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Abstract

Background: Coding of underlying causes of death from death certificates is a process that is nowadays undertaken mostly by
humans with potential assistance from expert systems, such as the Iris software. It is, consequently, an expensive process that
can, in addition, suffer from geospatial discrepancies, thus severely impairing the comparability of death statistics at the international
level. The recent advances in artificial intelligence, specifically the rise of deep learning methods, has enabled computers to make
efficient decisions on a number of complex problems that were typically considered out of reach without human assistance; they
require a considerable amount of data to learn from, which is typically their main limiting factor. However, the CépiDc (Centre
d’épidémiologie sur les causes médicales de Décès) stores an exhaustive database of death certificates at the French national
scale, amounting to several millions of training examples available for the machine learning practitioner.

Objective: This article investigates the application of deep neural network methods to coding underlying causes of death.

Methods: The investigated dataset was based on data contained from every French death certificate from 2000 to 2015, containing
information such as the subject’s age and gender, as well as the chain of events leading to his or her death, for a total of around
8 million observations. The task of automatically coding the subject’s underlying cause of death was then formulated as a predictive
modelling problem. A deep neural network−based model was then designed and fit to the dataset. Its error rate was then assessed
on an exterior test dataset and compared to the current state-of-the-art (ie, the Iris software). Statistical significance of the proposed
approach’s superiority was assessed via bootstrap.

Results: The proposed approach resulted in a test accuracy of 97.8% (95% CI 97.7-97.9), which constitutes a significant
improvement over the current state-of-the-art and its accuracy of 74.5% (95% CI 74.0-75.0) assessed on the same test example.
Such an improvement opens up a whole field of new applications, from nosologist-level batch-automated coding to international
and temporal harmonization of cause of death statistics. A typical example of such an application is demonstrated by recoding
French overdose-related deaths from 2000 to 2010.

Conclusions: This article shows that deep artificial neural networks are perfectly suited to the analysis of electronic health
records and can learn a complex set of medical rules directly from voluminous datasets, without any explicit prior knowledge.
Although not entirely free from mistakes, the derived algorithm constitutes a powerful decision-making tool that is able to handle
structured medical data with an unprecedented performance. We strongly believe that the methods developed in this article are
highly reusable in a variety of settings related to epidemiology, biostatistics, and the medical sciences in general.
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Introduction

The availability of up-to-date, reliable mortality statistics is a
matter of significant importance in public health−related
disciplines. As an example, the monitoring of leading causes
of deaths is an important tool for public health practitioners and
has a considerable impact on health policy−related
decision-making processes [1-6]. The collection of said data,
however, is complex, time-consuming, and usually involves the
coordination of many different actors, starting from medical
practitioners writing death certificates following an individual’s
passing, to the finalized mortality statistics’ diffusion by public
institutions. One example of a nontrivial task involved in this
process is the identification of the underlying cause of death
from the chain of events reported by the medical practitioner
in the death certificate [7]. According to the International
Statistical Classification of Diseases and Related Health
Problems, the underlying cause of death is defined as “(a) the
disease or injury which initiated the train of morbid events
leading directly to death, or (b) the circumstances of the accident
or violence which produced the fatal injury” [8]. As underlying
causes of death are the main information used in the tabulation
of mortality statistics, extracting them from death certificates
is of paramount importance.

Nowadays, in order to preserve spatial and temporal
comparability, the underlying cause of death is usually identified
from an expert system [9], such as the Iris software (The Iris
Institute) [10], a form of artificial intelligence that encodes a
series of World Health Organization (WHO)−defined coding
rules as an entirely hand-built knowledge base stored in decision
tables [10]. Unfortunately, these decision systems fail to handle
a significant amount of more complex death scenarios, typically
including multiple morbidities or disease interactions. These
cases then require human evaluation, consequently leading to
a time-consuming coding process, potentially subject to
distributional shift across both countries and years, sensibly
impairing the statistics’ comparability.

In the past few years, the field of artificial intelligence has been
subject to a significant expansion, mostly led by the recent
successes encountered in the application of deep artificial neural
network−based predictive models in various tasks, such as image
analysis, voice analysis, or natural language processing. These
methods have been known to outperform expert systems but
usually require vast amounts of data on which to train to do so,
which is oftentimes prohibitive. On the other hand, a number
of countries, including France, have been storing their death
certificates, along with their derived underlying causes, in
massive databases, thus providing an optimal setting to use deep
learning methods.

