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Abstract

Background: Combination therapy plays an important role in the effective treatment of malignant neoplasms and precision
medicine. Numerous clinical studies have been carried out to investigate combination drug therapies. Automated knowledge
discovery of these combinations and their graphic representation in knowledge graphs will enable pattern recognition and
identification of drug combinations used to treat a specific type of cancer, improve drug efficacy and treatment of human disorders.

Objective: This paper aims to develop an automated, visual approach to discover knowledge about combination therapies from
biomedical literature, especially from those studies with high-level evidence such as clinical trial reports and clinical practice
guidelines.

Methods: Based on semantic predications, which consist of a triple structure of subject-predicate-object (SPO), we proposed
an automated algorithm to discover knowledge of combination drug therapies using the following rules: 1) two or more semantic
predications (S1-P-O and Si-P-O, i = 2, 3…) can be extracted from one conclusive claim (sentence) in the abstract of a given
publication, and 2) these predications have an identical predicate (that closely relates to human disease treatment, eg, “treat”) and
object (eg, disease name) but different subjects (eg, drug names). A customized knowledge graph organizes and visualizes these
combinations, improving the traditional semantic triples. After automatic filtering of broad concepts such as “pharmacologic
actions” and generic disease names, a set of combination drug therapies were identified and characterized through manual
interpretation.

Results: We retrieved 22,263 clinical trial reports and 31 clinical practice guidelines from PubMed abstracts by searching
“antineoplastic agents” for drug restriction (published between Jan 2009 and Oct 2019). There were 15,603 conclusive claims
locally parsed using the search terms “conclusion*” and “conclude*” ready for semantic predications extraction by SemRep, and
325 candidate groups of semantic predications about combined medications were automatically discovered within 316 conclusive
claims. Based on manual analysis, we determined that 255/316 claims (78.46%) were accurately identified as describing combination
therapies and adopted these to construct the customized knowledge graph. We also identified two categories (and 4 subcategories)
to characterize the inaccurate results: limitations of SemRep and limitations of proposal. We further learned the predominant
patterns of drug combinations based on mechanism of action for new combined medication studies and discovered 4 obvious
markers (“combin*,” “coadministration,” “co-administered,” and “regimen”) to identify potential combination therapies to enable
development of a machine learning algorithm.

Conclusions: Semantic predications from conclusive claims in the biomedical literature can be used to support automated
knowledge discovery and knowledge graph construction for combination therapies. A machine learning approach is warranted
to take full advantage of the identified markers and other contextual features.
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Introduction

Background
Combination drug therapy is a therapeutic intervention in which
multiple drugs are administered, particularly in patients with
malignant neoplasms [1,2]. Compared with single-agent therapy,
the synergistic interaction of combined medications significantly
improves drug efficacy, shortens disease course, delays or avoids
drug resistance, and reduces both toxicity and other side effects
without loss of efficacy. The combination of several existing
drugs with compatible mechanisms of action has been reported
as an alternative approach to advance the success of drug
repositioning [3]. The characteristics of combination therapies
make them a practical alternative to standard approaches, with
the potential to save billions of dollars on research and
development of new drugs, particularly in the absence of
effective monotherapies for many types of cancer and other
diseases (such as autoimmune and psychiatric conditions), and
more than 6700 rare diseases for which no therapies are
available [3].

In recent decades, massive efforts have been made to employ
combined therapeutic agents to improve treatment of human
disorders such as specific cancers [2,4], malignancies such as
lymphocytic leukemia [1], and hypertension [5]. PubMed houses
over 175,000 publications found by searching the MeSH
(Medical Subject Headings) heading “Drug Therapy,
Combination” (Jan 2009 to Oct 2019). We used innovative
information retrieval and semantic web technologies to discover
knowledge about therapeutic drug combinations, then presented
the findings in a visually intuitive knowledge graph. The
resulting knowledge graph will not only support
machine-understandable information for curing disease and
drug efficacy screening, but also provide insights to quickly
develop new therapies for untreated diseases.

