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Abstract

Background: Clinical narratives represent the main form of communication within health care, providing a personalized account
of patient history and assessments, and offering rich information for clinical decision making. Natural language processing (NLP)
has repeatedly demonstrated its feasibility to unlock evidence buried in clinical narratives. Machine learning can facilitate rapid
development of NLP tools by leveraging large amounts of text data.

Objective: The main aim of this study was to provide systematic evidence on the properties of text data used to train machine
learning approaches to clinical NLP. We also investigated the types of NLP tasks that have been supported by machine learning
and how they can be applied in clinical practice.

Methods: Our methodology was based on the guidelines for performing systematic reviews. In August 2018, we used PubMed,
a multifaceted interface, to perform a literature search against MEDLINE. We identified 110 relevant studies and extracted
information about text data used to support machine learning, NLP tasks supported, and their clinical applications. The data
properties considered included their size, provenance, collection methods, annotation, and any relevant statistics.

Results: The majority of datasets used to train machine learning models included only hundreds or thousands of documents.
Only 10 studies used tens of thousands of documents, with a handful of studies utilizing more. Relatively small datasets were
utilized for training even when much larger datasets were available. The main reason for such poor data utilization is the annotation
bottleneck faced by supervised machine learning algorithms. Active learning was explored to iteratively sample a subset of data
for manual annotation as a strategy for minimizing the annotation effort while maximizing the predictive performance of the
model. Supervised learning was successfully used where clinical codes integrated with free-text notes into electronic health
records were utilized as class labels. Similarly, distant supervision was used to utilize an existing knowledge base to automatically
annotate raw text. Where manual annotation was unavoidable, crowdsourcing was explored, but it remains unsuitable because
of the sensitive nature of data considered. Besides the small volume, training data were typically sourced from a small number
of institutions, thus offering no hard evidence about the transferability of machine learning models. The majority of studies
focused on text classification. Most commonly, the classification results were used to support phenotyping, prognosis, care
improvement, resource management, and surveillance.

Conclusions: We identified the data annotation bottleneck as one of the key obstacles to machine learning approaches in clinical
NLP. Active learning and distant supervision were explored as a way of saving the annotation efforts. Future research in this field
would benefit from alternatives such as data augmentation and transfer learning, or unsupervised learning, which do not require
data annotation.
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KEYWORDS

natural language processing; machine learning; medical informatics; medical informatics applications

JMIR Med Inform 2020 | vol. 8 | iss. 3 | e17984 | p. 1http://medinform.jmir.org/2020/3/e17984/
(page number not for citation purposes)

Spasic & NenadicJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

mailto:spasici@cardiff.ac.uk
http://dx.doi.org/10.2196/17984
http://www.w3.org/Style/XSL
http://www.renderx.com/


Introduction

Clinical narratives represent the main form of communication
within health care. In comparison with generically coded
elements of electronic health records (EHRs), the narrative notes
provide a more detailed and personalized account of patient
history and assessments, offering a better context for clinical
decision making [1]. Natural language processing (NLP) is a
subfield of artificial intelligence that studies the ways in which
the analysis and synthesis of information expressed in a natural
language can be automated. It has repeatedly demonstrated its
feasibility to unlock evidence buried in clinical narratives,
making it available for large-scale analysis down the stream
[2]. Traditionally, rule-based approaches were commonly used
to unlock evidence of specific types [3]. Their development
requires some form of direct interaction with clinical experts
to convert their knowledge, often tacit, into a set of explicit
pattern-matching rules.

Machine learning has long been hailed as a silver bullet solution
for the knowledge elicitation bottleneck, the main argument
being that the task of annotating the data manually is easier than
that of eliciting the knowledge [4]. Nonetheless, the amount of
data required to train a machine learning model may require as
much time to annotate as the knowledge elicitation itself [5].
Much like the law of energy conservation, it seems that the
knowledge required to inform the creation of an accurate
computational model is simply transferred from one form to
another. Instead of explicit knowledge in the form of rules,
machine learning is based on implicit knowledge in the form
of annotations and their distribution, with the time involved in
their acquisition remaining virtually constant.

