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Abstract

Background: Acute respiratory failure is generally treated with invasive mechanical ventilation or noninvasive respiratory
support strategies. The efficacies of the various strategies are not fully understood. There is a need for accurate therapy-based
phenotyping for secondary analyses of electronic health record data to answer research questions regarding respiratory management
and outcomes with each strategy.

Objective: The objective of this study was to address knowledge gaps related to ventilation therapy strategies across diverse
patient populations by developing an algorithm for accurate identification of patients with acute respiratory failure. To accomplish
this objective, our goal was to develop rule-based computable phenotypes for patients with acute respiratory failure using remotely
monitored intensive care unit (tele-ICU) data. This approach permits analyses by ventilation strategy across broad patient
populations of interest with the ability to sub-phenotype as research questions require.

Methods: Tele-ICU data from ≥200 hospitals were used to create a rule-based algorithm for phenotyping patients with acute
respiratory failure, defined as an adult patient requiring invasive mechanical ventilation or a noninvasive strategy. The dataset
spans a wide range of hospitals and ICU types across all US regions. Structured clinical data, including ventilation therapy start
and stop times, medication records, and nurse and respiratory therapy charts, were used to define clinical phenotypes. All adult
patients of any diagnoses with record of ventilation therapy were included. Patients were categorized by ventilation type, and
analysis of event sequences using record timestamps defined each phenotype. Manual validation was performed on 5% of patients
in each phenotype.

Results: We developed 7 phenotypes: (0) invasive mechanical ventilation, (1) noninvasive positive-pressure ventilation, (2)
high-flow nasal insufflation, (3) noninvasive positive-pressure ventilation subsequently requiring intubation, (4) high-flow nasal
insufflation subsequently requiring intubation, (5) invasive mechanical ventilation with extubation to noninvasive positive-pressure
ventilation, and (6) invasive mechanical ventilation with extubation to high-flow nasal insufflation. A total of 27,734 patients
met our phenotype criteria and were categorized into these ventilation subgroups. Manual validation of a random selection of 5%
of records from each phenotype resulted in a total accuracy of 88% and a precision and recall of 0.8789 and 0.8785, respectively,
across all phenotypes. Individual phenotype validation showed that the algorithm categorizes patients particularly well but has
challenges with patients that require ≥2 management strategies.

Conclusions: Our proposed computable phenotyping algorithm for patients with acute respiratory failure effectively identifies
patients for therapy-focused research regardless of admission diagnosis or comorbidities and allows for management strategy
comparisons across populations of interest.

(JMIR Med Inform 2020;8(4):e18402) doi: 10.2196/18402
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Introduction

Overview
Acute respiratory failure occurs in patients that cannot maintain
adequate blood oxygen levels (hemoglobin saturation and partial
pressure of arterial oxygen), cannot normalize blood pH, or
cannot sufficiently compensate for systemic metabolic acidosis.
Patients can develop respiratory failure from a multitude of
causes, including neurologic injury, toxidromes, musculoskeletal
abnormalities, cardiac or pulmonary abnormalities, and sepsis.
Conceptually, the treatment of acute respiratory failure involves
invasive ventilation or noninvasive ventilation (NIV) strategies.
There are multiple modalities for these therapies, and the
selection of an intervention depends on the pathophysiologic
processes and severity of the disease [1-3]. While noninvasive
strategies have been studied among specific patient populations,
the various therapies themselves have not been extensively
investigated across diverse critical care populations, and there
are conflicting data on the efficacy of these strategies [4,5].
Furthermore, given informatics challenges related to electronic
health record (EHR) phenotyping such as data completeness,
complexity, bias, and accuracy [6], there is a need to clearly
define patient cohorts to investigate invasive ventilation and
NIV strategies using retrospective EHR data.

The objective of this work was to develop a rule-based
computable phenotyping algorithm by ventilation therapy for
patients with acute respiratory failure. This allows for
characterization and extraction of critically ill patients based
on treatment modality beyond the traditional binary
classification of ventilation therapy (ie, intubated [invasive] or
not intubated [noninvasive]) as well as large-scale application
of a rule-based phenotype to a wide range of hospital sizes and
types across the United States.