In this paper, we propose a systematic, automated approach to
discover knowledge about combination drug therapies in the
biomedical literature (especially clinical trial reports and clinical
practice guidelines with high evidence levels), and integrate the
findings into knowledge graphs with customized organization
and visualization. This entails the following:

1. Propose an automated algorithm to discover knowledge
about combination drug therapies based on semantic
predications extracted from conclusive claims in biomedical
literature

2. Customize a knowledge graph to emphasize the specified
drugs being combined rather than traditional triples (eg,
one drug TREATS one disease)

3. Retrieve published clinical trial reports and clinical practice
guidelines for algorithm verification and validation,
followed by manual identification of accurate knowledge
about combination drug therapies, as well as interpretation
of inaccurate findings

4. Characterize the major patterns of combinations according
to mechanism of action for new combined medication
studies and identify potential markers as key features for
machine learning-based drug combination discovery.

In the following sections, we review related work on knowledge
graphs and drug-disease knowledge discovery. We then present
our methodology to develop an automated algorithm to discover
knowledge about combination drug therapies. A large number
of clinical trial reports and clinical practice guidelines were
retrieved from PubMed for algorithm verification and validation,
followed by manual biocuration to verify accurate results for
knowledge graph construction and to interpret inaccurate results.
In the discussion we characterize the main patterns of drug
combinations according to their mechanisms of action to inform
new combination studies and identify markers of potential
combined drug therapies to inform machine learning–based
algorithm development.

Related Work

Knowledge Graph
A knowledge graph is a network-based representation of the
semantic relationship between entities. Its principles have been
developed by industry and academia, particularly by the
semantic web community. In 1982, Hoede and Stokman used
large graphs to represent knowledge extracted from medical
and sociology texts [6], resulting in an expert system for quick
searching and decision support for automated queries. In 2012,
Google formally introduced their knowledge graph after
compiling over 3.5 billion facts and relationships among 500
million objects, which is essentially a semantic enhancement
of the search engine to help search real-world objects quickly
and easily. At the end of 2016, Microsoft announced a large
graph of concepts harnessed from billions of web pages and
search logs for short text understanding, called the Concept
Graph. Other frequently mentioned applications are Yahoo
Spark, Facebook’s entity graph, Wikidata, Freebase, Baidu’s
Knowledge Graph, and Sogou’s Knowledge Cube. Although
these products differ in their architecture, operational purpose,
and supported technologies, they constitute a family of
knowledge graphs and together represent the precursor to a new
generation of semantic search and knowledge discovery.

Many other studies on biomedical knowledge graphs have been
performed since 2012, playing an indispensable role in
biomedical knowledge services. Remarkable achievements
encompass the organization of health information from
heterogeneous textual [7], disease-symptom association learning
from electronic medical records [8], presenting relationships
between cells and cytokines [9], extraction of human disorder
biomarkers [10], and predicting drug efficacy [11]. However,
knowledge graphs have not yet been applied to organize and
manage biomedical information related to combination drug
therapies, especially when such knowledge comes from the
direct empirical evidence of clinical research.
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Biomedical Drug-Disease Knowledge Discovery
Studies on biomedical knowledge discovery mainly focus on
the semantic relationships, associations, and interactions
between biomedical entities such as diseases, drugs, signs or
symptoms, target organ, genes, biomarkers, and targets. One of
the most important tasks is to identify the exact relationship
between a drug and disease, especially for “treatment.” Many
information retrieval techniques and methods have been used
to approach this problem based on predefined rules [12,13] or
natural language processing [14-19] combined with machining
learning [17-19]. Although predefined rules offer promising
precision from biomedical texts, they are insufficient and
perform poorly when parsing big data due to the noisy and
variable syntactic structures within large-scale scientific texts.
In comparison, natural language processing-based algorithms
have generally been more successful and relatively flexible by
virtue of features that parse context in literature.

