Multi-class classifier

86.8 (7)30 (7)89.9 (7)0.868 (7)0.932 (7)Logistic regression

aROC: receiver operating characteristic.
bPRC: precision-recall curve.
cAICC: corrected Akaike’s information criterion (∆i AICC = AIC Ci – AIC C min).
dCVR: classification via regression.

Figure 2. Calibration plots of classification via regression (CVR) models using the lowest, right, and mean pulsatility index of the uterine artery
(PI-UtA). Each point demonstrates a validation subset taken from repeated 10-fold cross-validation. Colors denote subsets from stratified random
sampling. RMSE: root mean square error.
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Table 4. Predictive performances shown by models in this study compared to those from recent studies.a

Predictive performancebSource

Specificity, %Sensitivity, %AUCc

This study

97 (90-100)91 (85-96)0.906 (0.896-0.916)CVRd1 (right PI-UtAe)

100 (100-100)95 (91-100)0.926 (0.919-0.933)CVR2 (mean PI-UtA)

100 (100-100)95 (91-100)0.970 (0.966-0.974)CVR3 (lowest PI-UtA)

93 (92-95)91 (87-94)0.976 (0.967-0.985)158-tree random forest

Recent studies

90 (90-90)85 (72-94)N/Af,gWright A et al (2019) [26]

90h93 (76-99)0.970 (0.950-0.990)Wright D et al (2019) [27]

90h90 (80-96)N/AgTan MY et al (2018) [25]

95i85iN/AgSonek J et al (2018) [24]

95i81i0.930iPerales A et al (2017) [23]

90i76i0.888iNuriyeva G et al (2017) [22]

90h100 (80-100)0.987iO'Gorman N et al (2017) [21]

90h85 (74-93)0.930 (0.892-0.968)Gallo DM et al (2016) [18]

90h100 (92-100)0.987 (0.980-0.994)Tsiakkas A et al (2016) [19]

90h82 (70-91)0.938 (0.917-0.959)Andrietti S et al (2016) [20]

90h89 (79-96)0.907iO'Gorman N et al (2016) [17]

90h67 (59-74)0.811iWright D et al (2015) [16]

aModels that showed the best sensitivity and an acceptable specificity in each study.
bPoint and interval estimates.
cAUC: area under the receiver operating characteristic (ROC) curve.
dCVR: classification via regression.
ePI-UtA: pulsatility index of the uterine artery.
fN/A: not applicable because it was not available.
gThis study showed an ROC curve without an AUC statement.
hFixed specificity in order to define sensitivity.
iThis study did not report an interval estimate.
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Figure 3. Receiver operating characteristic (ROC) curves of classification via regression (CVR) models using the lowest, right, and mean pulsatility
index of the uterine artery (PI-UtA). Each ROC curve demonstrates a validation subset taken from repeated 10-fold cross-validation. Colors denote
subsets from stratified random sampling. AUC: area under the receiver operating characteristic curve.

Comparison of Predictive Performances
The CVR model with the lowest PI-UtA value was found to
achieve the most robust predictive performance (see Figure 4
and Table 4), as determined by the MCC (.93, 95% CI .87-1.00).
The MCC of this model showed no difference compared to that
of either the best model from automatic selection (.93, 95% CI
.82-1.00) or the CVR model with the mean PI-UtA value (.93,
95% CI .87-1.00). However, the MCC of this CVR model was
higher than those from the models with the right PI-UtA value

(.84, 95% CI .71-.98). The predictive performance in this study
was assessed by cross-validation without an independent test
set, similar to most of the recent studies. However, we developed
our models from a dataset with a class balance that was better
than those of recent studies. The MCCs of our models were also
higher than those of recent studies (see Figure 4 and Multimedia
Appendix 3). Compared to random forest with the best AIC
(see Table 3), the CVR models with the lowest, right, and mean
PI-UtA showed AIC values of 13, 15, and 17, respectively.

Figure 4. The Matthew correlation coefficient (MCC) and class balance. Control samples did not include other subtypes of either hypertension in
pregnancy or placental dysfunction–related disorders (PDDs). Colors denote validation methods. Several studies did not report interval estimates and/or
cross-validation (CV). To improve visualization, the scales for either case or control sample sizes were individually log-transformed. CVR: classification
via regression; ePDD: early placental dysfunction–related disorder; ePE: early preeclampsia; ITS: independent test set; PE: preeclampsia; PI-UtA:
pulsatility index of the uterine artery; pPE: preterm preeclampsia.
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Comparison of predictive performances was also described
using other evaluation metrics that are commonly used (see
Table 4). There was significant difference in the AUC between
the CVR models that used the lowest and other PI-UtA values.
Meanwhile, the CVR model with the lowest PI-UtA value was
not significantly different compared to the automatically selected
158-tree random forest. From recent studies, Wright et al [27]
and Tsiakkas et al [19] showed models with more competitive
areas under the ROC than those of our models. However, our
models show sensitivities and specificities that are not inferior
compared to those from recent studies. In addition, our models
were developed by a dataset with a better class balance, whose
case class size was 69% (66/95), compared to the most balanced
dataset from Wright et al [27], whose case size was 11.3%
(27/239) (see Figure 4).