Background
Clinical management of acute respiratory failure depends on
the underlying pathophysiology, but generally can be considered
as low-flow oxygen therapy (<15 L/min of oxygen through a
nasal cannula, ventimask, or nonrebreathing mask), a NIV
strategy that includes high-flow nasal insufflation (15-70 L/min
of heated and humidified gas with a titratable fraction of inspired
oxygen via a high-flow nasal cannula system) or noninvasive
positive-pressure ventilation (via a face mask and ventilator),
or invasive mechanical ventilation (via an endotracheal tube
[ETT] and ventilator).

While there are multiple NIV modalities [7], we refer to
noninvasive positive-pressure ventilation (NIPPV) and high-flow
nasal insufflation (HFNI) as two primary NIV strategies.
Conventional low-flow oxygen therapy uses traditional oxygen
delivery sources to provide supplemental oxygen with flow
rates up to 15 L/min. On the other hand, both NIPPV and HFNI
are designed to provide either pressure-based or flow-based
ventilatory support with titratable respiratory gasses and are
therefore considered strategies for noninvasively treating
patients with acute respiratory failure [8].

Significance
NIV strategies are now widely used in an effort to avoid the
untoward effects of invasive mechanical ventilation via
endotracheal intubation [9,10]. Failure of noninvasive therapy
resulting in intubation, however, puts patients at greater risk
than those that were intubated without attempting NIV [11-13].
These risks suggest a need for large-scale studies to better
understand the use of NIV strategies across specific diagnoses
and amongst all patients with de novo acute respiratory failure
as well as to identify factors associated with increased risk of
NIV failure and opportunities to improve patient outcomes when
using these therapies [14,15].

A clinical phenotype, generally defined as a set of observable
characteristics representing the current and potentially changing
state of a patient [16], is typically developed using diagnosis or
other disease-related characteristics. Analysis of ventilation
strategies as they pertain to patients broadly, however, is limited.
As a result, NIV strategies and subsequent failure that lead to
endotracheal intubation are not fully understood across various
intensive care unit (ICU) patient populations. Our goal in this
study was to address these knowledge gaps by developing a
computable rule-based algorithm to identify phenotypes in
critically ill patients with acute respiratory failure using
retrospective, remotely monitored clinical data.

Methods

Data Source
Data were extracted from the eICU Collaborative Research
Database. The eICU database is a publicly available critical
care telemedicine database containing structured EHR data from
≥200 hospitals throughout the United States from 2014 and
2015 [17]. It includes a wide range of data from basic patient
demographics to treatment records, medications, vital signs,
and nursing and respiratory therapy notes, all in a structured
format. Hospitals contributing to the dataset are from both
academic and nonacademic settings and vary in size from 10
beds to 500 beds and by type (eg, medical surgical ICU,
cardiothoracic ICU). Data contributions from each hospital
depend on site-specific policies, procedures, and interfaces with
the remote ICU, or tele-ICU.

Inclusion and Exclusion Criteria
Inclusion criteria for this study were all adult (≥18 years old)
ICU patients with any admission diagnosis or comorbidities
with record of invasive ventilation or NIV strategy. All included
records required associated time stamps in order to determine
ventilation success or failure. Patients were excluded if they
were treated using conventional low-flow oxygen or were
readmitted to the ICU. Readmissions were excluded to allow
for equal comparison of patient outcomes across phenotypes.
All inclusion and exclusion criteria were validated by domain
experts in respiratory management and critical care medicine.