Semantic Knowledge Representation, or SemRep, is a natural
language processing tool based on the Unified Medical
Language System (UMLS) [20]. This high-quality tool for
extracted semantic predication has already been utilized for a
broad range of applications such as the construction of a
biomedical knowledge graph [21], identification of apparent
contradictions [22], labeling for semantic relationships [23],
and detection of drug-drug interactions [24] or drug-gene targets
[25]. Here, we extend the application scope of SemRep by using
semantic predications from conclusive sentences (eg, the
conclusion section) of abstracts in biomedical literature, rather
than the whole abstract, to automatically discover knowledge
about combination drug therapies. The conclusion statement of
a paper is the essential knowledge unit that synthesizes the
knowledge content of an article and is validated by the
experiment reported within the article.

Methods

Using Conclusive Sentences in the Abstract of a
Publication as Knowledge Claims
There is a vast amount of published biomedical literature easily
available in digital and printed format due to the rapid advance

of information technology. For example, the cumulative citations
of PubMed resources have exceeded 25 million, expanding with
an annual growth of 0.9 million [26]. The huge amount of
literature encourages the emergence of automated knowledge
discovery, which could help scientists keep up with the latest
scientific developments and academic achievements.

Scientific publications can be considered records of knowledge
claims on a research question, supported by empirical evidence.
These knowledge claims are often succinctly described in the
abstract of a publication. The abstract is the most frequently
accessed section of a publication and the only section used as
source information in indexing databases such as PubMed. In
this study, we parsed abstracts from PubMed for conclusive
claims identified by the key words “conclusion*” and
“conclude*” (Table 1) in order to discover knowledge about
combination drug therapies.

Semantic Predication Interpretation Using SemRep
SemRep is a well-developed semantic knowledge interpreter
that retrieves semantic predications (in terms of
subject-predicate-object) to extract information from biomedical
texts. For example, for the first claim in Table 1, SemRep would
interpret the 7 semantic predications shown in Table 2, and the
predications with “INFER” in the predicate was inferred based
on two existing predications.

As a natural language processing driven tool, SemRep takes
full advantage of UMLS knowledge sources including the
Metathesaurus and Semantic Network. Briefly, the subject and
object of semantic predication returned by SemRep are the
preferred names of biomedical concepts in the UMLS
Metathesaurus, while the predicates were derived from semantic
relationships in the UMLS Semantic Network. An evaluation
based on sample data with semantic type “Chemicals and Drugs”
has allowed SemRep to achieve a promising degree of precision
(83%) [20], which will contribute to the development of
algorithms for automated knowledge discovery for combination
drug therapy.

Table 1. Examples of conclusive claims from PubMed abstracts.

ClaimPMID_Aba

CONCLUSION: A combination of GTI-2040, capecitabine and oxaliplatin is feasible in patients with advanced solid
tumors.

19322566.ab.15

In conclusion, FCM regimen allows excellent long-lasting response in previously untreated patients with FL.28101592.ab.10

WHAT IS NEW AND CONCLUSION: The use of novel agents such as thalidomide, bortezomib and lenalidomide for
RRMM is highly prevalent in France from the first relapse.

21198717.ab.10

We conclude that intraventricular rituximab in combination with MTX is feasible and highly active in the treatment of
drug-resistant CNS NHL that is refractory or unresponsive to IV rituximab.

23197589.ab.8

aPMID_Ab: PubMed reference number, abstract, sentence in which the information appears.
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Table 2. Examples of SemRep semantic predications based on a biomedical claim.

ObjectPredicateExample claim

19322566.ab.15 CONCLUSION: A combination of GTI-2040, capecitabine and oxaliplatin is feasible in patients with advanced solid tumors.

