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Abstract

Background: Bone marrow aspiration and biopsy remain the gold standard for the diagnosis of hematological diseases despite
the development of flow cytometry (FCM) and molecular and gene analyses. However, the interpretation of the results is laborious
and operator dependent. Furthermore, the obtained results exhibit inter- and intravariations among specialists. Therefore, it is
important to develop a more objective and automated analysis system. Several deep learning models have been developed and
applied in medical image analysis but not in the field of hematological histology, especially for bone marrow smear applications.

Objective: The aim of this study was to develop a deep learning model (BMSNet) for assisting hematologists in the interpretation
of bone marrow smears for faster diagnosis and disease monitoring.

Methods: From January 1, 2016, to December 31, 2018, 122 bone marrow smears were photographed and divided into a
development cohort (N=42), a validation cohort (N=70), and a competition cohort (N=10). The development cohort included
17,319 annotated cells from 291 high-resolution photos. In total, 20 photos were taken for each patient in the validation cohort
and the competition cohort. This study included eight annotation categories: erythroid, blasts, myeloid, lymphoid, plasma cells,
monocyte, megakaryocyte, and unable to identify. BMSNet is a convolutional neural network with the YOLO v3 architecture,
which detects and classifies single cells in a single model. Six visiting staff members participated in a human-machine competition,
and the results from the FCM were regarded as the ground truth.

Results: In the development cohort, according to 6-fold cross-validation, the average precision of the bounding box prediction
without consideration of the classification is 67.4%. After removing the bounding box prediction error, the precision and recall
of BMSNet were similar to those of the hematologists in most categories. In detecting more than 5% of blasts in the validation
cohort, the area under the curve (AUC) of BMSNet (0.948) was higher than the AUC of the hematologists (0.929) but lower than
the AUC of the pathologists (0.985). In detecting more than 20% of blasts, the AUCs of the hematologists (0.981) and pathologists
(0.980) were similar and were higher than the AUC of BMSNet (0.942). Further analysis showed that the performance difference
could be attributed to the myelodysplastic syndrome cases. In the competition cohort, the mean value of the correlations between
BMSNet and FCM was 0.960, and the mean values of the correlations between the visiting staff and FCM ranged between 0.952
and 0.990.
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Conclusions: Our deep learning model can assist hematologists in interpreting bone marrow smears by facilitating and accelerating
the detection of hematopoietic cells. However, a detailed morphological interpretation still requires trained hematologists.

(JMIR Med Inform 2020;8(4):e15963) doi: 10.2196/15963
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Introduction

Background
Bone marrow aspiration and biopsy have been the gold standard
for diagnosing hematological diseases for decades. This
procedure may be performed in the clinic for many conditions,
such as anemia, leukopenia, leukocytosis, thrombocytopenia,
thrombocytosis, pancytopenia, polycythemia, and
hemochromatosis, as well as malignant diseases of the blood
or bone marrow, which include leukemia, lymphoma, and
multiple myeloma (MM), and fever of unknown origin [1].
Despite numerous new molecular markers and the development
of new prognostic tools, bone marrow aspiration morphology
remains a mandatory tool for disease diagnosis. A bone marrow
specimen is collected and subsequently stained and interpreted
by an experienced hematologist as a routine daily practice. The
result interpretation is manpower consuming and operator
dependent since years of training are required for a hematologist
to become competent. It is a labor-intensive method for
determining the differential count, and the obtained results show
inter- and intravariations among specialists [2,3]. Therefore, it
is important to develop a more objective and automated analysis
system.

In addition to counting the cells in the bone marrow aspiration,
the diagnosis and monitoring of leukemia disease severity via
flow cytometry (FCM) [4] or molecular signatures [5] is
becoming the standard of care and can guide our treatment plan
setting. When a bone marrow specimen is obtained, the cells
are stained with various CD markers for immunophenotyping
to facilitate hematological diagnosis and prognostic prediction.
Moreover, after induction chemotherapy, the bone marrow is
typically aspirated again, and FCM is used to detect the
leukemia-associated aberrant immunophenotype [6]. The current
standard report for a bone marrow smear is based on manual
counting and analysis of 300 or 500 cells, which is far fewer
cells compared with FCM, which detects more than 100,000
events. However, detecting the immunophenotypes of the
leukemia clone as minimal residual disease (MRD) via FCM
is also complicated, and it is also dependent on the operator,
antibody panel, protocol, and gating [7]. Furthermore, not all
institutes have the facilities and the capability to monitor MRD
accurately. We plan to overcome this weak point and establish
a model of artificial intelligence (AI) assistance by recognizing
many bone marrow smears to accumulate observed events and
increase the accuracy and confidence in the detection of MRD
by counting cells in the bone marrow smear.