We developed the phenotypes using a combination of rules and
characteristics previously identified by domain experts [18,19]
and by first categorizing patients by ventilatory support strategy.
For patients where more than one therapy was used, we used
time stamps to determine the order in which patients were
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treated. Our approach consisted of 4 main steps followed by
descriptive statistical analysis: (1) systematic exploration of all
available structured data and identifying all terms (standardized
and nonstandardized) related to mechanical ventilation; (2)
identification of patients treated with invasive (intubation) or
noninvasive (NIPPV or HFNI) strategies by extracting
ventilation-related treatment, medication, and nursing records;
(3) treatment record sequencing based on ventilation type as
well as start and stop time comparisons to determine which
patients failed respiratory therapy; and (4) development of the
rule-based phenotyping algorithm in a decision tree format.

Exploration of Available Data
All available structured data were systematically explored for
record types that might indicate ventilation strategy. Of
particular interest were nursing charts, respiratory therapy charts,
treatment records, infusion drugs and medications, and data
pertaining to intraprofessional communication and care planning
(eg, variables related to provider type and specialty as well as
airway and ventilation status).

Distributions of key terms related to mechanical ventilation
were calculated by number of records per term. For example,
the term “Intubated/oral ETT” occurred in 59,566 records, while
“Intubated/nasal ETT” occurred in 335 records. It is important
to note that, in our dataset, these terms are structured data
selections and not free-text inputs. Therefore, we were able to
search for partial words and phrases (eg, “intub”), which
returned all records containing the partial term. Selection of key
terms was performed for both invasive and noninvasive
ventilatory support. All terms were reviewed by both informatics
and clinical experts.

Identification of Ventilation Therapies
In addition to terms identified in the exploration step,
medications related to pre-intubation, intra-intubation, and
post-intubation care (eg, rapid sequence intubation medications,
neuromuscular blocking agents, and continuous sedative agents)
were used to verify invasive mechanical ventilation. Patients
in both invasive ventilation and NIV groups were then filtered
by the number of repeated records (ie, a patient must have >1
record of each ventilation type to be included in that group).
Repeated records and validation across multiple record types
were required to minimize the impact of spurious records

indicating the wrong type of ventilation in a sequence and
misclassifying a patient into another cohort.

Record Sequencing and Timestamp Validation
Unique patient identifiers were used to identify patients
classified in both invasive ventilation and NIV groups. Record
timestamps were then used to verify treatment paths of those
patients with multiple records of both invasive and NIV.
Treatment records were grouped by patient identifier and sorted
by record type and timestamp. The difference between invasive
and noninvasive timestamps was used to indicate the respiratory
therapy sequence for each patient. If NIPPV or HFNI was
performed prior to invasive mechanical ventilation, patients
were categorized as NIV failure. If NIPPV or HFNI was
performed after invasive mechanical ventilation, patients were
categorized as having been extubated to NIV.

The timestamps in our dataset are recorded as the number of
minutes from ICU admission and may be positive or negative
values. For example, an NIPPV timestamp of –90 minutes and
an invasive timestamp of 30 minutes indicate that the patient
was treated with NIPPV for 90 minutes prior to ICU admission
and was intubated 30 minutes after ICU admission resulting in
an “NIPPV failure” categorization.

To identify HFNI patients, we used the same approach as for
NIPPV with an additional requirement that patients must have
record of both noninvasive mechanical ventilation and HFNI.
Patients were excluded if there was record of HFNI without
record of NIV due to the hierarchical nature of treatment records
in the dataset. Failure of HFNI was determined according to
the timing sequence relative to invasive ventilation just as with
the NIPPV patients. This resulted in 3 HFNI-related groups:
HFNI failure patients requiring subsequent intubation, patients
treated solely with HFNI with no other form of ventilatory
support, and patients extubated to HFNI. Similar to how
intubation-related medications were used to validate invasive
ventilation patients, structured data from nurse charts were used
to validate NIV strategies.

Defining Phenotypes
All of the described constraints were compiled to create the
phenotyping algorithm. The algorithm was constructed
sequentially in an easily interpreted decision tree format. Table
1 defines each phenotype and lists the relevant data elements
used in the algorithm.
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Table 1. Phenotypes developed, definition, and the electronic health record data elements used to create and validate the phenotypes.