PatientsPROCESS_OFAdvanced Malignant Solid Neoplasm

PatientsTREATSGTI2040

Advanced Malignant Solid NeoplasmTREATS(INFER)GTI2040

PatientsTREATScapecitabine

Advanced Malignant Solid NeoplasmTREATS(INFER)capecitabine

PatientsTREATSoxaliplatin

Advanced Malignant Solid NeoplasmTREATS(INFER)oxaliplatin

Development of an Algorithm for Discovering
Knowledge About Combination Drug Therapy
The UMLS-based SemRep underpins biomedical knowledge
discovery applications with its broad coverage and high-quality
extracted semantic predications. SemRep enables interpretation
of 30 semantic predicates [27], such as “PREVENTS,”
“TREATS,” and “INHIBITS.”

To develop our algorithm to automatically discover knowledge
about combination drug therapies, we focused on 4 semantic
predicates closely related to disease treatment: “TREATS,”
“INHIBITS,” “PREVENTS,” and “DISRUPTS” (also inferences
with “INFER” such as “TREATS(INFER)”). We also adopted
the UMLS Semantic Types “Chemicals and Drugs,” “Disease

or Syndrome,” and their child types to restrict the subject and
object of SemRep output to drug and disease.

Knowledge about combined drug therapy is detected under the
hypothesis that (1) two or more semantic predications (S1-P-O
and Si-P-O, i=2, 3...) are extracted from one conclusive claim
in the abstract of a given biomedical publication, and (2) they
have an identical object (eg, disease) and predicate (eg, treats)
but different subjects (eg, drugs). Referring again to the example
used in Table 2, the method provided straightforward discovery
of the combined medication knowledge
“GTI2040+capecitabine+oxaliplatin-TREATS-Advanced
Malignant Solid Neoplasm.”

Generally, the algorithm could be expressed by the following
formula (Textbox 1):

Textbox 1. Algorithm text.

Algorithm: Drug combination knowledge discovery

Input: Semantic predications S1-P-O and Si-P-O (i=2, 3...) from one conclusive claim in a biomedical abstract

Output: Combined drug therapy knowledge S1+Si-P-O, where all of the following conditions are satisfied:

1. P∈{TREATS”,“INHIBITS”,“PREVENTS”,“DISRUPTS”}

2. S1∈Chemicals and Drugs

3. Si∈Chemicals and Drugs, i≥2

4. O∈Disease

Automated Filtering to Focus on Specific Drug and
Disease Names
Knowledge about combined drug therapies primarily pertains
to specified drugs and diseases; thus, the generic names of these
biomedical entities should be filtered out automatically.

Filtering out Pharmacologic Actions
In the biomedical domain, the phrase “pharmacologic actions”
stands for a broad category of chemical actions and uses that

result in the prevention, treatment, cure, or diagnosis of disease.
Typical subclasses include “Antineoplastic Agents,” “Lipid
Regulating Agents,” and “Anti-Inflammatory Agents”. In the
UMLS Metathesaurus, these terms and phrases have been
assigned the semantic type “Chemicals and Drugs” and several
child types, which would not differ with the specific drug name
for our study. To selectively filter out these pharmacologic
actions, 497 headings from the MeSH thesaurus were
systematically collected based on the tree structure shown in
Figure 1 (left).

JMIR Med Inform 2020 | vol. 8 | iss. 4 | e18323 | p. 4http://medinform.jmir.org/2020/4/e18323/
(page number not for citation purposes)

Du & LiJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 1. Automatic filtering of pharmacologic actions (left) and generic disease names (right).

Filtering out the Generic Names of Diseases
The top-level names of diseases were automatically filtered by
disease (class C in the MeSH tree structure) and its direct
hyponyms with tree number from C01 to C26, totaling 27 terms.
This filtering was applied because the terms are better regarded
as classes of disorders rather than specific diseases (Figure 1
[right]).

The Construction and Visualization of Knowledge
Graph About Combined Drug Therapy
The knowledge graph is an evolving technology widely used
for massive knowledge organization and presentation in the era
of big data and artificial intelligence due to its ability to mine
machine-understandable knowledge and information. In terms
of data structure and storage, knowledge graphs store knowledge

in the form of subject-predicate-object (usually called a semantic
triple). Traditionally, to visualize a domain knowledge graph,
the subjects and objects of triples are intuitively displayed as
nodes in a graph, with the predicates presented as various edges
linked to subjects and objects accordingly.

