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Abstract

Background: The detection of infectious diseases through the analysis of free text on electronic health reports (EHRs) can
provide prompt and accurate background information for the implementation of preventative measures, such as advertising and
monitoring the effectiveness of vaccination campaigns.

Objective: The purpose of this paper is to compare machine learning techniques in their application to EHR analysis for disease
detection.

Methods: The Pedianet database was used as a data source for a real-world scenario on the identification of cases of varicella.
The models’ training and test sets were based on two different Italian regions’ (Veneto and Sicilia) data sets of 7631 patients and
1,230,355 records, and 2347 patients and 569,926 records, respectively, for whom a gold standard of varicella diagnosis was
available. Elastic-net regularized generalized linear model (GLMNet), maximum entropy (MAXENT), and LogitBoost (boosting)
algorithms were implemented in a supervised environment and 5-fold cross-validated. The document-term matrix generated by
the training set involves a dictionary of 1,871,532 tokens. The analysis was conducted on a subset of 29,096 tokens, corresponding
to a matrix with no more than a 99% sparsity ratio.

Results: The highest predictive values were achieved through boosting (positive predicative value [PPV] 63.1, 95% CI 42.7-83.5
and negative predicative value [NPV] 98.8, 95% CI 98.3-99.3). GLMNet delivered superior predictive capability compared to
MAXENT (PPV 24.5% and NPV 98.3% vs PPV 11.0% and NPV 98.0%). MAXENT and GLMNet predictions weakly agree
with each other (agreement coefficient 1 [AC1]=0.60, 95% CI 0.58-0.62), as well as with LogitBoost (MAXENT: AC1=0.64,
95% CI 0.63-0.66 and GLMNet: AC1=0.53, 95% CI 0.51-0.55).

Conclusions: Boosting has demonstrated promising performance in large-scale EHR-based infectious disease identification.

(JMIR Med Inform 2020;8(5):e14330) doi: 10.2196/14330
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Introduction

Improving the predictive capability of infectious disease
detection at the population level is an important public health
issue that can provide the background information necessary
for the implementation of effective control strategies, such as
advertising and monitoring the effectiveness of vaccination
campaigns [1].

The need for fast, cost-effective, and accurate detection of
infection rates has been widely investigated in recent literature
[2]. Particularly, the combination of increased electronic health
report (EHR) implementation in primary care, the growing
availability of digital information within the EHR, and the
development of data mining techniques offer great promise for
accelerating pediatric infectious disease research [3].

Although EHR data are collected prospectively in real time at
the point of health care delivery, observational studies intended
to retrospectively assess the impact of clinical decisions are
likely the most common type of EHR-enabled research [3].

Among the high-impact diseases, the prompt identification of
varicella zoster viral infections is of key interest due to the
debate around the need and cost-benefit dynamics of a
mass-vaccination program for young children [4,5].

Challenges in this context arise from both the unique
epidemiological characteristics of varicella zoster with respect
to information extraction, such as age-specific consultation
rates, seasonality, force of infection, hospitalization rates, and
inpatient days [6], and from the way that medical records are
organized, often in free-format and uncoded fields [7]. A critical
step is to transform this large amount of health care data into
knowledge.

Data extraction from free text for disease detection at the
individual level can be based on manual, in-depth examinations
of individual medical records or, to contain costs and ensure
time-tightening and control, by automatic coding. Machine
learning techniques (MLTs) are the most commonly used
approaches [8] and show good overall performance [9,10].
Nevertheless, few indications are currently available on the
most appropriate technique to use, and comparative evidence
is still lacking on the performances of each available technique
[11] in the field of pediatric infectious disease research.

In recent years, generalized linear model (GLM)-based
techniques have been largely used for the text mining of EHRs,
both as a technique of choice [12] and as a benchmark [13]. The

performance of GLMs, especially multinomial or in the simplest
cases logistic regression, has been indicated as unsatisfactory
[14] because they are prone to overfitting and are sensitive to
outliers. Enhancements to GLMs have been proposed recently
in the form of the lasso and elastic-net regularized GLM [15]
(GLMNet), multinomial logistic regression (maximum entropy
[MAXENT]), and the boosting approach implemented in the
LogitBoost algorithm [16] to overcome the limitations of naïve
GLMs. Nevertheless, to the best of our knowledge, no
comparisons have been made among these techniques to
determine to what extent improvements are needed.