Data elementsaDefinitionPhenotype

Treatment records, medicationsPatients treated with invasive mechanical ventilation only0: Invasive ventilation

Treatment recordsPatients treated with noninvasive positive-pressure ventilation only1: NIPPVb

Treatment records, structured nurse notesPatients treated with high-flow nasal insufflation only2: HFNIc

Treatment records, medicationsPatients treated with noninvasive positive-pressure ventilation requir-
ing subsequent endotracheal intubation

3: NIPPV failure

Treatment records, medications, structured nurse notesPatients treated with high-flow nasal insufflation requiring subsequent
endotracheal intubation

4: HFNI failure

Treatment records, medicationsPatients extubated to noninvasive positive-pressure ventilation5: Invasive to NIPPV

Treatment records, medications, structured nurse notesPatients extubated to high-flow nasal insufflation6: Invasive to HFNI

aAll data elements extracted with timestamps.
bNIPPV: noninvasive positive-pressure ventilation.
cHFNI: high-flow nasal insufflation.

Validation
Algorithm performance was quantified by manually validating
a randomly selected 5% of patients in each phenotype. Total
accuracy was calculated along with multiclass, microprecision,
macroprecision, microrecall, macrorecall, and F1 score. We
report the weighted average metrics along with precision, recall,
and F1 score of each phenotype individually.

Results

Of the 139,367 unique patients in the tele-ICU database, 31,366
were excluded for readmissions. An additional 80,267 patients

were excluded for receiving either low-flow oxygen therapy or
no ventilatory support. The remaining 27,734 patients were
included in the analysis. Using our algorithm (Figure 1), we
identified 7 phenotypes based on the ventilation strategy:
patients treated utilizing a single strategy (invasive mechanical
ventilation, NIPPV, or HFNI), patients that failed NIPPV,
patients that failed HFNI, invasive mechanical ventilation
patients extubated to NIPPV, and invasive mechanical
ventilation patients extubated to HFNI.

Figure 1. Decision tree model for phenotyping patients with acute respiratory failure. Invasive ventilation patients corroborated by medication records
and HFNI corroborated by nurse charts. NIPPV: noninvasive positive-pressure ventilation; HFNI: high-flow nasal insufflation.
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Patient and Data Characteristics
We found that 17,646 of the patients meeting the inclusion
criteria were treated initially with invasive mechanical
ventilation. Of those, 188 were extubated to HFNI, and 649
were extubated to NIPPV. Patients treated initially with HFNI

totaled 1838, of which 636 (34.6%) failed and required invasive
mechanical ventilation. Patients treated initially with NIPPV
totaled 8250, and 1597 (19.4%) failed, requiring invasive
mechanical ventilation. Summary statistics for each ventilation
group are shown in Table 2.

Table 2. Patient characteristics across phenotypes of invasive and noninvasive mechanical ventilation success and failure.

Phenotypes of invasive and noninvasive mechanical ventilationPatient characteristics

6: Invasive to
HFNI

5: Invasive to
NIPPV

4: HFNI fail-
ure

3: NIPPV fail-
ure

2: HFNIb1: NIPPVa0: Invasive

188 (0.68)649 (2.34)636 (2.29)1597 (5.76)1202 (4.33)6653 (23.99)16,809 (60.61)Patients, n (%)

67.5 (21)66.0 (20)65.0 (23)65.0 (22)72.0 (22)70.0 (20)63.0 (21)Age (years), median (IQRc)

108 (57.45)353 (54.39)347 (54.56)887 (55.50)599 (49.83)3336 (50.14)9895 (58.87)Male gender, n (%)

Ethnicity, n (%)

114 (60.96)541 (83.74)430 (68.36)1252 (78.69)836 (72.07)5418 (82.04)13,119 (78.74)White

10 (5.35)42 (6.50)43 (6.84)171 (10.75)104 (8.97)746 (11.30)1808 (10.85)African American