In this paper, to emphasize the combined drugs, knowledge
about combined drug therapies (S1+Si)-P-O (i≥2) discovered
by the proposed algorithm will be demonstrated such that the
combined drugs will be first bound together and then directed
to a specified disorder, while the supporting conclusive claims
are shown on the right (Figure 2, left). Upon selecting the linked
edge of interest, the specific claim regarding the combined
medication will be amplified and highlighted (Figure 2, right).

The JavaScript libraries Data-Driven Document (D3) [28] was
utilized to visualize the knowledge graph.

Figure 2. Customized knowledge graph visualization (left) and the conclusive claim being highlighted (right).

Results

Data Acquisition and Experimental Setup
A summary of the steps taken to discover and identify combined
drug therapies is shown in Figure 3. We retrieved 22,263 clinical

trial reports and 31 clinical practice guidelines of PubMed
abstracts for algorithm verification and validation, with the
subject majored on “antineoplastic agents” for drug restriction
(Jan 2009 to Oct 2019). The following PubMed queries were
used to identify clinical articles:
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Figure 3. Study design.

1. Clinical trial reports: ((“clinical trial” [Publication Type]
OR “clinical trial, phase I” [Publication Type] OR “clinical
trial, phase ii” [Publication Type] OR “clinical trial, phase
iii” [Publication Type] OR “clinical trial, phase iv”
[Publication Type]) OR “clinical study” [Publication Type]).

2. Clinical practice guidelines: “guideline” [Publication Type]

Using the keywords “conclusion*” and “conclude*”, 15,603
conclusive claims were locally segmented and preserved, then
pushed into the batch mode of SemRep for semantic predication
extraction. Initially, there were 21,234 semantic predications
extracted from 9700 conclusive claims, while 8484 predications
had semantic predicates focusing on disease treatment
(“TREATS,” “INHIBITS,” “PREVENTS,” and “DISRUPTS”).
We then employed the automated algorithm to discover
knowledge about combined drug therapies while automatically
filtering out pharmacologic actions and generic disease names.
As a result, 325 candidate groups of semantic predications about
combined drug therapies were discovered from 316 conclusive
claims for further analysis and characterization.

Evaluation
Two biocurators annotated 325 candidate groups of semantic
predications about combined medications, which were
automatically discovered by the algorithm based on SemRep’s
semantic predications from 316 conclusive claims. The primary
criteria of the biocuration process were that (1) the discovered
drugs were combined to treat the specific disease in a given

claim, and a single therapy should be identified; (2) the efficacy
of combined therapeutic must be promising and negation was
disallowed; and (3) the drug name and disease name should be
properly recognized by SemRep. Both biocurators independently
evaluated all the candidates groups and identified 255 and 239
combined drug therapies (agreement rate 93.73%). Their
disagreements mainly lay in the SemRep object “advanced
cancer,” which came from more specific terminal malignancies
studied in the conclusive claims (such as “advanced carcinomas
of the head and neck” in PMID [PubMed ID] 21947123). After
consulting a biomedical scientist with specific clinical
knowledge, we accepted this kind of text mapping,
acknowledging that advanced cancers usually spread from where
they started to other parts of the body. Eventually, 255 of 325
(78.46%) groups of semantic predications were identified to be
accurate drug combinations (Multimedia Appendix 1), while
70 were determined to be inaccurate and further classified into
2 categories: limitations of SemRep and limitations of proposal.

Knowledge Graph Construction Based on Identified
Knowledge About Combined Medications
Of the 255 identified combined drug therapies, 210 (82.35%)
represented combinations of two drugs, 43 (16.86%) combined
3 agents, and 2 (0.78%) included 4 combined medications.
These accurate drug combinations as well as their supporting
claims were then used to build the knowledge graph based on
customized data structure ((S1+Si)-P-O, i≥2). Figure 4 shows a
snapshot by searching for “Non-Small Cell Lung Carcinoma”.