The following article formulates the process of extracting the
underlying cause of death from death certificates as a statistical
predictive modelling problem and proposes to solve it with a
deep artificial neural network. The following section focuses
on describing the structured information contained in a death

certificate. The Methods section introduces the neural network
architecture used for the task of predicting the underlying cause
of death. The Results section reports the performances obtained
from training the neural network on French death certificates
from 2000 to 2015—about 8 million training examples—as
well as a comparison with prediction performances obtained
using the Iris software, the current state-of-the-art for this
predictive task and solution used in numerous countries for
underlying cause of death coding. Finally, the Practical
Application section showcases the potential use of the presented
approach in epidemiology with a focus on opioid
overdose−related deaths in France.

Methods

Dataset
The dataset used during this study consists of every available
death certificate found in the CépiDc (Centre d’épidémiologie
sur les causes médicales de Décès) database from 2000 to 2015
and their associated cause of death, coded either by human
experts or the Iris software depending on the certificate’s
complexity. The entire dataset represents over 8 million training
examples and records various information about their subjects,
with varying predictive power with regard to the underlying
cause of death. This article aims to derive a deep neural
network−based predictive model explaining the underlying
cause of death from the information contained within death
certificates by solving the following modelling problem:

P(UCD|DC) = ƒ(DC) (1)

with DC representing the information contained in a French
death certificate, UCD representing its corresponding underlying
cause of death, and ƒ representing a neural network−based
predictive function.

In order to model the underlying cause of death from this
information, the following items were selected as explanatory
variables: (1) the causal chain of events leading to death, (2)
age, (3) gender, and (4) year of death.

Causal Chain of Death
The causal chain of death constitutes the main source of
information available on a death certificate in order to devise
its corresponding underlying cause of death. It typically sums
up the sequence of events that led to the subject’s death, starting
from immediate causes, such as cardiac arrest, and progressively
expanding into the individual’s past to the underlying causes
of death (see Figure 1). The latter being the target of the
investigated predictive model, the information contained in the
causal chain of death is of paramount importance to the decision
process leading to the underlying cause of death’s establishment.
In order to enforce the comparability of death statistics across
countries, the coding of the underlying cause of death from the
causal chain of events is defined from a number of WHO-issued
rules, oftentimes reaching casuistry on more complex situations
[11].
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Figure 1. Example of causal chain of death as found on a French death certificate. Its corresponding underlying cause of death was defined as “diabetes
mellitus type 2 [DM II], with multiple complications." ICD: International Statistical Classification of Diseases and Related Health Problems.

The WHO provides countries with a standardized causal chain
of events format, which France, alongside every country using
the Iris software, follows. This WHO standard asks of the
medical practitioner in charge of reporting the events leading
to the subject’s passing to fill out a two-part form in natural
language. The first part is comprised of four lines, in which the
practitioner is asked to report the chain of events, from
immediate to underlying cause, in inverse causal order (ie,
immediate causes are reported on the first lines and underlying
causes on the last lines). Although four lines are available for
reporting, they need not all be filled. In fact, the last available
lines are rarely used by the practitioner (eg, line four was used
less than 20% of the time in the investigated dataset).The second
part is comprised of two lines in which the practitioner is asked
to report any “other significant conditions contributing to death
but not related to the disease or condition causing it” [12] that
the subject may have been suffering from. Although this part
might seem at first sight to have close to no impact on the
underlying cause of death, some coding rules ask that the latter
should be taken from this part of the death certificate. As an
example, the underlying cause of death of an individual with
AIDS who died from Kaposi’s sarcoma should be coded as
AIDS, although this condition might be considered by the
medical practitioner as a comorbidity and, as such, written on
the certificate’s second part. Consequently, this part of the death
certificate also presents some vital information for the
investigated predictive model and, as such, should be included
as input variable.