Discussion

Principal Findings
The best model in this study was a CVR one that used the lowest
PI-UtA values. It was an acceptable model, because the lowest
PI-UtA value was reliably found ipsilateral to the placental side
[40]. This model demonstrated higher MCCs and PPVs, but not
sensitivity or AUC, compared to those from previous studies
(see Figure 4, Table 4, and Multimedia Appendix 3). MCC was
intended for achieving our goal to eventually avoid mortality
and morbidity and unnecessary health care costs. This may
result in improved maternal and neonatal outcomes. It also
outperformed models from recent studies in terms of specificity.
Compared to a model that had 90% specificity, this potentially
reduces 10% of health care costs. Applying a predictive model
that uses the sFlt-1/PlGF ratio, a previous study showed a similar
reduction in health care costs [41]. Even without considering
the health economics, the MCC is still practical to consider FPs
along with other components of the confusion matrix, which
reflect numbers of false referral decisions on predicted
preeclampsia and IUGR. Making wrong decisions may harm
pregnant women, especially in developing countries where a
distant and dangerous journey must be taken by pregnant women
to reach higher-level health care facilities. Therefore, a CVR
model that used the lowest PI-UtA values was better in
compromising between the mortality and morbidity and costs
compared to the those of other models in either this study or
previous studies.

Comparison With Prior Work
The selected features were consistent with those from previous
studies. The preeclampsia risk was found to be higher in women
with a prepregnancy BMI classified as overweight or obese
compared to those classified as underweight or normal (with a

cutoff of ≥24 kg/m2) [42]. This disease was also associated with
combinations of a bilateral notch, both RI-UtA and PI-UtA, and
sFlt-1/PlGF measures in the second or third trimester [43,44].
However, these combinations were inconsistently associated
with the IUGR with or without preeclampsia [45-47]. As to the
UtA Doppler measures, no association was found between
placental location and either preeclampsia or a low birth weight
[48]. Using features corresponding to results from previous
studies, an acceptable machine learning model can be developed.

CVR belongs to a group of superior meta-classifiers for
predicting malicious cyberattacks, but it was not the best as a
bagging classifier [49]. In this study, the bagging classifier did
not outperform CVR. The optimized CVR model was also better
than the random forest from automatic selection. Surprisingly,
this model was not outperformed by any state-of-the-art machine
learning models. Those included both artificial neural networks
and support vector machines. These models were also candidates
for automatic selection in this study. One possible reason is
because of a regression model used by CVR that divides the
dataset into several subpopulations using a decision tree. In the
field of medicine, this algorithm is widely known as a reliable
and effective machine learning application [50].

Each leaf node in the decision tree has a different LM. It can
capture different correlations among features in each
subpopulation that is normally distributed [51]. Different
thresholds for each LM may approach heterogeneity in PDDs,
especially in preeclampsia. Thresholds or cutoffs also give more
understanding as to how outcomes are predicted. Thus, this
model has the interpretability that we intended to achieve.

In this study, the CVR models split subjects by an sFlt-1/PlGF
ratio of 115.85. This cutoff was higher than 38 as previously
described [38,39]. This is reasonable, because predicted
outcomes in this study were not only preeclampsia but also
IUGR. Birth weights showed no difference for babies from
women with IUGR that were classified by 38 as a cutoff for the
sFlt-1/PlGF ratio [47]. Therefore, a different cutoff for the
sFlt-1/PlGF ratio is related to predicted outcomes in this study
that differed from those of previous studies.

PIs were also selected by the CVR models of UtA Doppler
measures. Unexpectedly, one of the CVR models in this study
chose the right PI-UtA instead of the mean value, which is
conventionally used [27,44,47]. This is counterintuitive because
of placental laterality, although a previous study showed no
difference between the right and left PI-UtA values (P=.20)
[52]. However, the CVR model using the lowest value had a
higher MCC than that using the right PI-UtA in this study. A
previous model demonstrated a greater AUC when using the
lowest PI-UtA instead of the mean or highest value [53]. This
is also more acceptable, because the lowest PI-UtA value was
shown to be ipsilateral to the placental location [40]. Thus, this
measure is independent of placental laterality.

However, between the CVR model using the right PI-UtA and
the one using the lowest value, we may also consider several
similarities. These were shown by most of the evaluation metrics
and characteristics. The similarities may be coincidental because
most of the subjects had the lowest value on the right side of
the UtA in this study (66/95, 69%; see Table 1). Most placentas
were located on the right side (57.4%) compared to the middle
(22.2%) and left side (20.4%) on the anterior uterine wall [54].
Interestingly, the sleeping position before becoming pregnant
was mostly right lateral by pregnant women with a placenta on
either the anterior, lateral, or fundal uterine wall (P=.001) [55].