JMIR Med Inform 2020 | vol. 8 | iss. 4 | e18323 | p. 6http://medinform.jmir.org/2020/4/e18323/
(page number not for citation purposes)

Du & LiJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 4. Knowledge graph of combined drug therapies centered at “Non-Small Cell Lung Carcinoma”.

Characteristics of Inaccurate Results
There were 70 groups of semantic predications from the
automated discovery which, upon manual inspection, were
deemed inaccurate due to limitations of SemRep (25/70, 35.7%),
or limitations of the proposed algorithm (45/70, 64.3%). These
were further categorized to include Named Entity Recognition
(NER; 8/70, 11.4%) and Semantic Predicate Extraction (SPR)
error (17/70, 24.3%), as well as single therapy (40/70, 57.1%)
or multiple combined therapies (5/70, 7.1%). Table 3
summarizes the inaccurate results and their characteristics.

Limitations of SemRep
NER is one of the key tasks for knowledge discovery and
information retrieval, usually implemented before SPR. In
SemRep, NER will be executed by MetaMap, a highly
configurable program mapping the biomedical entity to the
UMLS Metathesaurus. However, due to the relatively limited
coverage of the UMLS Metathesarus or the ambiguity of a given
biomedical text, MetaMap may inadequately identify an entity,
resulting in an improper semantic subject or object. For the first
example in Table 3, “ED-SCLC” represents the abbreviation
of “extensive-stage disease, small-cell lung cancer,” which is

expected to map to “Small cell lung cancer extensive stage”
(Concept Unique Identifier: C0278726), but not “Widespread
Disease” (CUI: C0849867).

SPR error is another example of SemRep imprecision. In
particular, the keyword “failed” was sometimes ignored by
SemRep when it appeared in a biomedical text (see the second
example in Table 3), resulting in the semantic predicates
“TREATS” instead of “NEG_TREATS.” To reduce frequency
at which negative predications are extracted, we plan to
preprocess conclusive claims to filter out negations before
SemRep interpretation.

Limitations of the Proposed Algorithm
A majority (40/70, 57.1%) of inaccurate results from the
automated algorithm were references to single therapies
primarily in comparative clinical studies of two or more
individual agents. SemRep’s predicate “COMPARED_WITH”
may provide a means to filter out these predications. It is
common for two or more combined drug therapies to be studied
in one published clinical trial (the last claim in Table 3). Future
work will focus on these issues to improve the performance of
the proposed algorithm.
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Table 3. Characteristics of inaccurate results from proposed automatic algorithm.

PMID_txaExampleNo.Explanation

Limitations of SemRep

19826110.ab.12 CONCLUSION: The addition
of bevacizumab to cisplatin and etoposide in
patients with ED-SCLC results in …

bevacizumab-TREATS-Widespread Disease

Cisplatin-TREATS-Widespread Disease

Etoposide-TREATS-Widespread Disease

8NER error

21709202.ab.11 CONCLUSION: The addition
of ASA404 to carboplatin and paclitaxel, al-
though generally well tolerated, failed to im-
prove frontline efficacy in advanced NSCLC.

ASA 404-TREATS-Non-Small Cell Lung
Carcinoma

Carboplatin-TREATS-Non-Small Cell Lung
Carcinoma

Paclitaxel-TREATS-Non-Small Cell Lung
Carcinoma

17SPR error

Limitations of proposal

23661337.ab.9 CONCLUSION: Both peme-
trexed and erlotinib had comparable efficacy
in pre-treated patients with metastatic NSCLC.

pemetrexed-TREATS-Non-small cell lung
cancer metastatic

erlotinib-TREATS-Non-small cell lung
cancer metastatic

40Single Therapy

21788353.ab.15 CONCLUSION: Custirsen
plus either docetaxel or mitoxantrone was
feasible in patients with progressive mCRPC
following first-line docetaxel therapy.