In order to counter the language-dependent variability of death
certificates across countries, a preprocessing step is typically
applied to the causal chain of events leading to the individual’s
death, where each natural language−based line on the certificate

is converted into a sequence of codes defined by the 10th
revision of the International Statistical Classification of Diseases
and Related Health Problems (ICD-10). The ICD-10 is a medical
classification defined by the WHO [8] defining 14,199 medical
entities [13] (eg, diseases, signs and symptoms, among others)
distributed over 22 chapters and encoded with three or four
alpha decimal symbols (ie, one letter and 2 or 3 digits), 7404
of which are present in the investigated dataset. The
WHO-defined decision rules governing the underlying cause
of death process are actually defined from this
ICD-10−converted causal chain, and the former is to be reported
as a unique ICD-10 code.

The processed causal chain of death, in its encoded format, can
be assimilated as a sequence of six varying-length sequences
of ICD-10 codes. In order to simplify both the model and
computations, this hierarchical data structure will hereon be
assimilated, as seen in Figure 2, as a padded 6-by-20 grid of
ICD-10 codes, with rows and columns denoting a code’s line
and rank in line, respectively; 20 is the maximal number of
ICD-10 codes found on a causal chain line in all certificates
present in the investigated dataset. Several more subtle
approaches to this grid-like assimilation were explored prior to
the experiment reported in this article, but all yielded models
with significantly inferior predictive power. Although this
encoding scheme apparently prevents the encoding to handle
death certificates with at least one line containing more than 20
codes, the model introduced further sees no such limitation.
Bigger certificates can be processed without trouble with an
appropriately larger code matrix encoding, with theoretically
no significant loss in performance, since the model is translation
invariant [14].
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Figure 2. Causal chain of death encoded as a 3D tensor. Each node represents an ICD-10 code as a 7404-dimensional dummy variable. Its row and
column positions respectively denote the corresponding code’s line and rank in the corresponding certificate. Ci,j: denotes the jth code at the ith line in
the death certificate; ICD-10: 10th revision of the International Statistical Classification of Diseases and Related Health Problems.

The question of encoding ICD-10 codes in a statistically
exploitable format is another challenge in itself. A
straightforward approach would be to factor each ICD-10 code
as a 7404-dimensional dummy variable. This simple encoding
scheme might, however, be improved upon, typically by
exploiting the ICD-10 hierarchical structure by considering
codes as sequences of character. This approach was investigated,
but yielded significantly lower results. As a consequence, the
results reported in this article only concern the dummy variable
encoding scheme.

Miscellaneous Variables
From gender to birth town, a death certificate contains various
additional information items on its subject besides the chain of
events leading to death. As some of these items are typically
used by both Iris and human coders to decide the underlying
cause of death, they present an interest as explanatory variables
for the investigated predictive model. After consultation with
expert coders, the following items available on French death
certificates were selected as additional exogenous variables:

1. Gender: two states of categorical variables.
2. Year of death: 16 states of categorical variables.
3. Age, factorized into 5-year intervals from subjects less than

1 year old, which were divided into two classes.

Neural Architecture
With the death certificate and its selected variables converted
into a format enabling analysis, the underlying cause of death

extraction task can be solved by estimating its corresponding
ICD-10 code’s probability density, conditioned on the
explanatory variables defined previously:

P(UCD|CCD,A,Y,G,Θ) = ƒΘ(CCD,A,Y,G) (2)

with UCD Ε R7404 representing the underlying cause of death,

CCD ε R6 × R20 × R7404 representing the ICD-10 grid−encoded

causal chain of death, A ε R25 representing the categorized age,

Y ε R16 representing the year of death, G ε R2 representing the
gender, and ƒΘ representing a mapping from the problem’s input
space to its output space, parameterized in Θ, a real-valued
vector, typically a neural network.

Although properly defined, the investigated prediction problem
still presents significant challenges for traditional statistical
modelling methods. First, it is expected that the relationship
between the input variables and the investigated regressand
should be highly nonlinear, whereas most statistical modelling
techniques are typically used in linear settings. Feed-forward
neural networks [15], however, were developed as powerful
nonlinear expansions of traditional linear or logistic regressions
with state-of-the-art performance in a wide variety of tasks,
typically in computer vision and natural language processing.
Although the currently investigated modelling problem does
not fall into one of these categories, recent advances in both
deeply inspired the neural architecture presented in this article,
which can be seen in Figure 3 and can be decomposed as
follows:
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Figure 3. Overall model architecture. Ci,j: denotes the jth code at the ith line in the death certificate; ICD-10: 10th revision of the International Statistical
Classification of Diseases and Related Health Problems; UC: underlying cause.