With the AI revolution, several deep learning models have been
developed for and applied to various areas of medical image
analysis, such as chest X-ray interpretation [8], fundus
photography [9], and skin lesion recognition [10]. These deep

learning models can help physicians make diagnoses quickly
and accurately. However, they have yet to be applied to
hematological histopathology. Moreover, we are not satisfied
with the direct use of deep learning models to classify the
diagnoses of disease entities. Hematological histopathology
differs from the histopathology of other diseases. Three main
components are considered in hematological histopathology:
the series of white blood cells (WBCs), erythrocytes, and
megakaryocytes [11]. Commercial computer-aided diagnosis
systems are available for peripheral blood sample recognition
for clinical use [12]. However, no automated cell counting
system is commercially available for bone marrow smears.
Several difficult problems must be solved. First, blood cells in
peripheral blood smears are much simpler to manipulate and
easier to recognize as they contain only five types of WBCs:
basophils, eosinophils, segmented neutrophils, monocytes, and
lymphocytes. In contrast, bone marrow smears contain more
cell types according to their stages of maturation. It will be
difficult to identify each stage of the blood cells. Moreover, it
is important to calculate the ratios of cell types for the diagnosis
of hematological diseases. Second, the cell density in bone
marrow smears is much higher than in peripheral blood smears;
hence, the marrow sample is stickier. The cells are difficult to
separate from one another, and many blood cells may cluster,
which will hinder cell interpretation. Although the object
detection deep learning model has rarely been used in medical
research, its performance has been validated in other complex
real-world scenarios [13]. We attempted to use this technology
to overcome these two problems, and we believe that it could
help us in daily clinical practice.

Objectives
In this study, we retrieved previously evaluated bone marrow
smear slides and the corresponding diagnoses, and we digitalized
the films, which were divided into three cohorts: a development
cohort, a validation cohort, and a competition cohort. We
cropped and classified each cell from the development cohort
and trained an object detection deep learning model. The
cell-based performance of our deep learning model was
compared with the performance of hematologists. Finally,
patient-based validation was conducted to evaluate the
correlation between AI predictions and clinical diagnosis by
FCM.

Methods

Devolvement Cohort
The Tri-Service General Hospital, Taipei, Taiwan, provided the
bone marrow smears from January 1, 2016, to December 31,
2016. Research ethics approval was granted by the Institutional
Review Board for collecting data without individual consent
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(IRB No. 1-108-05-098). We selected 42 bone marrow smears
from patients with a variety of diagnoses, which include
leukemia, myelodysplastic syndrome (MDS), myeloproliferative
disease (MPD), MM, aplastic anemia (AA), and lymphoma
without bone marrow involvement, for the collection of lineages
of cells (Table 1). We used a 1000× microscope and a camera
to manually capture a total of 291 high-resolution photos for
annotation (1920×2048). The annotation is based on a
self-designed Web-based system, and the process includes (1)
the constitution of cells by experienced technicians and (2) the
classification of each cell into one of eight categories (erythroid,
blasts, myeloid, lymphoid, plasma cells, monocyte,
megakaryocyte, and unable to identify) by three independent

hematologists. Finally, a total of 17,319 annotated cells were
collected using the above process. Owing to the heterogeneity
of classification among hematologists, the ground truth for cell
classification is based on a majority decision. If three
hematologists assign a single cell to inconsistent categories
(1109/17,319; 6.40%), the ground truth is set as unable to
identify. Moreover, we used a 6-fold cross-validation process
to evaluate the model performance in object detection, in which
each subsample cluster contains the images from 7 independent
patients. No validation images belong to patients who have
images that were used in the training. The final model that was
used for further validation was trained on all 291 photos.

Table 1. Baseline characteristics in three study cohorts.

Competition cohort (N=10)Validation cohort (N=70)Development cohort (N=42)Baseline characteristics

Gender, n (%)

4 (40)37 (53)22 (52)Female

6 (60)33 (47)20 (48)Male

46.9 (16.8)56.5 (18.0)57.8 (16.3)Age (years), mean (SD)

Diagnosis, n (%)

2 (20)7 (10)7 (17)ALLa

8 (80)42 (60)18 (43)AMLb

0 (0)21 (30)4 (10)MDSc

0 (0)0 (0)2 (5)AAd

0 (0)0 (0)6 (14)MMe

0 (0)0 (0)2 (5)MPDf

0 (0)0 (0)3 (7)Lymphoma

aALL: acute lymphoblastic leukemia.
bAML: acute myeloid leukemia.
cMDS: myelodysplastic syndrome.
dAA: aplastic anemia.
eMM: myeloma.
fMPD: myeloproliferative disease.

