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Abstract

Background: Deidentification of clinical records is a critical step before their publication. This is usually treated as a type of
sequence labeling task, and ensemble learning is one of the best performing solutions. Under the framework of multi-learner
ensemble, the significance of a candidate rule-based learner remains an open issue.

Objective: The aim of this study is to investigate whether a rule-based learner is useful in a hybrid deidentification system and
offer suggestions on how to build and integrate a rule-based learner.

Methods: We chose a data-driven rule-learner named transformation-based error-driven learning (TBED) and integrated it into
the best performing hybrid system in this task.

Results: On the popular Informatics for Integrating Biology and the Bedside (i2b2) deidentification data set, experiments showed
that TBED can offer high performance with its generated rules, and integrating the rule-based model into an ensemble framework,
which reached an F1 score of 96.76%, achieved the best performance reported in the community.

Conclusions: We proved the rule-based method offers an effective contribution to the current ensemble learning approach for
the deidentification of clinical records. Such a rule system could be automatically learned by TBED, avoiding the high cost and
low reliability of manual rule composition. In particular, we boosted the ensemble model with rules to create the best performance
of the deidentification of clinical records.

(JMIR Med Inform 2020;8(4):e17622) doi: 10.2196/17622
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Introduction

Background
Electronic health records (EHRs) are rich resources for clinical
research in which a large amount of medical knowledge is
contained. To protect the privacy of patients, EHRs cannot be
directly accessed by researchers without deidentification (ie,
removing the information that may reveal the patient’s identity).
According to the Health Insurance Portability and Accountability
Act (HIPAA) of the United States, 18 categories of protected
health information (PHI) must be removed before the release
of EHRs, such as name, age, and location, which brings big
challenges to the process of deidentification.

Deidentification is conventionally processed manually, with
crowd-sourced workers tagging the PHI and removing it. This
would be prohibitively expensive in terms of manpower
considering the existing large scale of the clinical corpus. With
the help of natural language processing technology, automatic
deidentification becomes possible. To encourage innovations
in this field, in 2006, 2014, and 2016, three deidentification
shared tasks were organized by Informatics for Integrating
Biology and the Bedside (i2b2). In these shared tasks, most
approaches take deidentification as a sequence-labeling problem
aimed at generating the proper label to each token in the text
[1].
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Task Formulation
Formally, given a sequence S = (s1, s2, . . ., sn) of length n that
needs to be tagged, the target of a tagger is to properly generate
a tag ti for the ith token si to form a tag sequence T = (t1, t2, . .
. , tn). As one PHI entity might span multiple tokens, the output
sequence T follows a format that indicates the inside, outside,
and begin (IOB) of a PHI.

For example, given the sentence “Harlan Oneil is a 43 years
old gentleman”, the outputs of our system should be “B(NAME)
I(NAME) O O B(AGE) O O O”. The first two tags B(NAME)
and I(NAME) will be merged into a PHI entity, and the fifth tag
is a single-token PHI.

Prior Work
Various methods have been designed for deidentification.
Methodologically, current solutions to the deidentification of
EHRs can be summarized into three categories: rule-based
methods, learning-based methods, and ensemble approaches.
Early research in this task was mostly based on rules, such as
Sweeney et al [2] and Gupta et al [3]. The rule-based systems
used dictionaries and hand-crafted rules derived by medical
expertise, which are hard to transfer to other domains. With the
rapid growth of machine learning methods, researchers quickly
switched to learning-based methods including support vector
machine (SVM) [4], decision tree [5], and conditional random
field (CRF) [6], and recent deep learning models like recurrent
neural network (RNN) [7], long short-term memory
(LSTM)-CRF [8], and bidirectional encoder representations
from transformers (BERT)-CRF [9]. Typically, the
learning-based models perform better than the rule-based models
due to the difficulty in building an “ideal” rule set.