1. Linear projections are applied to each one-hot encoded
categorical variable [16] (ie, one linear projection is shared
for all ICD-10 codes present in the causal chain of death),
with all linear projections sharing the same output space
dimension.

2. The miscellaneous variables’ projections are added to all
of the projected grid’s elements.

3. The resulting grid is used as input to a convolutional neural
network [17].

4. A multinomial logistic regression (ie, softmax regression)
targeting the underlying cause of death is performed on the
convolutional neural network’s output [18].

5. All model parameters (ie, from both the linear projections
and the convolutional network) are adjusted by minimizing
a cross-entropy objective using gradient-based optimization.
The model’s gradients are computed using the
backpropagation method [15].

The authors feel that the formal definition of all the model’s
constituents fall outside the scope of this article. The interested
reader will, however, find a complete description of the model
in Multimedia Appendix 1, as well as a fully implemented
example, written with Python and TensorFlow, in Falissard
[19]. We also encourage interested readers to explore the
multiple articles that influenced this architecture’s design, which
are all available in the bibliography [16,20-22].

Training and Evaluation Methodology
The investigated model was trained using all French death
certificates from 2000 to 2015. A total of 10,000 certificates
were randomly excluded from each year and spread into a
validation set for hyper-parameter fine-tuning, and a test dataset

for unbiased prediction performance estimation (5000 each),
resulting in three datasets with the following sample sizes:

1. Training dataset: 8,553,705 records.
2. Validation and test dataset: 80,000 records each.

Being approximately 1% of the training set’s size, the validation
and test sets might appear unreasonably small. This is, however,
standard practice in the machine learning academic literature
when handling big datasets (ie, several millions of training
examples) [23]. In addition, the final model shows the same
performances on the validation and test sets—up to a tenth of
a percent—thus constituting strong evidence as to the sample
distribution’s stability.

The model was implemented with TensorFlow [24], a
Python-based distributed machine learning framework, on two
NVIDIA RTX 2070 GPUs (graphics processing units)
simultaneously using a mirrored distribution strategy. Training
was performed using a variant of stochastic gradient descent,
the Adam optimization algorithm.

The numerous hyper-parameters involved in the model and
optimization process definition were tuned using a random
search process. However, due to the significant amount of time
required to reach convergence on the different versions of the
model trained for the experiment (ie, around 1 week per model),
only three models were trained, the results displayed below
being reported from the best of them, in terms of prediction
accuracy on the validation set. The interested reader will find
a complete list of the hyper-parameters defining this model in
Multimedia Appendix 1 (see Table MA1-1). Given the
considerably small hyper-parameter exploration performed for
the experiment reported in this article, the authors expect that
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better settings might provide with a slight increase in prediction
performance. However, given the successful results obtained
and the computational cost of a finer tuning, a decision was
taken to not further the exploration.

After training, the model’s predictive performance was assessed
on the test dataset, which was excluded prior to training as
mentioned earlier, and compared to that of the Iris software,
nowadays considered as the state-of-the-art in automated coding
and internationally used. In order to ensure a fair comparison
between the two systems, Iris’ performances were assessed on
the test set as well and given the same explanatory variables.
As is done traditionally in the machine learning academic
literature, the predictive performance is reported in terms of
prediction accuracy, namely the fraction of correctly predicted
codes in the entire test dataset.

The Iris software’s automatic coding accuracy was assessed
with two distinct values resulting from the software’s ability to
automatically reject cases considered as too complex to be
handled by the decision system. As a consequence, a first
accuracy measurement—the lowest one—was assessed

considering rejects as ill-predicted cases, while the second one
excluded these rejects from the accuracy computation, thus
yielding an improved estimate. In order to present the reader
with a more comprehensive view of both approaches’
performances, these accuracy metrics were also derived on a
per-chapter basis, again on the same test set.