Validation Cohort
To validate the model performance in real-world clinical
practice, we designed a validation cohort for evaluating the
disease severity of leukemia and MDS. We included 70 bone
marrow smears from January 1, 2017, to June 30, 2018, with
acute leukemia and MDS before and after treatment. The model
interpretation process is illustrated in Figure 1. Our technicians
captured 20 photos for each case based on the above process,
and these photos were analyzed using our model. The object
detection model attempted to recognize all potential cells and
to classify them. Finally, the model calculated the number and

proportion of each kind of cell, except for the unable to identify
category. We also collected the clinical interpretation reports
from pathologists and hematologists in our hospital. According
to the World Health Organization 2016 classification of myeloid
malignancy, the diagnoses of MDS and acute leukemia mainly
depend on the percentage of blasts [5]. The blast percentages
of 5% to 9%, 10% to 19%, and more than 20% correspond to
three disease statuses: MDS with excess blasts—1, MDS with
excess blasts—2, and acute leukemia, respectively. Therefore,
we classified the 70 cases into three categories (<5%, 5%-20%,
and >20%) based on FCM.
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Figure 1. Deep learning model architecture. Our model contains a feature extraction architecture and a bounding box prediction subnet. The feature
extraction architecture is based on a standard 50-layer SE-ResNet and a feature pyramid net, as illustrated in the upper half of the figure. The lower half
illustrates the bounding box prediction process, which is based on the YOLO v3 architecture.

Competition Cohort
We further compared the performance between BMSNet and
hematologists. A competition with 10 bone marrow smears was
conducted with six visiting staff members. The independent
bone marrow smears were from July 1, 2018, to December 31,
2018. The model interpretation process was similar to that for
the validation cohort. The participants reviewed these 10 bone
marrow smears under high magnification (1000×) to
morphologically assess each cell.

Bone Marrow Aspiration
After obtaining clinical informed consent, the patient was laid
in the lateral decubitus position. The posterior superior iliac
spine was prepped and draped in a sterile fashion. The crest of
the posterior superior iliac spine was located, and the skin, along
with the surface of the bone, was anesthetized with 2%
lidocaine. A Kelly needle was introduced, and bone marrow
aspirate was obtained.

Bone Marrow Smear Staining and Digitalization
Bone marrow aspirate was evenly smeared across a sterile slide
by a second slide and stained to air dry quickly. Next, 1.0 mL
of the Wright-Giemsa stain was placed on the smear for 3 to 4
min. Then, 2.0 mL of distilled water or phosphate buffer of pH
6.5 was added, and it was left to stand for 6 to 8 min. The stained
smear was rinsed with water until the edges showed a faint
pinkish-red coloration. The film was allowed to dry in the air.
All immunohistochemical stains were applied in the hematology
laboratory of Tri-Service General Hospital. The images of the
prepared slides were acquired at 1000× magnification with a
BX53 light microscope (Olympus).

Flow Cytometry
The RBCs were removed from the samples via
fluorescence-activated cell sorting (FACS) lysis buffer. The
cells were washed with FACS buffer, and a minimum

concentration of 5×106 cells/mL was obtained. The pellet from
the final wash was resuspended and stained with various markers
(Table 2: Panel). The panels were, then, sent for FACS analysis.

JMIR Med Inform 2020 | vol. 8 | iss. 4 | e15963 | p. 4http://medinform.jmir.org/2020/4/e15963/
(page number not for citation purposes)

Wu et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 2. Monoclonal antibodies: flow marker panels.

FluorochromesTube

APCdPreCPcPEbFITCa

N/AeCD45IsotypeIsotype1

N/ACD45CD11bHLA-DRf2

N/ACD45CD5CD193

N/ACD45CD38CD564

N/ACD45CD13CD165

N/ACD45CD34CD156

N/ACD45CD33CD147

N/ACD45CD56CD78

N/ACD45CD34HLA-DR9

N/ACD45CD117CD210

N/ACD45CD38CD3411

CD45CD19CD10CD2012

CD45CD19CD34CD2213

CD45CD19CD13CD3314

N/ACD45CD3CD715

N/ACyto CD45IsotypeIsotype16

N/ACyto CD45Cyto TdThCyto MPOg17

aFITC: fluorescein isothiocyanate.
bPE: phycoerythrin.
cPreCP: peridinin-chlorophyll.
dAPC: allophycocyanin.
eNot applicable.
fHLA-DR: human leukocyte antigen–DR isotype
gMPO: myeloperoxidase.
hTdT: terminal deoxynucleotidyl transferase.