Custirsen-TREATS-Hormone refractory
prostate cancer

docetaxel-TREATS-Hormone refractory
prostate cancer

Mitoxantrone-TREATS-Hormone refractory
prostate cancer

5Multiple combined therapies

aPMID_tx: PubMed identifier, abstract, sentence number, and associated text

Discussion

Major Patterns of Combinations According to the
Mechanisms of Drugs Being Combined
Among 255 identified combined drug therapies, there were 142
specific drugs after duplicate removal. Classifying by
mechanism, 125/142 (88.03%) are antineoplastic agents with
46/142 (32.39%) cytotoxic drugs, 59/142 (41.55%) targeted
drugs, 11/142 (7.75%) immunotherapies, 3/142 (2.11%)
hormonal drugs, and 6/142 (4.23%) other antineoplastic agents
or adjuvant drugs.

We investigated the patterns of identified knowledge based on
the mechanism of antineoplastic agents and counted the number
of drug combinations under each pattern (Table 4). Although
there were fewer cytotoxic drugs than targeted agents, the most

common pattern (68/255, 26.67%) were combinations of two
cytotoxic drugs, which may provide statistical and practical
insights to study new combination of antineoplastic agents for
precision medicine. If an antineoplastic agent A produces the
same cytotoxic effect as another drug B, and a combination of
A and a third cytotoxic agent C has been approved to treat a
specific malignancy, our findings suggest the feasibility of a
novel combination of B and C (Table 4). Other possible
combinations such as A+B and A+B+C may also be valuable
to explore. Since various combinations can be followed to
develop combined therapies, it is important to be aware of and
remain current on all available clinical studies that may be
relevant. Our knowledge graph will not only provide a visual
representation of existing drug combinations, but also assist
practitioners and experts to take full advantage of publicly
disseminated clinical trials.
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Table 4. Major patterns of combined medication based on mechanisms of antineoplastic agents.

Number of InstancesCombinations

68Cytotoxic + Cytotoxic

45Targeted + Cytotoxic

22Targeted + Targeted

17Targeted + Cytotoxic + Cytotoxic

15Cytotoxic + Other antineoplastic agent/adjuvant drugs

13Immunotherapy + Targeted

11Targeted + Other antineoplastic agent/adjuvant drugs

10Immunotherapy + Cytotoxic

6Cytotoxic + Cytotoxic + Cytotoxic

48Others

Combined Drug Therapies Discovered in Published
Clinical Trials and Clinical Practice Guidelines
All of the combined drug therapies identified in this study were
from published clinical trial reports, none of which has been
included in clinical practice guidelines. We identified 28 of 31
(90.32%) abstracts in guidelines listed in PubMed by searching
“antineoplastic agents” (Jan 2009 to Oct 2019). However, only
4/31 (12.90%) contained conclusive claims with the key words
“conclusion*” and “conclude*”, with topics for single therapy
(PMID: 20390116), intra-arterial chemotherapy (PMID:
23828325), curriculum in surgical oncology (PMID: 27145931),
or drug management (PMID: 30381047). We then manually
read the remaining guidelines and identified two combined drug
therapies in one publication (PMID:21821491). We thus
conclude that our method of parsing conclusive claims from
PubMed abstracts may not be suitable for clinical practice
guidelines, as a considerable number of these publications
(87.10%) do not contain the necessary key words. Using
structured abstracts after conversion or applying additional key
words like “summar*” may improve the acquisition of
conclusive claims. Although mentions of combined drug
therapies are limited in clinical practice guidelines, our study
focused on the discovery of combination therapies from
published clinical trials, which inform the development of
clinical practice guidelines.