More recently, the strategy of combining different models was
widely adopted, bringing rule-based methods back to the stage.
The ensemble approach can take the advantage of different
models by finding the best submodel for each case. Previously
proposed learning-based models as well as the rule-based models
have become candidates of submodels. Taking the i2b2 shared
tasks as an example, most participants presented ensemble
solutions with different models involved. Among them, Liu et
al [10] and Dehghan et al [11] both used rules for some
categories and CRF for others in the 2014 challenge. Their
rule-based taggers had better precision but inferior recall and
was reported effective only for structured PHI like phone
numbers. In the 2016 i2b2 shared task, ensemble with rule-based
models became more popular. Lee et al [12], Dehghan et al
[13], Bui et al [14], and Liu et al [15] all employed rule-based
models as a component of their hybrid systems. However,
despite the wide use of rules, all the works did not investigate
the effect of rule-based models in hybrid architecture. Therefore,
it remains an open issue if the rule-based method should be
included in the ensemble approach to deidentification

Technical Challenges
For the ensemble approach, a well-recognized opinion is that
the performance of a hybrid system depends on not only the
performance of submodels but also the diversity between them.
Rule-based methods are usually proven inferior to popular
machine learning models in terms of accuracy, which is
supposed to hurt the ensemble model. Meanwhile, it was
revealed that rules are substantially different from the
learning-based models, which could bring a positive impact on
the ensemble model. In fact, experimental results [16] provide
an inconsistent observation on rule models in ensemble learning,
revealing the challenge of determining the best use of the
rule-based method in deidentification. It is perceivable that a
weak rule-based tagger would generate noisy results and
constrain the power of hybrid systems despite the diversity of
rule-based models. The challenge is to determine if there is a
solution to boost the ensemble approach with a proper rule-based
model, which could enhance the performance with negligible
cost.

Objectives
In this paper, we present a novel ensemble approach with a
rule-based component that top-performed on the 2014 i2b2
deidentification dataset, as well as an examination on the
contribution of rule-based models to this task. Our system
follows the idea of stacked generalization [17] and employs an
ensemble classifier to combine the outputs of two learning-based
subtaggers and a rule-based subtagger. We apply a
transformation-based error-driven learning (TBED) algorithm
[18] to automatically build a powerful rule-based model, and
further explore the rule-based model’s effect on a hybrid
deidentification system. Experiments show that rule-based
models have a notable impact on overall performance; we can
boost the F score up to 96.76% with TBED, exceeding the top
performance reported in the literature so far.

Methods

Overview
In this section, we describe our system in detail. As shown in
(Figure 1), the system is implemented under the framework of
ensemble learning, combining two learning-based submodels
and a rule-based submodel. Unlike other preliminary
explorations, our discussion is centered on a data-driven
algorithm that can learn the rules automatically. For a fair
comparison with the existing works, we do not change the
candidates of learning-based submodels, involving only CRF
and LSTM-CRF. The outputs from different models are finally
combined with a binary classifier that selects positive PHI
entities from predicted PHI candidates.
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Figure 1. An overview of our deidentification system. BLSTM: bidirectional long short-term memory; CNN: convolutional neural network; CRF:
conditional random field; EHR: electronic health record; PHI: protected health information; TBED: transformation-based error-driven learning.

Rule-Based Approach
Rule-based taggers depend on precise and detailed rules;
developing this type of model usually requires domain expertise.
To minimize the cost to formulate such rules for deidentification,
we leverage the TBED algorithm, which learns rules
automatically according to their gains in correcting tagging
errors. The following is the pseudocode of the TBED algorithm.

According to the TBED algorithm, at the beginning we need to
define an initial annotator (INT). This annotator simply plays
the role of providing a tag sequence to S, so it does not have to
be sophisticated. In our implementation, we mine some typical
regex patterns and build initial-state annotators upon them. Part
of our regex patterns are shown in Table 1.

Table 1. Part of the patterns used in the initial-state annotator.

TagRegular pattern

B(USERNAME)[A-Za-z]{2,3} [0-9]{2,3}

I(HOSPITAL)Hospital|HOSPITAL

B(EMAIL)\w+@\w+\.[A-Za-z]{3}

I(STREET)St|Street|Avenue|Lane|Drive|Rd|Road|Circle|Place

B(DATE)\d{4}|\d{2}-\d{2}-\d{2}|\d{4}

After applying the initial tagger, the main body of TBED (from
line 4 of the TBED algorithm) starts to collect the most
profitable transformation in all possible transformations. In line
5, if a tag ti doesn’t match the correct tag tg at the ith position,
a candidate rule changing ti to tg is generated (eg, if current
token is si and if the length of previous token is li– 1, then change
ti to tg). The transformations can be conditional on different
features (see also the section Unified Feature Set) from different
perspectives, forming a group of candidate rules (CRk). From
line 6 to line 8, we scanned each rule through the corpus to
determine its benefit s(r) according to the tags in Ck. Then from

line 9 to line 11, the rule with the best score is chosen to be used
in the generated tagger and is appended to an ordered list of
rules at each iteration. This rule set can be further improved by
another round of iteration. After leveraging this greedy searching
strategy several times, we can get many helpful transformation
rules, resulting in a greatly empowered rule-based tagger.