The purpose of this study is to make comparisons among
enhanced GLM techniques in the setting of automatic disease
detection [17]. Particularly, these methods will be assessed on
their ability of identifying cases of varicella from a large set of
EHRs.

Methods

Electronic Medical Record Database
The Italian Pedianet database [18] collects anonymized clinical
data from more than 300 pediatricians throughout the country.
This database focuses on children 0-14 years of age [19-22] and
records the reasons for accessing health care, diagnosis, and
clinical details. The sources of those data are primary care
records written in Italian, which are filled in by pediatricians
with clinical details about diagnosis and prescriptions; they also
contain details about the eventual hospitalization and specialist
referrals.

For the purpose of this study, we were allowed to access only
two subsets of the Pedianet database, corresponding to the data
collected between 2004 and 2014 in the Italian regions of Veneto
(northern Italy) and Sicilia (South Italy). Since the Veneto region
data set was larger, it was considered for carrying out the
training of the model. The data set of the Sicilia region provided
an independent data set for testing the model. The main
characteristics of the two data sets are reported in Table 1. It is
worth noting that the proportion of positive cases of varicella
is different in the two databases. Interpreting differences in
prevalence between regions is beyond the purpose of this study;
nevertheless, given the smaller prevalence, there is an expected
lower positive predictive value (PPV) and a higher negative
predictive value (NPV) on the test set.

The Pedianet source data includes five different tables. In Table
2, we report a short description of them.
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Table 1. Main characteristics used for the train (Veneto) and test (Sicilia) data sets.

TestTrainCharacteristic

PedianetPedianetDatabase

ItalianItalianLanguage

SiciliaVenetoItalian Region

January 7, 2004-December 30, 2014January 2, 2004-December 31, 2014Date span

569,9261,230,355Records, n

23477631Children, n

1346Pediatricians, n

128 (5.4%)3481 (45.6%)Positive cases, n (%)

Table 2. Tables used from the Pedianet database.

ExampleType of dataContentTable topic

Free text (in-
cluding codes)

Reasons for accessing the pediatrician and
diagnoses

Accessing • Ritardo di crescita <783.4>

Free textPediatrician’s free-text diariesDiaries • DIBASE OS GTT 10ML 10000UI/ML n° conf. 2\r\n per
Visita di controllo e di follow up\r\n\r\n

Free textDetails on hospital admissions, diagnoses,
and length of stays

Hospitalizations • Divisione di pediatria
• Tosse, difficolta' respiratoria e di alimentazione

Free text (in-
cluding codes)

Symptoms, objectivity, diagnosis, or pre-
scriptions

SOAPa • SOAPb: “P”,
• SOAP_code: “77469”,
• SOAP_text: “visita otorinolaringoiatrica<89.7>”

Free text includ-
ing (codes)

Visit type and its diagnosisSpecialistic visits • codice_visitaSP: “89.01”,
• visita: “ecografia anche sec. Graaf per screening”,
• diagnosi: “problemi della vista <V41.0>”

aSOAP: symptoms, objectivity, diagnosis, or prescriptions.
bFor tables with multiple fields, field names are reported in italics.

All the tables can be linked at the individual level (ie, each row
of all the tables contains the fields for reporting information on
dates, the assisting pediatrician’s anonymous identifier, and the
patients’ anonymous identifier, which constitutes the linking
key).

Case Definition
The case definition comes directly from the gold standard
provided, and the training set for machine learning was created
using those dichotomous labels (ie, 0=noncase, that is not a
varicella case; and 1=case, that is a varicella case).