Results

Overview
The neural network−based model was trained as described
previously for approximately 5 days and 18 hours, and its
predictive performance as well as that of Iris are reported in
Table 1.

The neural network−based approach to the automated coding
of underlying cause of death significantly outperforms the
state-of-the-art regarding both metrics. Indeed, even when
compared to Iris’ performance on nonrejected cases, the error
rate offered by the proposed approach is 3.4 times lower. This
performance difference increases to an 11-fold decrease when
including rejected cases in Iris performance.

Table 1. Prediction accuracy of Iris and the best derived predictive model derived by bootstrap.

95% CIPrediction accuracySelected approach

0.740-0.7500.745Iris overall accuracy

0.921-0.9280.925Iris on nonrejected certificates

0.977-0.9790.978Proposed approach

In addition, Figure 4 shows the model’s error rates per ICD-10
chapter, alongside the latter’s prevalence. In this plot, chapter
VII—diseases of the eye and adnexa—appears as a strong outlier
in terms of error rate. Although not statistically significant (ie,
only 3 death certificates among the 80 thousands sampled for
the test set have a chapter VII−related underlying cause of

death), this observation might indicate that the training set does
not have a big enough sample size to allow the model to handle
extremely rare cases such as chapter VII−related death
certificates, which might better be handled by a hand-crafted,
rule-based decision system.
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Figure 4. The top plot shows the relevance of underlying causes (by ICD-10 chapter) against ICD-10 chapter−level model error rate. The bottom plot
is a zoom on the top plot’s bottom left-hand corner. ICD-10: 10th revision of the International Statistical Classification of Diseases and Related Health
Problems.

Finally, Figure 5 shows the per-chapter difference in error rate
between the proposed neural network approach and the Iris
software, on nonrejected certificates. As previously
hypothesized, the Iris software outperforms the deep learning
approach on diseases of the eyes and adnexa-related death
certificates (chapter VII), although still not significantly. Even
if the Iris software is beaten in every other chapter, a case should

be made from never-appearing chapters. Indeed, a number of
chapters—namely, chapters XIX, XXI, and XXII—are not
observed as underlying causes in the test dataset, strongly
indicating that they might benefit from a set of hand-crafted
rules, as do chapter VII−related certificates, if they were to
appear in extremely rare cases.
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Figure 5. The top plot shows the difference in error rate between the proposed model and the Iris software versus ICD-10−chapter prevalence as
underlying cause. The bottom plot is a zoom on the top plot’s bottom left-hand corner. ICD-10: 10th revision of the International Statistical Classification
of Diseases and Related Health Problems.

Error Analysis
Although the proposed approach significantly outperforms the
current state-of-the-art that is the Iris software, neural
network−based methods are known to present several drawbacks
that can significantly limit their application in some situations.
Typically, the current lack of systematic methods to interpret
and understand neural network−based models and their decision

processes can lead the former to perform catastrophically on
ill-predicted cases, independently from their high predictive
performances.

As a consequence, the proposed model behavior in ill-predicted
cases requires careful analysis. In addition, the system’s
performance can potentially benefit from such an investigation.
For instance, although the model outperforms Iris on average,
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there might some highly nonlinear exceptions that are better fit
to rule-based decision systems, in which case a hybrid approach
could, by using the best of both worlds, again yield performance
gains.

Although assessing per-chapter error rates, as previously shown,
constitutes a simple, straightforward approach to understanding
the model’s weakness, much more can be done to gain insight
into the model’s behavior. As an example, it only feels natural,
after identifying cases incorrectly predicted by the investigated

model, to assess the nature of errors made by the latter. As
aforementioned, neural network−based classifiers tend to, in
misprediction cases, output answers unreasonably far from the
ground truth. One should, however, expect from a good
predictive model to, in error cases, output predictions as close
as possible to the correct answer. Figure 6 displays an ICD-10
chapter−level confusion matrix built from ill-predicted test
cases, and shows that, besides chapter VII, most of the errors
remain in the same chapter as the ground truth, indicating some
degree of model robustness.