Model Architecture
Suppose the input image is a 1000× photo with 1920×2048
pixels. To detect the potential cells, we used the YOLO v3
architecture to encode bounding boxes and construct the loss
function [13]. Our deep learning model architecture is
summarized in Figure 1. The major feature on which the
extraction architecture is based is a 50-layer SE-ResNeXt [14],
which won the ImageNet Large-Scale Visual Recognition
Challenge in 2017. This SE-ResNeXt is pretrained by ImageNet,
and the last feature map is saved for further use. The output
features of SE-ResNeXt are downsampled by a factor of 32
compared with the original images. For example, the output
feature shape is 60×64 when the shape of our input image is
1920×2048. Then, this feature map is passed through a
convolutional module for further downsampling. The
convolutional module consists of the following layers: (1) a
1×1 convolution layer (stride=1×1) with 1024 filters for reducing
the dimensionality of the data, (2) a batch normalization layer
for normalizing the input data, (3) a rectified linear unit (ReLU)
layer for nonlinearization, (4) a 3×3 convolution layer
(stride=2×1) with 1024 filters that belong to 64 groups for

extracting features, (5) a batch normalization layer for
normalization, (6) a ReLU layer for nonlinearization, (7) a 1×1
convolution layer (stride=1×1) with 2048 filters for recovering
the dimensions, (8) a batch normalization layer for
normalization, and (9) a ReLU layer for nonlinearization to
extract features. The feature shapes are 30×32 and 15×16 after
the first and second convolutional modules, respectively. Then,
the three feature maps were passed through a feature pyramid
net. The last feature was used directly for a YOLO v3 subnet
and was passed through a deconvolutional module for
upsampling at the same time. We constructed the
deconvolutional module from the following layers: (1) a 2×2
deconvolution layer (stride=2×2) with 2048 filters for increasing
the dimensions of the data, (2) a batch normalization layer for
normalizing the input data, and (3) a ReLU layer for
nonlinearization. After the deconvolutional operation, the shape
of the second feature map and that of this upsampling feature
map were similar; therefore, they were passed through an
additional layer that was based on residual learning to integrate
their information. This integrated feature was used for another
YOLO v3 subnet. The largest feature map was generated by
following the same approach: the previous feature map was
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passed through a deconvolutional module and an additional
layer. Finally, three YOLO v3 subnets were predicting blood
cells of different sizes separately.

The YOLO v3 subnet is a grid-wise prediction architecture for
detecting a potential object. For each bounding box, we must
find the corresponding grid that contains its center. Given that
there are almost no overlapping cells in our task, we modified
the original YOLO v3 architecture such that only one bounding
box is predicted by each grid. The YOLO v3 subnet is based
on each feature map and includes a 1×1 convolution layer with
13 filters for predicting the object score, box coordinates, and
class scores. The object score (pobj) is defined as the probability
that the grid contains the object center, which ranges from 0 to
1. If the center of an object falls into a grid, that grid is
responsible for detecting that object. The box coordinates
include four types of information that describe the bounding
box. tx and ty are defined as relative coordinates inside each grid
and range from 0 to 1. For example, the coordinates 0 and 0
correspond to the point in the top left, and the coordinates 0.5
and 0.5 correspond to the point in the center. tw and th are
defined as the offsets in the log scale between the bounding box
and the anchor box. The anchor box is generated via clustering
analysis that is based on YOLO v2 [15], and the small, middle,
and large anchor boxes in our experiments are 136 (width), 143
(height) pixel, (183, 185), and (293, 242). Here, we define the
width and height of the original bounding box as bw and bh

respectively, and the width and height of the anchor boxes as
aw and ah, respectively. The relationships among tw, th, aw, ah,

bw, and bh are expressed in the following equations: bw=awetw

and bh=ahe
th. Finally, there are eight class scores (p1 to p8) in

our YOLO v3 subnet, which correspond to the eight categories
of cells and whose values range from 0 to 1. The parameters
that range from 0 to 1 were transformed by a sigmoid function,
and the remaining parameters were simple linear outputs.

Training Details
We used a software package, namely, MXNet version 1.3.0
[16], to implement our deep learning model in the R language.
Here, we have prepared a tutorial in GitHub using an open
database to enable the readers to easily repeat our work [17].
The settings that were used for the training model are as follows:
(1) the stochastic gradient descent optimizer with 0.005 learning
rate and 0.9 momentum for optimization, (2) a bench size of 2,

and (3) a weight decay of 10−4 [18]. Moreover, a few
augmentation methods were used in our training process owing
to the many parameters in the deep learning architecture relative
to the sample size: (1) horizontal and vertical flipping at random,
(2) random cropping of original images to a size of 1408×1536,
and (3) random color transformation. All detailed settings can
be found in our GitHub repository. We had explored a series of
thresholds to optimize the model performance; however, the
results demonstrated the robustness of the threshold selection

in our task. Therefore, the threshold of the probability score of
bounding box objects was set as 0.5 based on convention.