Training and Test Sets for Machine Learning
Linking by patient ID, pediatrician ID, and reporting date, we
merged the five tables into a single table consisting of several
entries, each of which represents a visit or evaluation of a patient
carried out by a pediatrician on a specific day. At this step, the
information (excluding patient ID, pediatrician ID, and reporting
date) is contained in 15 columns containing free text mixed with
coded text, which was considered by us as free text as well.
Finally, all remaining columns of the table were merged into a
single corpus (ie, a body of text). This process was applied to
train the models on 1,230,355 entries (database of the Veneto

region) and to test them on 569,926 entries (database of the
Sicily region) separately.

Preprocessing
Text analysis by a computer program is possible only after
establishing a way to convert text (ie, readable to humans) into
numbers (ie, readable to computers). This process is called
preprocessing, and it is the first [23] and probably the most
important step in data mining [24]. To process the corpus of
Pedianet EHRs included in the training set, we used the
following strategy. First, we converted all fields in a text type;
lowered the content; and cleared it of symbols, punctuation,
numbers, and extra white spaces. Second, we stemmed the words
(ie, reducing them to their basic form, or “root”), which is
recognized as one of the most important procedures to perform
[25], and constructed 2-gram tokens, which has been shown to
be the optimal rank for gram tokenization [26]. Third, we
removed all the (stemmed) stop words (ie, common and
nonmeaningful words such as articles or conjunctions) from the
set of tokens as well as all bigrams containing any of them. We
chose this strategy after exploring different approaches described
in [27]. Fourth, we created the document-term matrix (DTM)
as a patient-token matrix. To consider both the importance of
the tokens within a patient (ie, one row of the DTM) and its
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discrimination power between patients’ records (ie, the rows of
the DTM), we computed the TF-iDF (term frequencies–inverse
document frequencies) weights. TF-iDF weights help to adjust
for the presence of words that are more frequent but less
meaningful [28]. TF-iDF-ij entry is equal to the product of the
frequency of the j-th token in the i-th document by the logarithm
of the inverse of the number of documents that contain that
token (ie, the more frequent a word appears in a document the
more its weight rises for that document), and the more
documents that contain the j-th token, the more the weight
shrinks across all the documents [29]. In the initial DTM there
were 1,871,532 tokens that appear at least once, with a
nonsparse/sparse entries ratio of (18,951,304/14,262,709,388).
We decided to reduce it to achieve a maximum of 99% overall
sparsity. Filtering out the tokens that do not appear in at least
1% of the documents had reduced it down to 94% (ie, 29,096
tokens that appear at least once for a nonsparse/sparse entries
ratio of 13,140,370/208,891,206). The choice of a 99% level
of sparsity was a tradeoff between the need to retain as many
tokens as possible and the computational effort.

The corpus of Pedianet EHRs comprised in the test set went
through the same text preprocessing strategy in the same order,
and then the DTM was created with the initial TF weighing
scheme. Furthermore, it was adapted with the same tokens
retained in the training phase (ie, adding the missing tokens,
weighting them as zero, and removing the ones not included in
the training DTM) and was finally reweighted with the TF-iDF
weighing scheme with the same retained iDF weights of the
corresponding training DTM, which were retained when applied
to the whole training data set. Those are necessary steps to
guarantee that the two feature spaces are the same and that the
models trained can be evaluated on the test set.

Machine Learning Techniques
Enhancements of GLMs for carrying out text mining on EHRs
have been proposed in the form of the lasso and GLMNet [16],
multinomial logistic regression (MAXENT), and the boosting
approach (LogitBoost) [16].

GLMNet is a regularized regression method that linearly
combines the L1 and L2 penalties of the lasso and ridge methods
applied in synergy with a link function and a variance function
to overcome linear model limitations (eg, the constant variability
among the mean and the normality of the data). The link
function selected was the binomial (ie, the model fit a
regularized logistic regression model for the log odds), while
the amount of regularization was automatically selected by the
algorithm through an exploration of 100 values between the
minimum value that reduced all the coefficients to zero and its
0.01 fraction.

MAXENT is an implementation of (multinomial) logistic
regression aimed at minimizing the memory load on large data
sets in R (R Foundation for Statistical Computing) and is
primarily designed to work with the sparse DTM provided by
the R package [30]. It has been proven to provide results
mathematically equivalent to a GLM with a Poisson link
function [31].