Figure 6. The left-hand plot shows the distribution of wrong predictions per ICD-10 chapter versus their ground truth (the lighter the rarer). The
right-hand plot shows the same distribution’s modes. Apparent missing values in both plots correspond to chapters either not represented in the test
dataset or on which no mistakes were made. ICD-10: 10th revision of the International Statistical Classification of Diseases and Related Health Problems.

The model’s error behavior can also be investigated from a
calibration fitness perspective. As aforementioned, some
artificial neural network−based models have been known to
behave quite poorly in ill-predicted cases, which could constitute
a highly undesirable phenomenon when handling health data.
When the model is being fit in a similar fashion to multinomial
logistic regression, it does not directly learn to predict an ICD-10
code, but instead estimates a discrete conditional probability
distribution across all possible codes. The prediction, defined
as the argument of the maxima on said distribution, is

consequently associated with a probability weight that, when
properly calibrated, can be considered as a confidence score on
individual model predictions. Typically, a well-calibrated
predictive model would be expected to show high confidence
in cases where the prediction is correct, and a low one when
mispredicting. Bar plots of said prediction confidences can be
found in Figure 7 and clearly show a strong tendency for the
model to be more confident in its prediction in correctly
predicted cases.
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Figure 7. Prediction confidences are shown in correct (blue) and incorrect (orange) predictions. The model typically predicts correct values with high
confidence and incorrect values with lower confidence.

If predicting incorrect values with low confidence is a desirable
behavior for a predictive model, associating the ground truth
with high probabilities, even in misprediction cases, should be
of equal importance. This is typically assessed by evaluating
whether each test set subject’s corresponding ground truth is
contained in the k ε N* most probable values present in the
model’s corresponding outputted distribution. This type of
metric is typically denoted as the model’s top-k accuracy, and
helps in assessing a model’s ability to give high confidence to
correct values, even when mispredicting. Although the academic
machine learning literature typically makes use of the top-5

accuracy in such cases, the investigated model was investigated
with a top-2 accuracy only. Indeed, most death certificates
present in the dataset display causal chains of events with five
or less ICD-10 codes, with the underlying cause of death being
one of them. It is consequently reasonable to expect the model
to output these five codes as most probable, thus leading to a
high but meaningless top-5 accuracy. The assessed top-2
accuracy can be found in Table 2, and strongly indicates that
the model consistently associates correct underlying causes of
death with higher probabilities, even in ill-predicted cases.

Table 2. Accuracies on codes wrongly predicted by the proposed model, and the model’s top-2 accuracy.

95% CIValuePerformance metric

0.641-0.6850.663Second-most probable code prediction accuracy on ill-predicted certificates

0.992-0.9930.993Proposed model’s top-2 accuracy

A richer, although more time-consuming, error analysis can be
derived from human observation of each error case by an
underlying cause of death coding specialist. To do so, 96 of the
1777 ill-predicted death certificates in the test set were selected
at random and shown to the medical practitioner referent and
final decision maker on underlying cause of death coding in
France, who gave the following for each of the selected
certificates:

1. Her personal opinion of what each certificate’s
corresponding underlying cause should be.

2. A qualitative comment on the investigated model’s error.

The aforementioned underlying causes obtained were then
confronted with both the actual values contained in the dataset
and those predicted by the derived model, leading to the
following observations:

1. In 41% (39/96) of cases, the referent agreed with the
model’s predictions.

2. In 38% (36/96) of cases, the referent agreed with the
underlying cause present in the dataset.

3. In 22% (21/96) of cases, the referent disagreed with both
of them.

From these certificates, 4 were randomly selected where the
medical referent disagreed with the proposed predictive model,
and these are displayed in Multimedia Appendix 1. These errors
can be grouped into three distinct categories:

1. Certificates displayed in Tables MA1-2 and MA1-3 are
mistakes depending on highly nonlinear, almost casuistic
rules and are typical examples of scenarios where a
hybridized deep learning- and expert-based system should
be beneficial.

2. The certificate displayed in Table MA1-4 constitutes a rare,
complex death scenario that would require the expertise of
a medical referent.

3. The certificate displayed in Table MA1-5 is compatible
with several underlying causes of death, and the underlying
cause of death ICD-10 code’s fourth character is left at the
coder’s discretion.