Statistical Analysis and Model Performance
Assessment
We presented the model characteristics as the means and
standard deviations, numbers of patients, or percentages, as
appropriate. We used a significance level of P<.05 throughout
the analysis. The statistical analysis was carried out using the
software environment R version 3.4.3.

In the development cohort, the first analysis was an evaluation
of the accuracies of the hematologists in terms of precision and
recall. In medical terminology, precision and recall refer to the
positive predictive value and the sensitivity, respectively. The
second analysis was an evaluation of the consistency between
the hematologists and AI in terms of Cohen kappa coefficient.
The third analysis was an evaluation of the deep learning model
performance in terms of the average precision. A successful
prediction must have more than 50% intersection over union
(IoU) compared with the ground truth. The average precision
based on the area under the curve (AUC) of the precision-recall
curve is the most commonly used index for evaluating object
detection models; therefore, we presented the average precision
values for each cell category. However, the objective of an
object detection model is to recognize the class correctly and
to present the bounding boxes; therefore, we also presented the
precision and recall after excluding the bounding box error. The
bounding box error does not affect the clinical utility because
we only focus on the proportions among the cells in practice.
All model performance indicators were calculated based on
6-fold cross-validation.

The analysis for evaluating the AI model performance in clinical
practice comprises three parts. First, we used the receiver
operating characteristic (ROC) curve to evaluate the treatment
efficacy evaluation accuracy for acute leukemia in the validation
cohort. As patients with more than 5% vs 20% blast proportions
required different treatment strategies, we presented the ROC
curves that are based on these two cut points simultaneously to
compare the performances of BMSNet, pathologists, and
hematologists. Second, a competition on 10 smears was used
to compare the consistency between the deep learning model
and each hematologist. The output format, which is
demonstrated in Figure 2, is a list of the proportions of seven
categories (excluding unable to identify) in each bone marrow
smear; therefore, we compared the correlation coefficients
between the proportions that were obtained by the hematologists
and deep learning model in each case. Third, the FCM was used
to validate the proportions of four categories: blasts, myeloid,
lymphoid, and monocyte. The correlation coefficients between
these four proportions according to FCM results and the
proportions that were obtained by the algorithm or hematologists
were also presented as the mean values with 95% CIs. The
paired t test was used to test these 10 correlations between the
physicians and the AI model.
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Figure 2. Artificial intelligence interpretation process. This flow chart demonstrates how to use BMSNet in clinical practice. In all, 20 photographs of
each bone marrow smear slide are taken at random, and BMSNet will provide a cell-based prediction for each image. Finally, the total proportion of
each category of cells is calculated based on cell counts.

Results

Development Stage
The baseline characteristics of the development cohort, the
validation cohort, and the competition cohort are presented in
Table 1. The development cohort comprised 22 women and 20
men with a mean age of 57.8 (SD 16.3) years. The proportions
of acute lymphoblastic leukemia (ALL), acute myeloid leukemia
(AML), MDS, AA, MM, MPD, and lymphoma were 17% (7/42),
43% (18/42), 10% (4/42), 5% (2/42), 14% (6/42), 5% (2/42),
and 7% (3/42), respectively. The validation cohort contained
only ALL (7/70, 10%), AML (42/70, 60%), and MDS (21/70,
30%) cases and comprised 37 women and 33 men with a mean
age of 56.5 (SD 18.0) years. To evaluate the sensitivity in
monitoring the treatment efficacy (for MRD), the competition
cohort included only 20% (2/10) ALL cases and 80% (8/10)
AML cases without any MDS cases. The additional diseases in
the development cohort were because of rare lymphocytes,
plasma cells, monocytes, and megakaryocytes in acute leukemia
and MDS. However, we focused only on acute leukemia and
MDS in the validation cohort and in the competition cohort.
These two diseases are the most crucial for physicians to
diagnose and to design treatment strategy for immediately.

The cell classification performances are compared between the
hematologists and BMSNet in Table 3. There were 17,319 cells
in all 291 photos, and the numbers of cells that were classified
as erythroid, blasts, myeloid, lymphoid, plasma cells, monocyte,
megakaryocyte, and unable to identify are 2967, 4063, 2506,
1619, 600, 192, 42, and 5330, respectively. First, we evaluated
the consistency among the three hematologists, and we found
variations in the distributions of precision and recall among
categories of cells. For example, monocyte recognition was the
most difficult task for the three hematologists, with precision
and recall results that ranged from 25.9% to 65.7% and 37.5%
to 88.7%, respectively. In contrast, erythroid recognition was
the easiest task, with precision and recall results that ranged
from 87.6% to 89.1% and 92.3% to 91.4%, respectively. This
demonstrated the difficulty of monocyte classification compared
with erythroid classification. Fortunately, the intraclass average
performances were similar, except for the megakaryocyte class.
However, the distributions of precision and recall for the
monocyte class differed among the hematologists. The precision
and recall of hematologist-1 for the monocyte class were 25.9%

and 88.7%, respectively, whereas the precision and recall of
hematologist-2 were 65.7% and 37.5%, respectively. Hence,
hematologist-1 was more likely to classify a cell as a monocyte,
and hematologist-2 was more likely to make conservative
identifications. Figure 3 presents the consistency analysis results
among the three hematologists. The kappa values were 0.734
(V10 vs V8), 0.742 (V10 vs V6), and 0.785 (V8 vs V6). Strong
inconsistencies in monocyte classification were observed
compared with other categories, and the major misclassifications
were because of an inability to distinguish among the blast,
unable to identify, and monocyte classes.