Boosting is a general approach for improving the predictive
capability of any given learning algorithm. We used the
adaptations of Tuszynski [32] to the original algorithm, (ie,
LogitBoost [33,34]), which is aimed at making the entire process
more efficient while applying it on large data sets. The standard
boosting technique [34] is applied to the sequential use of a
decision stump classification algorithm as a weak learner (ie, a
single binary decision tree). The number of stumps considered
is the same as the columns provided in the training set.

Those techniques are chosen among computationally treatable
algorithms for use with large data sets [30]. GLMNet and
MAXENT represent classical benchmark approaches to linear
and logistic classification, respectively, in a manner that differs
from LogitBoost, which is a modern boosted tree-based machine
learning approach [35,36]. Moreover, LogitBoost generalizes
the classical logistic models by fitting a logistic model at each
node [37] and shows an alternative point of view with regards
to models such as the GLMs, for which the structure of the
learner must be chosen a priori [38].

Training and Testing
We addressed the issue of internal validation by performing
cross-validation on the training set comprising records from the
Veneto region. We dealt with external validation by accessing
a truly external sample of Pedianet EHRs from another Italian
region, Sicily. This accomplishes two tasks: preserving precision
in the training phase and complementing study findings with
external validation results using data that were not available
when the predictive tool was developed.

We used a 5-fold cross-validation approach to validate each of
the three MLTs on the DTM with the corresponding (by row)
“case/non-case” attached labels. All MLTs were simultaneously
fitted on the same set of folds to ensure a proper comparison
between techniques. Values of k=10 or k=5 (especially for large
data sets) have been shown empirically to yield acceptable (in
terms of bias-variance trade-off) error rates [39,40]. Thus, the
choice of 5-folds was driven by the computational complexity,
the fewer folds, the less complexity.

As measures of performance, we calculated point estimates and
95% CIs for the following.

• PPV or Precision: , that is the fraction of
positively identified cases that are true positives

• NPV: , that is the fraction of positively identified
noncases that are true negatives

• Sensitivity or Recall: , that is the true positive rate
• Specificity: , that is the true negative rate
• F score: , the harmonic mean of the PPV

(Precision) and Sensitivity (Recall)

The Gwet agreement coefficient 1 (AC1) statistics of agreement
[41,42] between the techniques were computed and reported,
along with their corresponding 95% CIs. Given that A=the
number of times both models classify a record as noncase, D=the
number of times both models classify a record as a case, and

N=the total sample size, then , where , and eγ is
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the agreement probability by chance and is equal to 2q (1 – q),

where ; A1 is the number of records classified as
noncase by model 1, and B1 is the number of records classified
as noncase by model 2. AC1 has been used given its propensity
to be weakly affected by marginal probability, and therefore it
was chosen to manage unbalanced data [43].

All the analyses were implemented in the R system [44] with
the computing facilities of the Unit of Biostatistics,
Epidemiology and Public Health. The R packages used were:
SnowballC (to stem the words) and RWeka (to create n-grams)
for the preprocessing step; Matrix and SparseM to manage
sparse matrices; GLMNet, MAXENT, and caTools for the
GLMNet, MAXENT, and LogitBoost MLT implementation;
caret to create and evaluate the cross-validation folds; ROCR

to estimate the performance; and the tidyverse bundle of
packages for data management, functional programming, and
plots. A git repository of the analysis code is available [45].

Results

The flow chart, from data acquisition to preprocessing, is shown
in Figure 1. In the training set, 29,096 initial terms out of
1,871,532 were retained by the sparsity reduction step. Boosting
significantly outperforms all other MLTs on the training set,
with the highest F score and PPV. The GLMNet predictor
delivered a superior F score and greater PPV compared to
MAXENT (Table 3). The same results held on the test set (Table
4) and agreement between MLT predictions on the training set
was good as measured by AC1 statistics (Table 5).