Learning-Based Models
The learning-based models are dominating in the recent
deidentification research. Among them, two models always
appear in the center stage: one is CRF, the other is neural
network. Accordingly, we built two different types of models

JMIR Med Inform 2020 | vol. 8 | iss. 4 | e17622 | p. 3http://medinform.jmir.org/2020/4/e17622/
(page number not for citation purposes)

Zhao et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


based on CRF and RNN, respectively, and integrated them into
the hybrid system.

The CRF models P (T │ S) using a Markov random field, with
nodes corresponding to elements of T, and the potential
functions are conditional on (features of) S. CRF offers several
advantages over the hidden Markov model (HMM), including
the ability to relax strong independence assumption made in
the HMM. Moreover, CRF also avoids a fundamental limitation
of maximum entropy Markov models (MEMMs), which can be
biased towards states with few successor states. One common
use of CRF is sequence labeling problems like named entity
recognition (NER), in which case the Markov field is a chain
and the CRF predicts the most possible T conditioned on the
input sequence S via equation 1.

(1)

In equation 1, fj(ti+ 1, ti, S, i) is a feature function, is a
learnable weight for the feature function, and Z is the
normalization factor. Feature functions are usually defined as
indicator functions. For example, a feature function may have
a value of 0 in most cases, and a value of 1 if a feature of ti+ 1

is 1 (eg, the length of ti+ 1 is 4) and a feature of ti is 2 (eg, ti is

a punctuation). can assign the weight of such a feature
function.

The neural network (NN)-based one is similar to the
BLSTM-CNNs-CRF architecture proposed by Ma et al [19]. It
first builds a dense representation of the input sequence by
concatenating word embeddings with character embeddings
extracted by a convolutional neural network (CNN) layer. This
representation is then fed into a bidirectional LSTM encoder,
and a CRF layer is employed as the last layer to predict the most
probable tag. We modified this model by adding feature
embedding to the input, providing more information to the
downstream LSTM-CRF network. We omit the details of this
model and refer readers to Ma et al [19] for brevity.

Unified Feature Set
As features for the submodels, a unified feature set was
constructed. According to previous explorations and our
experiments on this data, we chose the following 3 types of
features.

• Token-level features: length of the token; whether the token
contains only numbers; whether the token starts with an
uppercase letter; the stem, prefix, suffix of the token; etc

• Global features: sentence length, section information [15]
• Tagging-based features: general NER tag and part of speech

(POS) tag from Stanford CoreNLP [20]

Ensemble Method
Ensemble learning is a technique that combines multiple models
to obtain better predictive performance. In the 2014 i2b2
deidentification challenge, 4 of 8 participants used the ensemble
of rules and CRFs, and the overall top 3 systems were hybrid
systems. For deidentification, ensemble is always performed at
the output layer (ie, combining the outputs from the submodels).
The most popular and successful ensemble strategy in the
challenge is using rules for some categories and CRFs for others.
Although it proved useful in the challenge, there are still many
shortcomings for this method. The division of categories are
manually made based mainly on intuition, and the category-level
choice is inflexible, which misses details of different samples.
To avoid these shortcomings, we chose a fine-grained
learning-based ensemble method: stacking.

Following Kim et al [21], we combined the predictions of the
rule-based model and learning-based models via stacked
generalization. Specifically, the predicted PHI from submodels
are fed into a binary SVM-based classifier to make the decision
about which PHI is more likely to be correct. The ensemble
learner scores PHI according to some features (eg, which
predictor(s) predicted this PHI, the overlap with other PHI, the
type of this PHI) and picks PHI with higher scores.