A correct prediction by BMSNet consists of not only a correct
classification but also a bounding box with more than 50% IoU.
First, we evaluated the bounding box prediction performance,
and the average precision without considering the classification
was 67.4%. Hence, BMSNet might miss cells, which will lead
to lower average precision in each category compared with the
hematologists. However, the precisions and recalls of BMSNet
were similar to those of the hematologists after we excluded
the bounding box prediction error in most categories. BMSNet
only performed at a large disadvantage considering the plasma
cells, monocyte, and megakaryocyte classes compared with the
hematologists. As each hematologist contributed one-third to
the ground truth, the lower precisions and recalls that were
realized by BMSNet are acceptable. Figure 3 presents the results
of the consistency analysis between hematologists and BMSNet.
The kappa values were 0.631 (V10), 0.647 (V8), and 0.633 (V6)
when we ignored the cells with low IoU. The lymphoid and
monocyte classes suffered from major misclassifications. The
cells with low IoU were often classified as unable to identify
by hematologists. On the basis of this observation, the
proportions among the cells might be correct if we ignore the
cells with low IoU or those of unable to identify.

Figure 4 shows selected views of consensus from the
hematologists’ and BMSNet’s predictions. Most of the cells
were correctly recognized by BMSNet; however, the predicted
bounding boxes often did not match the ground truth perfectly.
Moreover, cell debris was also recognized as cells; however,
fortunately, the cell debris was often classified as unable to
identify. As only the accurate proportion of each category of
cells is needed in clinical practice, the bounding box prediction
error might not affect the potential application of BMSNet in
clinical practice. Figure 5 presents selected inconsistent results

JMIR Med Inform 2020 | vol. 8 | iss. 4 | e15963 | p. 7http://medinform.jmir.org/2020/4/e15963/
(page number not for citation purposes)

Wu et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


between the hematologists and BMSNet. When cells were close
to each other, sometimes hematologists failed to identify them
as a plasma cell, while BMSNet made the correct choice.

Moreover, packed lymphoblasts were not easy to differentiate
from lymphocytes. A case-based validation is conducted to
evaluate the value of BMSNet in simulated clinical practice.

Table 3. Cell classification performances of hematologists and the deep learning model in the development cohort.

Precision/recall/APa (%)Cell class

Artificial intelligence modelcHematologist-3 (V6)bHematologist-2 (V8)bHematologist-1 (V10)b

55.8/85.6/67.4N/AeN/AeN/AeCellsd (n=17,319)

85.0/84.5/49.189.1/91.4/N/A88.0/94.1/N/A87.6/92.3/N/AeErythroid (n=2967)

86.5/80.7/50.287.5/88.5/N/A79.1/88.2/N/A91.0/85.2/N/ABlasts (n=4063)

94.0/76.4/49.593.8/80.0/N/A92.0/93.5/N/A79.1/94.2/N/AMyeloid (n=2506)

74.0/58.9/21.961.2/71.9/N/A67.1/79.7/N/A59.0/78.4/N/ALymphoid (n=1619)

53.4/74.1/30.084.9/81.4/N/A82.3/96.7/N/A84.0/92.6/N/APlasma cells (n=600)

57.4/30.0/6.140.2/64.5/NA65.7/37.5/N/A25.9/88.7/N/AMonocyte (n=192)

71.0/56.4/19.096.8/100.0/N/A52.9/61.5/N/A84.1/97.0/N/AMegakaryocyte (n=42)