43 (22.99)25 (3.87)105 (16.69)64 (4.02)135 (11.63)139 (2.10)547 (3.28)Hispanic

2 (1.10)2 (0.31)9 (1.43)16 (1.01)10 (0.86)79 (1.20)199 (1.19)Asian

2 (1.10)11 (1.70)2 (0.32)14 (0.88)5 (0.43)28 (0.42)153 (0.92)Native American

16 (8.56)25 (3.87)40 (6.36)74 (4.65)70 (6.03)194 (2.94)835 (5.01)Other/unknown

72 (35.5)75 (39)72(39)75 (38)56 (28)57 (29)69 (41)APACHEd score, median (IQR)

4.93 (5.04)5.42 (6.28)6.68 (9.10)7.48 (9.31)2.43 (2.59)2.23 (3.07)3.23 (4.56)ICUe LoSf (days), median (IQR)

19 (10.11)135 (20.80)107 (16.82)551 (34.05)123 (10.23)1176 (17.68)3501 (20.83)Hospital mortality, n (%)

aNIPPV: noninvasive positive-pressure ventilation.
bHFNI: high-flow nasal insufflation.
cIQR: interquartile range.
dAPACHE: Acute Physiology and Chronic Health Evaluation.
eICU: intensive care unit.
fLoS: length of stay.

The 7 phenotypes span all ethnicities (although primarily white)
and 388 different diagnoses with sepsis, congestive heart failure,
and coronary artery bypass grafting among the most common.
Figure 2 illustrates the respiratory therapy overlap used to
separate the phenotypes based on record sequence, which led
to the identification of 2 failure phenotypes (groups 3 and 4)
and 2 extubation phenotypes (groups 5 and 6) between invasive
ventilation patients with NIPPV and HFNI, respectively.

The mean ventilation therapy duration for each phenotype is
illustrated in Figure 3. Each timeline depicts the ventilation and
failure times relative to arbitrary and variable ICU admission

and discharge times as event timestamps are labeled as number
of minutes from admission. The event sequence remains
consistent within each category irrespective of ICU admission
time. The failure groups experienced longer total ventilation
times than patients treated with one form of ventilation therapy
or patients that were extubated to NIPPV or HFNI. Of the 27,734
patients included in our analysis, 7.4% had ventilation start
times (intubation or NIV) prior to ICU admission, and 0.81%
of NIPPV or HFNI failure times occurred within the first 12
hours (720 minutes) of ICU stay (ie, patients that were brought
to the ICU in order to be intubated).

JMIR Med Inform 2020 | vol. 8 | iss. 4 | e18402 | p. 5http://medinform.jmir.org/2020/4/e18402/
(page number not for citation purposes)

Essay et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 2. Venn diagram showing the 7 phenotypes based on ventilation therapy. All patient totals are exclusive to each group. Category overlap only
indicates patients with multiple record types. For example, 636 patients with HFNI failure are not included in the 1202 patients with HFNI only. NIPPV:
noninvasive positive-pressure ventilation; HFNI: high-flow nasal insufflation.

Figure 3. Timeline figure showing median event sequence for patients within each of the 7 phenotypes. Patients that met phenotype criteria but did
not have definitive ventilation start and stop times were excluded from the timeline. NIPPV: noninvasive positive-pressure ventilation; HFNI: high-flow
nasal insufflation.

Validation
Manual validation performed on the randomly selected 5% of
records from each phenotype resulted in 1597 patients. The total
accuracy across all phenotypes was 88%. The weighted average
precision and recall were 0.8789 and 0.8785, respectively, with
an F1 score of 0.8599 (Table 3). The NIPPV failure and HFNI
failure patients were categorized with accuracies of 73% and
68%, respectively.

The validation process revealed some incorrect classifications
between phenotypes. Apparent causes of incorrect classification
were: (1) inconsistent definition or use of EHR treatment
records; (2) patients with variable, lengthy, and repeated
sequences of ventilation records (ie, patient was intubated more
than once or attempted NIPPV/HFNI more than once); and (3)
erroneous record-keeping typically as a result of continued
recording in nursing or respiratory therapy notes of a previous
treatment after a patient began an alternative therapy.
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Table 3. Validation performance metrics for each phenotype.