Results

Data Sets and Evaluation Metrics
In the 2014 i2b2 deidentification shared task, a corpus of clinical
narratives were released with PHI expressions, consisting of
1304 English medical records for 296 patients with 805,118
whitespace-separated tokens [22]. The 2014 i2b2
deidentification data set was manually annotated with a total of
28,867 PHIs. The PHI categories defined by HIPAA are
extended into 23 fine-grained PHI subcategories (the i2b2
category hereafter). Detailed PHI distributions are shown in
Table 2. Note that the corpus is divided into a training set and
a testing set, with 790 and 514 records, respectively.
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Table 2. Protected health information (PHI) distribution in the 2014 i2b2 deidentification corpus (total PHI in training set=17,405 and total PHI in test
set=11,462).

Test setTraining setHIPAAa categories and i2b2b categories

DATE

49807502DATE

NAME

19122885DOCTOR

8791316PATIENT

92264USERNAME

AGE

7641233AGE

CONTACT

215309PHONE

28FAX

14EMAIL

02URL

ID

422611MEDICALRECORD

195261IDNUM

87DEVICE

01BIOID

01HEALTHPLAN

LOCATION

8751437HOSPITAL

260394CITY

190314STATE

136216STREET

140212ZIP

82124ORGANIZATION

11766COUNTRY

134LOCATION-OTHER

PROFESSION

179234PROFESSION

aHIPAA: Health Insurance Portability and Accountability Act.
bi2b2: Informatics for Integrating Biology and the Bedside.

Evaluation metrics are selected as the popular precision (P),
recall (R) and F1-measure (F1) as illustrated by equation 2. The
primary metric of this shared task is the entity-level strictly
matched F1 score, which requires that the start, end, and class
under i2b2 categories are all matched with the golden
annotation. The organizers provided an evaluation script to
calculate this score [23]. To make our experiments comparable
with baselines, all the results are evaluated using this script.

(2)

Preprocessing and Experimental Setups
The whitespace-separated tokens do not exactly match the PHI
in the i2b2 corpus (ie, there is PHI starting or ending in the
middle of a token), making them impossible to be correctly
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annotated under the token-level IOB scheme. For example,
token “Dr.Smith” contains the PHI “Smith”, but a token-level
tagger can only annotate the entire string “Dr.Smith” as an entity
and never outputs the correct PHI “Smith”, which hurts
performance severely. This is the reason why subword level
tokenization is necessary. We performed the following steps
for tokenization to tackle this problem. First, all characters are
split except continuous letters and continuous numbers, which
are less likely to be the start or end of a PHI. Second, the
continuous letters are further split at the position of uppercase
letters. Third, we run byte pair encoding (BPE) on the tokenized
corpus to alleviate data sparseness. For example, the string

“48-year-old in Edwin HealthCare” will be tokenized as (48, -,
year, -, old, in, Edwin, Health, Care). This reduced the error
rate of tokenization regarding PHI to 0.22%.

We performed 10-fold cross-validation to tune the
hyper-parameters. TBED outputs 43 transformation rules from
43 iterations. CRF uses an extended feature set with 49 different
types of feature crosses. We used linear_chain_crf [24] as the
implementation of CRF, which can use a graphics processing
unit (GPU) to accelerate. The BLSTM-CNNs-CRF model is
implemented with TensorFlow [25]. The SVM-based ensemble
learner uses radial basis function (RBF) kernel with LIBSVM
[26]. Other hyper-parameters are shown in Table 3.

Table 3. The hyper-parameters setting.

ValueHyper-parameter

0.0005Learning rate for conditional random field

0.0003Regularization weight

2, 3, 4, 5Kernel size for CNNa

8Number of channels of CNN

16Dimension of character embedding

128Dimension of word embedding

4 per featureDimension of feature embedding

128LSTMb hidden size

10Gradient clip

0.0002Learning rate for LSTM

5.2SVMc C value for positive samples

12.48SVM C value for negative samples

0.009SVM gamma value

aCNN: convolutional neural network.
bLSTM: long short-term memory.
cSVM: support vector machine.