60.9/86.1/25.183.9/93.5/N/A82.3/77.5/N/A86.5/78.5/N/AUnable to identify
(n=5330)

aAP: average precision based on the area under the precision-recall curve.
bThe abbreviation V(X) denotes a visiting staff member with (X) years of practice experience.
cAll results were based on 6-fold cross-validation.
dBounding box prediction performance regardless of the classifications (only for the deep learning model).
eNot available.
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Figure 3. Cell-based consistency analysis in the development cohort. Each confusion matrix compares one of the three hematologists and AI. The
kappa value is based on the eight-category classification, and 14.40% (2498/17,347) of cells that had lower IoUs were ignored in the AI-hematologist
comparison. AI: artificial intelligence; IoU: intersection over union.
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Figure 4. Multicell detection by the artificial intelligence model in selected views of bone marrow smear slides. The images in the left column are the
consensus results from the hematologists in the morphological assessment of each cell, and the images in the right column are the predictions of BMSNet.
From top to bottom are a myeloma case, an acute leukemia case, and a normal case. The colors of the bounding boxes correspond to the categories of
the contained cells.
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Figure 5. Selected inconsistent results between the hematologists and the artificial intelligence model. The images in the left column are the consensus
from hematologists in the morphological assessment of each cell, and the images in the right column are the predictions of BMSNet. From top to bottom
are a normal case and an acute leukemia case. The colors of the bounding boxes represent the categories of the contained cells.

Clinical Validation
Figure 6 presents the ROC curves for the diagnosis of acute
leukemia and MDS in the validation cohort. The analyses were
conducted to two scenarios: the cutoff level blast percentage is
20% for diagnosing acute leukemia and 5% for treatment
response monitoring. In detecting more than 5% of blasts, the
AUC of BMSNet (0.948) was higher than that of the
hematologists (0.929) in all leukemia cases, but lower than the
AUC of the pathologists (0.985). In a further stratified analysis,
we found that the source of the performance difference is MDS
cases. The AUCs of BMSNet, the hematologists, and the
pathologists in MDS cases were 0.888, 0.765, and 0.954,
respectively. The performances of BMSNet, the hematologists,
and the pathologists were similar in ALL and AML cases.

Perfect AUCs of 100% for ALL cases were realized by BMSNet,
the hematologists, and the pathologists, and the AUCs of
BMSNet, the hematologists, and the pathologists in AML cases
were 0.953, 0.965, and 0.997, respectively.

In detecting more than 20% of blasts, the AUCs of the
hematologists (0.981) and the pathologists (0.980) were similar
and higher than the AUC of BMSNet (0.942). However, the
hematologists significantly outperformed BMSNet in detecting
more than 20% of blasts. The AUCs of the hematologists (0.981)
and the pathologists (0.980) were similar and were higher than
the AUC of BMSNet (0.942). The stratified analysis also
identified the same trend. However, the differences among
BMSNet, the hematologists, and the pathologists were relatively
small. Overall, the accuracy of BMSNet was similar to that in
real-world clinical practice.
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Figure 6. Receiver operating characteristic (ROC) curves in the diagnosis of acute leukemia and myelodysplastic syndrome in the validation cohort
(n=70). The ROC curves correspond to the blast proportions that were obtained by BMSNet, the hematologists, and the pathologists. The outcome value
is defined as more than 5%/20% blasts via flow cytometry. AI: artificial intelligence; ALL: acute lymphoblastic leukemia; AML: acute myeloid leukemia;
AUC: area under the curve; MDS: myelodysplastic syndrome; ROC: receiver operating characteristic.

Human-Machine Competition
The results of the human-machine competition are presented in
Figure 7. Six visiting staff members were included in this
competition. The first analysis was conducted to identify the
correlations between the cell proportions that are obtained by
BMSNet and humans. The upper part of Figure 7 shows a

consistency heatmap, according to which BMSNet is highly
consistent with the visiting staff who were teaching it (V10,
V8, and V6). Although the correlations within BMSNet and
other visiting staff were relatively low, they exceeded 0.845
(V11). This is higher than the lowest correlations among the
visiting staff (0.814 in V4 and V11). The second analysis
compared the results that were obtained by FCM, as shown in
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Figure 7. The mean correlation between BMSNet and FCM was
0.960, and the mean correlations between the visiting staff and
FCM ranged from 0.952 to 0.990. There was no significant

difference between the performances of BMSNet and the visiting
staff. This result demonstrated that BMSNet reached the
performance level of the visiting staff.

Figure 7. Consistency analysis of the hematologists and BMSNet and their performance rankings in the competition cohort (n=10). (A) Consistency
heatmap that is colored according to the values. The values in each cell are the average and the 95% CI of the correlation coefficients. (B) Performance
rankings that are based on flow cytometry. The values above the bars are the average values and the 95% CIs of the correlation coefficients and the P
value for the comparisons between the hematologists and artificial intelligence. The abbreviation V(X) denotes a visiting staff member with (X) years
of practice experience.
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Discussion

Principal Findings
BMSNet showed good performance in the interpretation of
seven types of cells in bone marrow smears that may be used
in the treatment strategy design for acute leukemia. The training
plan of BMSNet is initially set to identify the details of more
than 20 classifications of each different cell type. However, the
trivial maturation differences are difficult to identify, even for
well-trained hematological specialists, as reported by a previous
investigator [19]. For example, it is typical to identify the same
cell as a promyelocyte at first sight but as a myelocyte at the
next recognition. Therefore, we merge the cell categories into
seven groups plus an unable to identify group based on the FCM
grouping system for training the AI model. Simplifying the
grouping system increased the recognition rate and facilitated
comparison with our gold standard, namely, FCM. However,
the detailed maturation recognition in the myeloid and erythroid
series was abandoned. Dysmorphic features of hematopoietic
cells cannot be recognized correctly by the current BMSNet
model. This could explain why the performance in terms of the
ROC curve is poor for MDS cases. We suggested that the results
be reviewed by well-trained hematologists before AI
interpretation translates them into clinical data.