It appears from this experiment that the derived predictive
model’s coding can be considered as comparable in quality to
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the actual process responsible for the production of that of the
investigated dataset. In addition, a qualitative analysis of the
medical practitioner’s comments on the model’s mistakes
showed that 30% of errors committed by the predictive model
are related to casuistic exceptions in coding rules, such as
nonacceptable codes as underlying causes of death. Such an
observation strongly reinforces the hypothesis that a hybrid
expert system–deep learning approach should improve the
presented system’s coding accuracy.

Availability of Data and Materials
The data that support the findings of this study are available
from the French Epidemiological Centre for the Medical Causes
of Death, but restrictions apply to the availability of these data,
which were used under license for this study, and so are not
publicly available. Data are, however, available from the French
Epidemiological Centre for the Medical Causes of Death upon
reasonable request.

Discussion

Principal Findings
The results of the previous handmade error analysis raise some
questions regarding the underlying cause of death coded in the
training dataset’s quality, as well as its impact on the proposed
predictive model. Indeed, both the Iris software and the human
coders are not exempt from making mistakes, thus making the
underlying cause of death ground truth not entirely reliable.
Investigation of human coder performances have already been
conducted and reported intercoder and intracoder agreements
as low as 70% and 89%, respectively, on more complex cases
[25]. These scores can, at least partially, be explained by the
subtle differences sometimes existing between codes denoting
similar pathologies. The ICD-10’s granularity can sometimes
render the underlying cause of death decision process slightly
stochastic for human coders. A well-known example of this
phenomenon can be seen in the previously shown error example,
with diabetes-related deaths. However, measurement noise has
always been an ubiquitous part of medical datasets, and
expecting a perfect, deterministic coding process based on
human decisions seems somewhat unreasonable. In addition,
statistical predictive models, which deep learning models are,
have been known to perform relatively well when confronted
with noisy datasets. Finally, the model’s substantial predictive
performances make a strong argument toward the ground truth
underlying cause of death’s coding quality.

Finally, the necessity of including the miscellaneous variables
in the model should be thoroughly assessed. Indeed, although
these variables are usually available in a straightforward fashion
on death certificates, minimizing the amount of additional
information given to the model is a topic of importance. The
year and age variables both have an a priori known, deterministic
effect on the coding process.

The age variable explicitly intervenes in some WHO-defined
rules. As an example, neonatal deaths (<28 days) are subject to
an entirely different set of both ICD-10 codes and rules [8]. As
a consequence, excluding any information on the subject’s age
from the model would deterministically impair its predictive
performances.

Strictly speaking, the subject’s year of passing should only have
a limited effect on the underlying cause of death. However, the
WHO-defined coding rules are subject to changes over the years,
from the addition of new ICD-10 codes to changes in the
decision processes themselves [26]. As a consequence, the
model should benefit, in terms of predictive performance, from
being able to differentiate between different years. In addition,
including this variable in the model would allow practitioners
to recode entire parts of the dataset with rules learned from a
given year, thus smoothing temporal distribution variabilities.

The gender variable, however, does not appear to influence any
coding rules, but was added following the French cause of death
coding medical expert’s opinion. In order to assess its interest
in the investigated decision process, an ablation study was
realized. The proposed model was trained with the gender
variable excluded, leading to no significant change in prediction
performance, strongly supporting the thesis that the gender
information does not influence the decision process and should
not be included in future related works.

Practical Application: Recoding the 2012 French
Overdose Anomaly
The topic of overdose-related death monitoring has recently
drawn the attention of public health agencies around the world,
specifically in light of the opioid-related sanitary crisis recently
witnessed in the United States. Causes-of-death data constitute
an information source of choice to investigate such topics. In
France, the CépiDc database was used to assess the evolution
of overdose-related deaths from 2000 to 2015, by counting, for
each year, the number of deaths associated with the following
underlying causes (ICD-10 codes shown in parentheses):

1. Opioid- and cannabis-related disorders (ICD-10 codes
beginning with F11 and F12).

2. Cocaine-, hallucinogen-, and other stimulant-related
disorders (F14 to F16).

3. Other psychoactive substance−related disorders (F19).
4. Accidental poisoning by, and exposure to, narcotics and

psychodysleptics, not elsewhere classified (X42).
5. Intentional self-poisoning by, and exposure to, narcotics

and psychodysleptics, not elsewhere classified (X62).
6. Poisoning by, and exposure to, narcotics and

psychodysleptics, not elsewhere classified, with
undetermined intent (Y12).