Another problem associated with the machine learning approach
is the availability of clinical narratives given the sensitive nature
of health data and privacy concerns [6]. These problems (ie,
unavailability of manually annotated data) may result in the
lack of representativeness of the training data and consequently
substandard performance of the corresponding machine learning
models. For these reasons, the main aim of this review was to
provide systematic evidence on the properties of data used to
train machine learning approaches to clinical NLP. In addition,

we investigate the types of NLP tasks that have been supported
by machine learning and how they can be applied in clinical
practice.

The remainder of the paper is organized as follows. We start
by explaining the methodology of this systematic review in
detail. We then discuss the main findings of the review. Finally,
we conclude the review by outlining future research directions
in this field.

Methods

Overview
On the basis of the guidelines for performing systematic reviews
described by Kitchenham [7], our methodology is structured
around the following steps. First, research questions (RQs) were
used to define the scope, depth, and the overall aim of the
review. Next, a search strategy was designed to identify all
studies that are relevant to the RQs in an efficient and
reproducible manner. In addition, inclusion and exclusion
criteria were defined to refine the scope. A critical appraisal of
the included studies was conducted to ensure that the findings
of the review are valid. During data extraction, the relevant
information was identified from the included studies and
semistructured to facilitate the synthesis of evidence and support
the findings of the review.

Research Questions
The overarching topic of this review is concerned with the
properties of text data used to enable machine learning
approaches to clinical NLP. The main aim of the review was to
answer the RQs given in Table 1. RQ1 aims at describing the
properties of data that are relevant for interpreting the
performance of machine learning. These properties include size,
provenance, heterogeneity, annotations, and others. Here,
heterogeneity refers to content, structure, and clinical domains.
RQ2 classifies the problems addressed by machine learning in
the context of NLP into different types of computational tasks.
Finally, RQ3 focuses on the ways in which NLP based on
machine learning can be applied to tackle practical problems
encountered in clinical practice.

Table 1. Research questions.

RQaID

What are the key properties of data used to train and evaluate machine learning models?RQ1

What types of NLPb tasks have been supported by machine learning?RQ2

How can NLP based on machine learning be applied in clinical practice?RQ3

aRQ: research question.
bNLP: natural language processing.

Search Strategy
We used PubMed as a search engine to retrieve relevant
documents from the MEDLINE database of 28 million citations
from life sciences and biomedical literature, which are indexed
by Medical Subject Headings (MeSH). MeSH is a hierarchically

organized controlled vocabulary used for manually indexing
articles in MEDLINE in a uniform and consistent manner to
facilitate their retrieval. We derived a list of search terms to
describe the topic of this review: machine learning, deep
learning, text, natural language, clinical, health, health care,
and patient. Here, machine learning and deep learning are used
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to retrieve articles that employ this methodology. Note that
MeSH includes the term machine learning, thus making it
unnecessary to include specific machine learning techniques
such as support vector machines or conditional random fields
into the search query. The following 2 search terms, text and
natural language, refer to the relevant type of input into the
learning methods. The final 4 terms were used to refer to clinical
applications. Owing to the broad nature and common use of the
last 6 terms, their mentions were restricted to titles and abstracts
only. In an attempt to prevent retrieval of nonoriginal studies
and NLP applications developed to support systematic reviews,
we negated the terms literature, bibliometric, and systematic
review. Finally, to focus on the emerging application of machine
learning, we restricted the search to the period from January 1,
2015. The search was performed on August 8, 2018. The search
terms were combined into a PubMed query as follows:

((“machine learning”[All Fields] OR “deep learning”[All
Fields]) AND (text[Title/Abstract] OR “natural language”
[Title/Abstract]) AND (clinical[Title/Abstract] OR health
[Title/Abstract] OR healthcare[Title/Abstract] OR patient
[Title/Abstract]) NOT (literature[Title/Abstract] OR bibliometric
[Title/Abstract] OR “systematic review”[Title/Abstract]) AND
(“2015/01/01”[PDat] : “2018/08/08”[PDat])

We identified 389 candidate articles according to the described
search strategy. The results were further screened against the
selection criteria.

Selection Criteria
The scope of this systematic review was formally defined by
the inclusion and exclusion criteria given in Textboxes 1 and
2, respectively. Having screened the retrieved articles against
the inclusion and exclusion criteria, a total of 149 articles were
retained for further processing.

Textbox 1. Inclusion criteria.