On the basis of our ROC curve test, the percentages of blasts
correlated well between FCM and the pathologists. As the
pathologists also used immunohistochemistry stains for
subgroup identification, better performance was realized
compared with the hematologists and the BMSNet model.
Overall, our BMSNet model performed well, except for MDS
with more than 20% blasts. The morphology of blasts in acute
leukemia is more uniform and easy to identify, whereas the
blasts in MDS are relatively polymorphic, deformed, and
difficult to recognize, which may be the cause of the higher
misidentification rate of AI compared with the well-trained
hematologists and pathologists, who use special
immunohistochemistry staining. In addition, several limitations
have been identified. The image quality depends on several
clinical factors, which include the quality of the bone marrow
aspiration, the clinical disease condition, the smear preparation,
and the image acquisition. This may cause BMSNet to
inaccurately recognize all cells; therefore, the average precision
was only 67.4% in cell recognition. However, BMSNet attempts
to detect as many objects as possible, including even fragmented
cells. Fortunately, these unclear cells were often classified as
unable to identify and may not affect the performance in clinical
practice. This might explain why BMSNet showed a poorer
performance in the development cohort than in the validation
cohort and the competition cohort.

Acute leukemia is defined as more than 20% blasts in the bone
marrow. Therefore, the recognition of blasts is highly important.
Furthermore, CD markers facilitate the diagnosis and
classification of blasts in identifying the subtypes of leukemia.
In FCM, blasts with expressions of CD13, CD33, CD117, and
myeloperoxidase are defined as myeloblasts, and those with
expressions of CD10, CD19, and terminal deoxytransferase are
defined as B lymphoblasts [20]. In the beginning, we planned

to identify three kinds of blasts: myeloblasts, lymphoblasts, and
monoblasts. However, the variations in the patients’ cell sizes,
granularities, and textures hindered recognition, even by a
well-trained hematologist. We can increase the recognition
accuracy by grouping the blast subtypes. Using BMSNet, we
can precisely and quickly detect the percentage of blasts and
estimate the leukemia severity. We can quickly evaluate the
treatment efficacy of leukemia through BMSNet; however, it
is difficult to detect the level of MRD. A larger scale dataset
may be needed for the further development of a model for MRD
detection.

Strengths
The performance of our BMSNet model was similar to that of
the hematologists. With the AI revolution that was initiated by
AlexNet’s victory in 2012 [21], deep learning models have been
shown to realize human-level performance and to be effective
when large annotated datasets are available [10,22-24]. In
several famous cases in the medical field, expert-level
performance was also realized, such as in the detection of lymph
node metastases [25] and in diabetic retinopathy classification
[26]. Our approach realized the same performance in the
morphological assessment of bone marrow smears in the
validation cohort and in the competition cohort. Several years
are needed to train an experienced hematologist, and the
performance of BMSNet was at least as high as the
performances of the hematologists with more than 1 year of
training. A well-trained AI model can help hospitals that lack
hematologists and can save a substantial amount of time for
experienced hematologists.

Limitations
Several limitations of this study have been identified. First, the
studied photos were captured by experienced technicians, who
needed to adjust the focal length and brightness. An optimal
process is to use an automatic slide scanner to avoid the operator
effect. However, the 1000× photos were necessary for the careful
identification of morphological, cytological, and inclusion
details [2]. The current best automatic slide scanner can only
provide 600× photos. Moreover, we regarded the operation of
the microscope as a general technology. This will not affect the
application of BMSNet, and other researchers can repeat our
work. Second, we compared BMSNet’s performance with those
of only six visiting staff members. Although BMSNet and the
visiting staff members have realized near-perfect performances
compared with the FCM results, comparisons should be made
with additional experts to further evaluate the performance of
BMSNet.

Conclusions
In conclusion, we established a deep learning model, namely,
BMSNet, for assisting hematologists in reading bone marrow
smears. The collaboration between hematologists and AI can
save a substantial amount of time and can ensure the consistency
of the interpretation results. Moreover, this approach may also
facilitate the training of inexperienced students. Future research
can expand the database for the detection of additional classes
of each cell.
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