Statistical Results
In this section, we report the results of our experiments. The
results of our models as well as a comparison with baselines
are shown in Table 4. We selected three representative previous
works as our baselines. Yang et al [27] is the winner of the 2014
i2b2 deidentification challenge, they employed rules for some
types of PHI and CRFs for others. Liu et al [15] is a
representative work on ensemble learning, which consists of 3

learning-based models, CRF, LSTM-CRF, and LSTM-CRF-FEA
(feature), where the LSTM-CRF-FEA takes hand-crafted
features as additional inputs. The main difference between Liu
et al [15] and our study is that they did not combine a rule-based
model. Besides, they used a smaller feature set with no feature
crosses for the CRF. Beryozkin et al [28] is the state-of-the-art
(SOTA) solution on the 2014 i2b2 data set. They used a
BiRNN-CRF model with character-level RNNs and achieved
an F1 of 96.00%.
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Table 4. Results of the hybrid system and submodels (i2b2 categories, strict entity matching).

F1-measure, %Recall, %Precision, %Model

93.6090.9296.45Yang et al [27] (CRFa + Rule)

95.1193.8096.46Liu et al [15] (CRF + LSTMb*2)

96.00—d—dBeryozkin et al [28] (BiRNNc)

91.1390.3691.92Rule-based

95.3993.3097.58CRF

96.3295.7496.91BLSTMe-CNNsf-CRF

96.7695.4198.15Ensemble

aCRF: conditional random field.
bLSTM: long short-term memory.
cRNN: recurrent neural network.
dThese results are not reported in the original paper.
eBLSTM: bidirectional long short-term memory.
fCNN: convolutional neural networks.

As for our models, the rule-based submodel achieved a
satisfactory F1 score of 91.13%; the CRF-based submodel is
more powerful with an F1 score of 95.39%; and the NN-based
submodel is about 1% better than the CRF-based model with
an F1 score of 96.32%. The final result of our ensemble system
was 96.76%, achieving a new SOTA system.

To discuss whether TBED is a good solution to rule-based
deidentification, a comparison of our data-driven rule-based
model and other hand-crafted rule-based models is shown in
Table 5. Two distinguished rule-based methods in the 2014 i2b2

competition are selected. The first is Liu et al [10] using regular
expressions to identify standardized PHI such as PHONE, FAX,
and EMAIL with one pattern per category. Their system
achieved a high precision of 97.92% but a low recall of 1.64%,
making the averaged F1 only 3.23%. The second is Dehghan
et al [11] leveraging dictionaries and more sophisticated rules.
With undisclosed manual cost, they achieved an 87.53% F1
score for part of the PHI categories, which is the best-performed
rule-based results reported in the literature. We applied TBED
to all 23 PHI categories and achieved an F1 score of 91.13%.

Table 5. Results of rule-based taggers (i2b2 categories, strict entity matching).

F1-measure, %Recall, %Precision, %Method

3.231.6497.92Liu et al [10] (Regex)

87.5385.9189.68Dehghan et al [11] (dictionary + rules)a

45.1933.5369.28Our method, initial-state tagger (Regex)

91.1390.3691.92Our method (Regex + TBEDb)

aOnly part of the personal health information categories were counted, resulting in a higher recall.
bTBED: transformation-based error-driven learning.

We also explored the components in our TBED method. There
are two parts in our rule-based model: the initial-state tagger
(based on Regex) and the transformation-based tagger (TBED).
As shown in Table 5, although our initial-state tagger performs
poorly with an F1 of 45.19%, it could be rapidly improved to
91.13% after 43 rounds of iteration.

To further verify the impact of each submodel, especially the
role of TBED in the ensemble learning, we performed an

ablation study by removing each component of the hybrid
system. The corresponding performances are shown in Table
6. If we exclude BLSTM-CNNs-CRF from the hybrid system,
the F1 becomes 96.07% with a decrease of 0.69%. When we
remove the rule-based model, the ensemble of learning-based
models can only reach an F1 of 96.42%, and it can be improved
back to 96.46% by recovering the initial-state tagger. CRF has
the least impact of 0.1% from 96.76% to 96.66%.

JMIR Med Inform 2020 | vol. 8 | iss. 4 | e17622 | p. 7http://medinform.jmir.org/2020/4/e17622/
(page number not for citation purposes)

Zhao et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 6. Results of the hybrid system without submodels (i2b2 categories, strict entity matching).

Change, %F1-measure, %Model

096.76Ensemble

–0.3096.46Without TBEDa (with Regex)

–0.3496.42Without TBED (without Regex)

–0.1096.66Without CRFb

–0.6996.07Without BLSTMc-CNNsd-CRF

aTBED: transformation-based error-driven learning.
bCRF: conditional random field.
cBLSTM: bidirectional long short-term memory.
dCNN: convolutional neural network.