1. The study has to use natural language processing.

2. Machine learning has to be used to support such processing.

3. Input text has to be routinely collected within health care boundaries.

4. Input text has to be written or dictated.

5. The article has to be peer reviewed.

6. The full text has to be freely available online for academic use.

Textbox 2. Exclusion criteria.

1. Articles written in a language other than English.

2. Natural language processing of a language other than English.

3. Natural language processing of spoken language.

Given the interdisciplinary nature of articles considered for this
review, we encountered a wide diversity of venues in which
they were published. Not surprisingly, some studies put an
emphasis on the clinical aspects but neglected to describe the
computational aspects of the study in sufficient detail to support
its reproducibility. To be included in this review, articles needed
to provide sufficient information to support answering RQs
defined in Table 1. In other words, they needed to describe the

datasets used; define the NLP problem clearly; describe the
features used to support NLP; state the machine learning
methods used and, where appropriate, their parameters; and
provide a formal evaluation of the results. A total of 39 studies
were found not to match these criteria. This further reduced the
number of selected articles to 110 [8-117]. Figure 1 summarizes
the outcomes of the 4 major stages in the systematic literature
review.
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Figure 1. Flow diagram of the literature review process.

Data Extraction
We explored the selected studies to extract data that contribute
to answering the RQs given in Table 1. Data were extracted
from the full text of articles under the following headings: data,
task, clinical domain, and clinical application. The data
properties considered included their size, provenance, collection
methods, annotation, and any relevant statistics. The task was
defined as a subfield of NLP (eg, text classification, information
extraction (IE), named entity recognition (NER), and word sense
disambiguation [WSD]). This was supplemented with
task-specific information; for example, for NER, we also
specified the type of named entities considered. Clinically
relevant information was extracted to identify the potential for
practical applications. The extracted data were then used to
facilitate a narrative synthesis of the main findings.

Results

The first step in developing a machine learning model is to
collect data relevant to the problem at hand. Ultimately, the
model’s performance will depend on the properties of such a
dataset. We summarized these properties, including data size,
key data sources, training annotations, and types of clinical
documents considered.

Size
Among other factors, the performance of machine learning
models and the significance of test results depend on the size

of the dataset used for training and testing, respectively. In this
section, we examine the size of datasets used in the studies
included in this review. Owing to large variations in data sizes,
we used a logarithmic scale to fit this information into the chart
shown in Figure 2, which stratifies the datasets according to
their order of magnitude. Some studies used as few as 40
documents [48] and as few as 15 patients [28]. The vast majority
of datasets have the cardinality in the range of hundreds or
thousands. Only 10 studies used tens of thousands of documents,
with a handful of studies utilizing more than that despite the
fact that machine learning approaches are data hungry in the
sense that their performance is strongly correlated with the
amount of training data available.

Relatively small datasets were utilized even when much larger
datasets were available. Figure 3 demonstrates data utilization
on a logarithmic scale, with some studies utilizing as little as
0.002% of available data [44] and as much as 11.88% [11].
Specific examples illustrate this issue: 500 from 188,843 [32],
300 from 4025 [59], 62 from 6343 [25], 323 from 16,000 [24],
1188 from 10,000 [11], 1610 from 52,746 [39], 1004 from
96,303 [112], 1058 from 376,487 [34], 10,000 from 103,564
sentences [36], less than 12,000 out of 137,522+28,159 [101],
562 from 2.5 million [44], 8288 from 2,977,739 [13], 6174 from
2.6 million [113], 3467 from 8,168,330 [68], and 2159 from 24
million [19].
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Figure 2. Distribution of data size on a logarithmic scale.

Figure 3. Data utilization on a logarithmic scale.

Annotation
The main reason for such poor data utilization is the annotation
bottleneck faced by supervised machine learning algorithms,
which require training data to be annotated to generalize them
into predictive mathematical models. Compiling manually
annotated corpora is both labor-intensive and error prone. The
fact that annotations are task-specific means that the training
data rarely get to be recycled. The labor and time limitations
imposed on individual studies will naturally be correlated with
the volume of manually annotated training data. Active learning
aims to address the annotation bottleneck by involving human
experts in the machine learning process in an attempt to improve
performance with relatively small annotation effort [20,54,100].
An active learning algorithm can iteratively sample a subset of
data for manual annotation, depending on the current predictive