The resulting trajectory can be found in Figure 8 and shows a
significant decline in overdose-related deaths in 2011 and 2012.
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Figure 8. The left-hand plot shows the evolution of overdose-related deaths from 2000 to 2015 in France. The sudden decrease in 2012 appears
anomalous. The right-hand plot shows the comparison with DRAMES (Décès en Relation avec l’Abus de Médicaments Et de Substances) data, a
nonexhaustive, independent data source, which finds more deaths in 2012 than the exhaustive CépiDc (Centre d’épidémiologie sur les causes médicales
de Décès) database.

Although this punctual reduction can be at least partially
explained by observed decreases in both heroin purity [27] and
heroin overdose−related deaths [28] in the same time period,
confrontation with results obtained from an independent source,
the DRAMES (Décès en Relation avec l’Abus de Médicaments
Et de Substances) dataset, suggests another hypothesis. The
DRAMES study constitutes a nonexhaustive inventory of
overdose-related deaths detected in French Legal Medicine
Institutes. As a nonexhaustive database, its death count should
not exceed the value obtained from the CépiDc database. As
can be seen in Figure 8, this logical assertion is true for all years
from 2009 to 2013, with a notable exception of 2012. This
discrepancy might be explained by a coding process deficiency,
a hypothesis that can easily be verified by recoding every

certificate from 2012 and comparing the number of
overdose-related deaths in both situations.

The model derived in the previous experiment was used to
recode every French death certificate from 2000 to 2015, with
the year of coding set to 2015 to prevent any discrepancy related
to coding rule variation. The overdose-related deaths were then
selected from the predicted underlying causes of death following
the aforementioned methodology.

The resulting curve can be seen in Figure 9, alongside the
official curve, and clearly shows a smoother decrease in
opioid-related deaths. The discrepancy with the DRAMES
database, in addition, disappears when considering the recoded
underlying causes of deaths.

Figure 9. The left-hand plot shows the evolution of opioid overdose−related deaths from 2000 to 2015 in France, either coded with Iris and human
coders (orange) or with the proposed approach (blue). The 2012 gap, although still present, is much smoother when using predicted underlying causes.
The right-hand plot shows the comparison with DRAMES (Décès en Relation avec l’Abus de Médicaments Et de Substances) data. The contradiction
with the CépiDc (Centre d’épidémiologie sur les causes médicales de Décès) database is entirely corrected with the predicted causes.

Conclusions
In this article, we presented a formulation of the underlying
cause of death coding from death certificates as a statistical
modelling problem, which was then addressed with a deep
artificial neural network, setting a new state-of-the-art. The
derived model’s behavior was thoroughly assessed following
different approaches in order to identify potentially harmful

biases and assess the potential of a hybrid approach mixing a
rule-based decision system and statistical modelling. Although
the proposed solution significantly outperformed any other
existing automated coding approaches on French death
certificates, the question of model transferability to other
countries requires more investigation. Indeed, the problem of
distribution shift is well known in the machine learning

JMIR Med Inform 2020 | vol. 8 | iss. 4 | e17125 | p. 12http://medinform.jmir.org/2020/4/e17125/
(page number not for citation purposes)

Falissard et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


community and can significantly impair the model’s quality
[29].

The authors feel confident that the model should perform with
similar predictive power on other countries’ death certificates
with little to no supplementary effort necessary, even though
this claim requires some experimental validation, unrealizable
without international cooperation. To conclude, this article
shows that deep artificial neural networks are perfectly suited

to the analysis of electronic health records and can learn a
complex set of medical rules directly from voluminous datasets,
without any explicit prior knowledge. Although not entirely
free from mistakes, the derived algorithm constitutes a powerful
decision-making tool able to handle structured, medical data
with unprecedented performance. We strongly believe that the
methods developed in this article are highly reusable in a variety
of settings related to epidemiology, biostatistics, and the medical
sciences in general.
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