F1 scoreRecallPrecisionPhenotype

0.92160.93650.90720: Invasive

0.92571.0000.86171: NIPPVa

0.96970.95520.98462: HFNIb

0.72410.73260.71593: NIPPV failure

0.53570.68180.44124: HFNI failure

0.76400.64150.94445: Invasive to NIPPV

0.15840.08790.80006: Invasive to HFNI

aNIPPV: noninvasive positive-pressure ventilation.
bHFNI: high-flow nasal insufflation.

Discussion

In this study, we effectively used a large, remotely monitored,
critical care dataset to define 7 unique therapy-based phenotypes
of patients with acute respiratory failure. The phenotyping
algorithm is broad enough to potentially be applied to other
(bedside or remote) critical care datasets while allowing for
therapy-focused research across large and diverse patient
populations or mapping to specific disease states, depending
on the research question. Developing appropriate phenotypes
to analyze respiratory management pathways and clinical
outcomes is particularly important for patients that receive more
than one strategy, such as NIPPV or HFNI, and then require
invasive mechanical ventilation. Failing to identify these
phenotypes with granularity can lead to bias in observational
studies, where a large proportion of these patients may typically
be excluded.

The temporal features used in this study provide increased
granularity to expand from 2 (intubated or not intubated) to 7
phenotypes. Multiple record types and repeated measures were
used to verify that patients were correctly categorized.
Moreover, our iterative algorithm development process that
included critical care experts further validates the phenotype
results and aligns with lessons learned from previous phenotype
validation studies [20,21].

Standards and Terminology
Our proposed phenotyping algorithm is easily interpreted. Future
iterations, however, could be mapped to the Observational
Medical Outcome Partnership Common Data Model, allowing
for broad use of the phenotype algorithm across different data
sources with minimal loss of granularity [22]. Mapping to the
Common Data Model could, for example, improve scalability
across datasets that may not contain the same terminologies as
our dataset with minimal impact to cohort development overall
[23,24]. The terminologies, vocabulary, and coding schemas
associated with mapping to a standardized data model would
then be used in the phenotype algorithm, thus removing potential
barriers to widespread application.

Treatment records were the primary identifiers in our algorithm
of mechanically ventilated patients, whereas International
Classification of Diseases, Ninth Revision and current

procedural terminology (CPT) codes could be used for
identification of patients or auxiliary verification of correct
invasive or noninvasive classification (when codes exist and
are present in the EHR). Because there are currently no
International Classification of Diseases, Ninth Revision or CPT
codes for HFNI, patients must be identified using our phenotype
algorithm or a variation thereof.

Challenges with Noninvasive Ventilation Strategies
It is important to note the hierarchical representation seen in
the data regarding NIV. The hierarchy of HFNI as a subcategory
of NIV or NIPPV may not be an accurate representation in
clinical practice. There is no CPT code for HFNI. Thus, there
is no specific guidance relating HFNI to NIPPV in structured
data and often no specific order in the EHR, which introduces
profound difficulty in identifying and extracting this therapy.

While some clinicians may view HFNI as a lower-level therapy
relative to NIPPV (and NIPPV as a lower-level therapy relative
to intubation), others may consider HFNI and NIPPV as equal
noninvasive strategies. In this phenotyping study, we considered
both noninvasive strategies as equivalent alternatives. However,
HFNI may be represented differently in other datasets and
handled differently among clinicians. Further analysis could
determine the proportion of patients treated with both HFNI
and NIPPV as a progression in response to improving or
worsening patient condition. Therefore, two more theoretical
phenotypes exist consisting of patients that fail HFNI and are
placed on NIPPV and vice versa. Using our algorithm, however,
there were no patients that met those criteria due to the
hierarchical structure of treatment records in our dataset.