Figure 1. Flowchart from the acquisition of the five tables containing the electronic health records (dark gray) in the training set that were merged into
a single table (dark blue); preprocessed (gray) with the specification of what was removed (pink) prior to the creation of the document-term matrix
(DTM) (yellow); the computation of the weights (light blue); the dimensionality reduction, that is the reduction of the terms used (light gray), and the
final DTM used (green). DTM: document-term matrix; SOAP: symptoms, objectivity, diagnosis, or prescriptions; TF-iDF: term frequencies–inverse
document frequencies.
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Table 3. Performance on the training set of the three machine learning techniques using a 5-fold cross-validation method.

F score, mean (95% CI)Specificity, mean (95% CI)NPVb, mean (95% CI)PPVa, mean (95% CI)Sensitivity, mean (95% CI)Technique

76.5 (75.6-77.5)87.1 (85.6-88.7)90.9 (89.6-92.2)73.2 (70.9-75.6)80.2 (77.7-82.7)GLMNetc

67.4 (64.7-70.0)84.5 (82.7-86.3)86.1 (85.2-86.9)66.0 (62.5-69.5)68.8 (66.8-70.7)MAXENTd

90.9 (89.7-92.1)98.3 (97.0-99.6)94.4 (92.4-96.3)95.8 (93.2-98.5)86.6 (82.1-91.1)Boosting

aPPV: positive predicative value.
bNPV: negative predicative value.
cGLMNet: elastic-net regularized generalized linear model.
dMAXENT: maximum entropy.

Table 4. Performance on the test set of the three machine learning techniques under consideration.

F score, mean (95% CI)Specificity, mean (95% CI)NPVb, mean (95% CI)PPVa, mean (95% CI)Sensitivity, mean (95% CI)Technique

36.5 (32.2-40.8)87.4 (85.4-89.5)98.3 (97.9-98.6)24.5 (21.0-28.0)72.3 (66.4-78.1)GLMNetc

19.1 (17.2-20.9)65.5 (54.7-76.2)98.0 (97.3-98.6)11.0 (9.5-12.5)74.8 (62.2-87.5)MAXENTd

68.5 (59.3-77.7)96.9 (94.2-99.6)98.8 (98.3-99.3)63.1 (42.7-83.5)79.2 (69.7-88.7)Boosting

aPPV: positive predicative value.
bNPV: negative predicative value.
cGLMNet: elastic-net regularized generalized linear model.
dMAXENT: maximum entropy.

Table 5. Agreement between elastic-net regularized generalized linear model, maximum entropy, and boosting using 5-fold cross-validation.

Gwet AC1d,e (95% CI)Disagreec, nCorrectly agreeb, nWrongly agreea, nTechnique

0.68 (0.67-0.70)13535609669GLMNetf vs MAXENTg

0.74 (0.72-0.75)11466269195GLMNet vs boosting

0.66 (0.65-0.68)14915895224MAXENT vs boosting

aThe “Wrongly Agree” column refers to the number of records misclassified by both techniques.
bThe “Correctly Agree” column states the number of records correctly classified by both techniques.
cThe “Disagree” column lists the number of records for which the techniques disagree in the classification.
dAC1: agreement coefficient 1.
eGwet AC1 represents the index of agreement between the identified techniques. Legend for AC1 is: AC1<0=disagreement; AC1 0.00-0.40=poor; AC1
0.41-0.60=discrete; AC1 0.61-0.80=good; AC1 0.81-1.00=optimal.
fGLMNet: elastic-net regularized generalized linear model.
gMAXENT: maximum entropy.

With the aim to analyze the most relevant errors, we explored
if any records were wrongly classified by all the techniques.
There were 3 records: 1 wrongly classified as positive and 2
wrongly classified as negatives by all the MLTs.

Discussion

Principal Findings
The application of MLTs to EHRs constitutes the analytical
component of an emerging research paradigm that rests on the
capture and preprocessing of massive amounts of clinical data
to gain clinical insights and ideally to complement the
decision-making process at different levels, from individual
treatment to definition of national public health policies. As
acknowledged by others [46], the development and application

of big data analysis methods on EHRs may help create a
continually learning health care system [47].

This study trains and compares three different machine learning
approaches towards infectious disease detection at the population
level based on clinical data collected in primary care EHRs. In
line with the recommended paradigm for model validation [39],
the MLTs’ performance underwent internal validation through
cross-validation and external validation on an independent set
of EHRs.