In addition to the lowest and the right PIs, the CVR model using
the mean PI-UtA value also demonstrated a competitive
predictive performance. This model showed each LM using a
combination of the mean PI-UtA and bilateral notch. Apparently,
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both of them are a counterpart of the lowest or the right PI-UtA
alone in each LM of other CVR models. The predictive value
of the mean PI-UtA was found to be higher if the bilateral notch
was present compared to when it was absent [43]. Nevertheless,
this model demonstrated the highest RMSE compared to CVR
models using the lowest or the right PI-UtA (see Figure 2).
Therefore, the best model in this study was the CVR model that
used the lowest PI-UtA.

The best model used 25.585 kg/m2 as a cutoff for BMI in its
decision tree. This is similar to the cutoff for BMI as a risk
factor of preeclampsia [42]. As indicated by each LM in the
best model, an effect on PDDs was partially contributed by the
two maternal characteristics of maternal weight and the BMI.
However, the risk of preeclampsia, as a subtype of PDD, was
adjusted by multiple factors instead of only these
anthropometrics [56]. Other maternal characteristics were not
represented in the dataset we used. So, our models need further
improvement using a dataset with more maternal characteristics.

None of the predictive models from 12 recent studies
outperformed our models according to the MCC [16-27]. All
of those studies used datasets with highly imbalanced classes
that may have masked the misclassification of positive samples
[29]. There are many aspects that may cause similar problems
[3,4,28]. These include an outcome leakage that was encountered
by some of those studies [18,20,23]. Mean arterial pressure
(MAP) may easily infer the class because it is calculated from
the same measures as for the diagnostic criteria of preeclampsia.
This is true if MAP is taken in the second trimester, when it is
used for predicting either early or preterm preeclampsia. This
feature may also cause an outcome leakage if it is taken at 35-37
weeks’ gestation, when it is used for predicting late
preeclampsia. Outcome leakage causes the predictive
performance to be overoptimistic [30].

Strengths
To the best our knowledge, this is the first study that used
machine learning to predict preeclampsia and/or IUGR using
features in the second or third trimester of pregnancy. Our
models outperformed 12 recent studies according to the MCC.
This study also used a dataset with a better class balance than
those used by recent studies as well as the size of the case class.
Predicting preeclampsia [26,27] and IUGR [47] used to be
developed using conventional statistical modeling. A previous
study developed a machine learning model (ie, multilayer
perceptron) for predicting PDDs in the first trimester [22].
However, its PPV or IR precision was insufficient. Other studies
developed a machine learning model to characterize gene
expression of preeclampsia as mechanism studies instead of for
prediction [4,57]. Yet, a machine learning model can both
perform a robust prediction and reveal mechanisms of a disease.

Limitations
A pitfall should be considered when applying our models. They
do not distinguish between preeclampsia and IUGR. These
models should only be applied for a referral decision. This
means whether a clinician should refer the pregnant women to
a hospital with advanced maternal and neonatal care within a
certain time period [8]. For pregnant women who will develop
preeclampsia with or without IUGR before term, advanced
maternal care will be needed for cesarean section. It is one of
the possible modes for early delivery that was recommended at
any time in deteriorated maternal or fetal condition [13].
Meanwhile, for pregnant women who will develop IUGR with
or without preeclampsia, the advanced neonatal care will be
needed for the babies. They were found having low birth weight
and more in-hospital deaths, even among those who were
delivered at term [14,15].

Other applications of our models exclude a decision of delivery
before term. This decision should be made based on models
that specifically predict severe cases of early-onset or preterm
preeclampsia and IUGR. It is because a false decision on early
delivery will bring unnecessary prematurity. Nonetheless, no
prediction for isolated preeclampsia is needed for those at term
since no prematurity will occur as a consequence of early
delivery decision.

Controls in this study also did not include other subtypes of
hypertension in pregnancy. They may be indistinguishable from
PDDs, but there is no need for patient referral. There is a
possibility that more FPs will occur in subjects who will develop
other subtypes of this disease. Therefore, the clinical impact
may be unnecessary patient referral to higher-level health care
facilities.

We also need to conduct external validation to confirm
predictive performance of our models. There is a possibility
that these models overfit the dataset. This is still possible even
though they were evaluated by sufficient cross-validation
because of consideration of diverse phenotypes of preeclampsia,
other subtypes of hypertension in pregnancy, and other PDDs.

Conclusions
CVR is a machine learning model that has robust predictive
performance in classifying PDDs versus a control group. This
model differentiates PDDs from a control that has no other
subtypes of hypertension in pregnancy. Using features in the
second or third trimester, this model may be reliable for
countries with low numbers of first visits in the first trimester,
but further investigations are needed. Although the best
preventive method for preeclampsia is not in the second or third
trimester, this model can still be beneficial in the context of
clinical management.
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