The Markers to Identify Potential Combined Drug
Therapies
The word “combin*” (namely “combine” or “combination”) is
generally used to indicate the combined medication, an
assumption affirmed by the data sampled here. Among 316
conclusive claims to automatically identified in this study (Table
5), 171 (54.11%) contain the marker “combin*” and 170 discuss
drug combinations, while one described a combination of a drug
and radiotherapy. We also noted “coadministration” (2
occurrences) and “co-administered” (1 occurrence) are markers
similar to “combin*”, as is “regimen” (22 occurrence, 21 of
which were for combined drug therapies) being an abbreviation
of “antineoplastic combined chemotherapy regimens” [29].
These markers will become key features in the development of
our next deep learning–based knowledge discovery algorithm.
After SemRep extraction of semantic relations from conclusive
claims in the biomedical literature, we plan to add the
Bidirectional Encoder Representations from Transformers [30]
model as a binary classifier using annotated data from two
dimensions: the supporting conclusive claims and the factuality
of semantic predications. The claims containing at least one of
the identified markers will be used to classify the corresponding
groups of semantic predications into positive knowledge about
combined drug therapies.

Table 5. Major makers to identify combined drug therapies.

Other therapyCombined drug therapyOccurrenceMarkers

drug & radiotherapy170171combin*

N/Aa22coadministration

N/A11co-administered

Single therapy2122regimen (without markers above)

aN/A: not applicable.

The Utility and Major Applications of the Knowledge
Graph for Combined Drug Therapies
The knowledge graph of combined drug therapies will be an
appropriate supplement to most leading knowledge bases,

similar to SemMedDB [31], which is a widely used publicly
available repository extracted from biomedical literature by
SemRep. However, the lack of knowledge concerning
combinatorial effects is an important limitation of SemMedDB.
Our study seeks to fill this gap by providing the combined
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medications to enrich the coverage and information provided
by SemMedDB and other biomedical knowledge systems.

The proposed knowledge graph has two major applications. An
information retrieval system can utilize the knowledge from
our graph to integrate various external sources of knowledge
and information. Since the subjects and objects of the presented
combined medications were drawn from the UMLS
Metathesaurus by SemRep, it should be straightforward to
integrate our graph with UMLS’s source vocabularies for
information retrieval, such as DrugBank, Disease Ontology,
NCI thesaurus, SNOMEDCT, etc. Another major application
is precision medicine and clinical decision-making support.
Combined drug therapies provide an alternative to conventional
single therapies especially for malignant disorders. In order to
pursue clinical and therapeutic approaches to optimal disease
management based on individual variations in a patient's genetic
profile, it is useful for an expert working with the treatment of
a specific cancer to know which other therapies could also fit
in that clinical practice. Manually reading the tremendous
literature to find available combinations is undoubtedly laborious
and time-consuming. Our knowledge graph will help experts
quickly and easily identify efficacious combined therapies that
may not be immediately evident by a manual survey of
published clinical studies.

Conclusions
We have shown that semantic predications extracted from
large-scale conclusive claims in biomedical research literature
can be used to automatically discover and build a customized

knowledge graph to represent existing knowledge about
combination therapies. We found that additional filtering and
evaluation steps were needed to accurately identify drug
combinations from candidate results automatically discovered
by the proposed algorithm. From 22,263 published clinical trials
retrieved from PubMed, we automatically discovered 325
candidate groups of semantic predications, 255 of which
(78.46%) were manually verified as accurate. Two major
categories and four subcategories were identified to characterize
70 inaccurate results. To address this precision error, we
conclude that additional filtering, context analysis, and feature
extraction are required to eliminate single therapies and incorrect
semantic predications of SemRep output through active learning
[32] or a factuality analyzer program [33].

The proposed algorithm can be generalized to automatically
discover generic combined medications for all human disorders,
not just malignant neoplasms. It is also likely that a larger
number of combined drug therapies could be identified in other
types of biomedical publications, such as meta-analysis and
comparative studies, in which combined medications are
frequently addressed.

By characterizing the major patterns of combinations according
to the individual drug mechanisms, we found that combinations
of two cytotoxic drugs are the most common for cancer
treatment. Moreover, four apparent markers (“combin*”,
“coadministration”, “co-administered” and “regimen”) were
extracted as key features to further develop the machine
learning-based knowledge discovery algorithm.
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