The predictive capabilities of the developed MLTs are promising
even if quite different from each other (eg, validation F scores
range from 67%-91% and test F scores range from 19%-69%).
Findings on the better performance reached by LogitBoost are
in line with recent evidence that shows an improvement in
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general classification problems moving from MAXENT
algorithms to LogitBoost-based ones [48]. LogitBoost is thus
confirmed to be a useful technique for solving health-related
classification problems [34].

Only three records were wrongly classified by all the models.
The first one was wrongly classified as positive probably
because the text entry was “vaccini:varicella e mpr” (ie, vaccine:
varicella and mpr), and after the preprocessing, the bigram
“vaccin varicell” was removed because the TFiDF weight was
low. Thus the relationship between varicella and vaccine was
lost and remained only the token “varicell”.

The other two records were wrongly classified as negative. For
one of them, the misclassification was probably due to an issue
in the tokenization. In fact, an anomalous sequence of dashes
(“-”) and blanks lead to the token “- varicella”, which was
removed from the feature space, leaving no reference to the
disease. The second negative misclassified record referred to a
child who was vaccinated for measles, mumps, rubella, and
varicella (quadrivalent vaccine). The pediatrician wrote
“vaccinazione morbillo parotite rosolia varicella” (ie,
vaccination, measles, mumps, rubella, varicella). The bigram
“rosol varicell” (ie, “rubell varicell”) was weighted 0.361 and,
hence, was retained in the feature space, and was considered
by all the MLTs a pattern of noninfection.

The strength of tree-based models such as LogitBoost also lies
in their high scalability. In fact, their computational complexity
(ie, the asymptotical time needed for a complete run) grows
linearly with the sample size and quadratically with the number
of features used (ie, the number of tokens considered) [37].
Assuming that the richness of the pediatric EHRs’ vocabulary
is limited (ie, the number of tokens reaches a plateau as data
accumulates over time) an increase in computational time will
only depend linearly on the number of patients.

Any attempt to use EHRs to identify patients with a specific
disease would depend on the algorithm, the database, the
language, and the true prevalence of the disease. As to the
generalization of these models to other contexts, we hypothesize

that they could also be successfully applied in public health
systems with EHR charting in other languages [49].

We acknowledge that one metric (ie, sensitivity, specificity,
PPV, or NPV) may be more important than another, depending
on the intended use of the classification algorithm. Thus, the
LogitBoost model is adequate for ascertaining varicella cases,
with a preference for case identification with good sensitivity
and excellent specificity.

If the aim of using MLTs is to help create a gold standard for
databases, the limited agreement between the MLTs reported
in Table 5 suggests that these classification algorithms are not
reliable as a set of annotators.

Limitations
Some limitations must be acknowledged. First, it is
acknowledged that text preprocessing is a crucial step. The way
to convert free text into numbers and numbers into features is
an essential step of the process and has one of the biggest
impacts on the results [24]. For the same reason as before, we
decided to follow a standard preprocessing procedure without
searching for the best one to obtain results that are, at most,
independent of human tuning.

Second, we set the number of boosting iterations as the same
number of features considered. This is suboptimal in
computational time because the same performance can be
reached with fewer iterations [37]. Nevertheless, we aimed to
reach an upper-bound value for the performance estimated in
an optimal situation.

Third, the large difference in disease prevalence between the
training and the validation data set should be noted. The boosting
approach seems to deal with this issue in a satisfactory way,
but a potential impact on model prediction could not be
excluded.

Conclusions
Given their promising performance in identifying varicella
cases, LogitBoost, and MLTs in general, could be effectively
used for large-scale surveillance, minimizing time and cost in
a scalable and reproducible manner.
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Abbreviations
AC1: agreement coefficient 1
DTM: document-term matrix
EHR: electronic health report
GLM: generalized linear model
GLMNet: elastic-net regularized generalized linear model
MAXENT: maximum entropy
MLT: machine learning technique
NPV: negative predicative value
PPV: positive predicative value
TF-iDF: term frequencies–inverse document frequencies
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