Discussion

Analysis of Principal Results
The results of our system were quite positive. Our rule-based
model achieved an F1 of 91.13%, which surpasses the existing
practices in rule-based deidentification. From the comparison
of Regex and Regex with TBED, we found that TBED is not
necessarily dependent on a fine-tuned initial tagger. In other
words, TBED could efficiently learn a rule-set to best
approximate the training data. The performance of our CRF
model was an F1 of 95.39%, which outperforms the previous
hybrid systems. We believe that this improvement is mainly

from the more detailed feature set and feature crosses between
the features. The BLSTM-CNNs-CRF also showed advantage
over the BiRNN model presented by Beryozkin et al [28] with
a gap of 0.32% in F1, which is the best performing submodel.
Integrating them together, our ensemble framework improved
the best performing submodel BLSTM-CNNs-CRF by about
0.4% in F1. The improvement of a hybrid system is usually
from the diversity of its components. Table 7 shows some cases
of the difference between submodels, which may reveal where
the improvement comes from. Opposite to the learning-based
models, which are optimized to generalize the whole data set,
rule-based models usually focus on a specific condition, which
offers the ability to deal with rare cases.

Table 7. Examples of transformation-based error-driven learning contribution to ensemble result.

Golden standardEnsembleBLSTMc-CNNsd-CRFCRFbTBEDaCases

——DATEDATE—gwith SVRe of 1739f

PATIENTPATIENT——PATIENTfamily contact: Talissa Irish

RECORDRECORDPHONE—RECORDPatient Name: FOUST,FAY [50294530(LHCC)]

——DATEDATE—a CKg of 1028

STATESTATEHOSPITAL—STATEgo back to NewJersey

ZIPZIPRECORD—ZIP739 Newburgh Street, Sulphur, AR 26822

aTBED: transformation-based error-driven learning.
bCRF: conditional random field.
cBLSTM: bidirectional long short-term memory.
dCNN: convolutional neural network.
eSVR: systemic vascular resistance
fItalics indicate the protected health information for each case.
gNot a privacy entity.
hCK: creatine kinase

The results of our ensemble system also showed advantages
over all previous explorations. Compared with previous top
performing hybrid systems (Yang et al [27] and Liu et al [15]),
our system offers significant improvements of ≥1.5% in all the
metrics. It also creates a new SOTA system that exceeds the
previous SOTA of 0.76%, further proving the effectiveness of
our approach.

Interpretations of Ablation Study
From the results shown in Table 6, we can observe that
removing any submodel will hurt performance, indicating that
the three submodels contribute to the task rather than bring the
redundancy. It is natural to observe that the top performing
BLSTM-CNNs-CRF submodel has the greatest impact on
ensemble results. An amazing discovery is that TBED ranks as
second in influence on overall performance, despite it being the
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least performed single model. This confirms that a rule-based
tagger is more indispensable to the hybrid system than another
learning-based submodel. We further examined the components
in TBED; it was enlightening to find that the initial tagger
(Regex) itself was still beneficial to the final results. This
consolidate that even a small part of high-quality rules can be
informative to the ensemble model.

To sum up, we found that the performance of rule-based models
does not affect overall results, and even an advanced hybrid
system with few upside potentials can be further improved by
a rule-based model. Although the rule-based model with TBED
seems to be a weaker tagger compared with learning-based
models, it can still provide information useful for the ensemble
model.

Conclusions
In this paper, we introduced a new hybrid system for the
anonymization of EHRs, boosted by a rule-based tagger that

can automatically search transformation rules via TBED. The
ensemble system contains three submodels based on rules, CRF,
and NN, and is integrated by SVM-based stacking. In the
experiments, we found that a hybrid deidentification system
can be boosted by a rule-based model with TBED, achieving
top performing results for this task. We also performed an
ablation study to prove the necessity of the rule-based submodel
with TBED steps, which further proves the accuracy of our
findings.

In the future, we will explore the more detailed difference
between rule-based models and learning-based models. Possible
directions are checking their performance on various categories
and analyzing the interactions between different models. We
will also take more models into account and check the effect of
rules on more powerful models such as the recent astonishing
pretrained models like BERT [29].
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