Free-text record entries were an additional challenge specific
to HFNI, namely those in nursing charts. Our dataset primarily
consisted of structured data. Nurse chart records that were used
for validation of HFNI consisted of sequences of records that
ranged from broad to specific that described the record in detail.
We filtered nurse charts by oxygen device to find HFNI patients.
The next, more specific, entry in the nurse chart record,
however, was a free-text entry rather than a predetermined menu
selection. Consequently, “high-flow nasal insufflation” had 104
variations, including “HFNC,” “highflow n/c,” “optiflow,” and
others, where “NC” generally referred to nasal cannula. This
issue was exacerbated with data from ≥200 hospitals; however,
the reasons for recording meaningful data are perhaps

JMIR Med Inform 2020 | vol. 8 | iss. 4 | e18402 | p. 7http://medinform.jmir.org/2020/4/e18402/
(page number not for citation purposes)

Essay et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


misunderstood. Individual institutions could benefit from
reiterating the importance of consistent recording through
policies and standard operating procedures.

Our dataset is inherently limited in that not all hospitals have
the same recording interfaces with remote ICU teams [25].
Consequently, patients may be unknowingly misclassified by
our phenotyping method. While we account for patients with
single erroneous records, data entry mistakes, which was seen
to some extent in our validation cohort, would classify patients
into incorrect phenotypes. Future iterations of the algorithm
should include additional safeguards for correct classification
such as inclusion of intubation-related medication timestamps
in conjunction with treatment timestamps for further validation.
Medications could be separated into pre-intubation,
intra-intubation, and post-intubation medications to provide
deeper insight into the specific event sequences and used in
conjunction with lab and blood gas values. The timestamps
associated with these more granular events could improve
classification accuracy.

Clinical Relevance
Our algorithm was developed using a large dataset that included
multiple hospitals and thousands of patients. In addition to
implications to secondary analyses of EHR data, our algorithm
could also serve as a tool for process and quality improvement
studies in clinical practice to, for example, analyze and improve
resource allocation and workflow in ICUs. However, the work
needs validation using other datasets at a health system level
(ie, inclusive of patients brought to the ICU to be intubated).
The proportion of patients that began NIV prior to ICU
admission need further investigation from a clinical viewpoint
in order to segregate patients that were transferred to the ICU

to be intubated. This would provide greater context to patients
who experienced NIV failure, but it was not included in our
phenotype algorithm. Rather, the underlying decision making
behind intubation could be researched as its own topic using
our approach as a tool for cohort development. In addition,
patient readmissions to the ICU should be analyzed as a separate
cohort, and changes to respiratory management strategy (NIV
to invasive and vice versa) upon readmission also need to be
investigated using the phenotype algorithm.

It is also interesting to note the disparities in patient
characteristics across phenotypes (Table 1), particularly for
APACHE severity scores. It is possible that demographics upon
admission are influential factors for treatment path decision
making. Factors such as age, severity, weight, and comorbidities,
for example, may influence clinician decisions as to which
patients are good candidates for noninvasive therapies over
intubation, although, to our knowledge, defined candidate
criteria do not exist widely across institutions.

Conclusions
Identifying therapy-based computable phenotypes for strategies
to treat acute respiratory failure in patients admitted to the ICU
is possible using this algorithm, and summary statistics are
consistent with previous reports of outcomes in patients that
fail noninvasive strategies [26,27]. These phenotypes provide
a mechanism for large-scale analyses of factors associated with
the risk of failure of NIV strategies — to identify modifiable
targets for intervention to reduce those risks. Additionally, we
have identified an urgent need for standardized terminologies
for noninvasive strategies and record-keeping procedures across
institutions.
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Abbreviations
CPT: current procedural terminology.
EHR: electronic health record.
ETT: endotracheal tube.
HFNC: high-flow nasal cannula.
HFNI: high-flow nasal insufflation.
ICD-9: international classification of diseases, version 9.
ICU: intensive care unit.
IQR: interquartile range.
NIV: noninvasive ventilation.
NIPPV: noninvasive positive-pressure ventilation.
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