performance. Sampling strategies can be based on a
disagreement between different predictive models or different
measures of uncertainty, density, and expectation of a single
predictive model. Such sampling depends on the quality of a
predictive model and may not be efficient when retraining the
model lasts relatively long. Alternatively, diversity measures
can be used to prioritize annotation. For instance, pair-wise
cosine similarity was used to compare sentences and prioritize
those least similar to annotated sentences for annotation [20].
However, this may lead to the selection of outliers, whose
presence in the training data can result in a degradation of
predictive models. By considering representativeness and
informativeness, outliers are less likely to be selected, thus
leading to better coverage of the data characteristics and,
consequently better predictive models. Here, the average
similarity between a sentence and all other sentences indicates
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how representative it is [54]. The higher the similarity, the more
representative the sentence is.

In principle, supervised learning approaches are convenient
when labels are readily available. For instance, EHRs combine
different types of data elements from unstructured data such as
free text and images to structured data (ie, discrete elements
such as numbers, dates, and codes) from controlled medical
terminologies [118]. In the studies included in this systematic
review, larger datasets (ie, those ranging from tens of thousands
to millions, see Figure 2), were used mostly in cases where
existing structured data were utilized as labels. For instance, in
relation to hospitalization, readily available information about
events such as in-hospital death [102], discharge [90],
readmission [9], and emergency department visits [37] was used
to train models to predict future events of this type well in
advance to inform an appropriate course of action. Similarly,
in relation to diagnostics, both prior (eg, imaging protocol
[17,94]) and posterior (eg, test result [69]) information was
utilized for supervision. International Classification of Diseases
(ICD) diagnosis codes were used to train predictive models
from historical data to identify patients at risk [16,22,50] or to
facilitate disease surveillance [76]. Similarly, supervised models
trained with ICD procedure codes otherwise used for billing
can be used for cost optimization but also improving the quality
of care [81]. Indeed, all of these examples have clear
applications in care improvement and resource management.
In some other cases (eg, classification of clinical notes into
medical subdomains [103]), the utility of such information
remains unclear.

Some types of learning problems such as WSD lend themselves
well to semiautomated labeling based on greedy matching. Not
surprisingly, the corresponding methods were tested on large
datasets [33,105]. Similarly, using the concept of distant
supervision, which utilizes an existing knowledge base to
automatically annotate raw text, as much as 9.5 million clinical
notes were annotated with adverse drug events [99]. Where
manual annotation was unavoidable, crowdsourcing was
explored. This approach is suitable for patient-facing problems
such as readability of medical documents [116], where lay
annotators are indeed ideally suited for the annotation task. The
concept of crowdsourcing was explored for problems that
require medical expertise [24]. Even though the interannotator
agreement among crowdsourced workers was found to be much
lower than that of medical experts, with Krippendorff alpha
coefficient over .7, it was still found to be good agreement
beyond chance. However, privacy constraints do undermine the
feasibility of crowdsourcing in the context of clinical narratives.

Provenance
Besides the small volume of training data, another issue that
might affect the performance of machine learning methods

trained on such data is their provenance. The structure and style
of clinical narratives may vary greatly between institutions
[119]. Therefore, when the provenance of data is confined to a
small number of contributing institutions, the data may not be
representative. This, in turn, may lead to overfitting, a modeling
error that occurs when a complex model adapts to the
idiosyncrasies of the training data and fails to generalize the
underlying properties of the problem. Unfortunately, the
majority of studies reviewed here were limited to the authors’
host institutions [8,10,12,15,17,22,24,25,28,30-33,35,40,
41,44,66,70,76,79,84-86,89,90,94,95,99,105,106,111,113].
Rarely are such datasets freely accessible to the community. A
notable exception is the Medical Information Mart for Intensive
Care (MIMIC) [120], a freely accessible critical care database
that stores a wide range of clinical narratives, including
radiology reports [87], clinical notes [102] and discharge
summaries [16,39]. Although it is a single-site dataset, some
consolation may be found in the sheer volume of data. More
importantly, its public availability allows for rigorous and
detailed direct comparison of competing approaches, a rare
commodity in clinical NLP.

Only 9 studies used data from 2 institutions
[36,47,50,56,61,100,103,109,112]. Three studies used data from
3 institutions [45,71,87]. A handful of studies managed to obtain
data from multiple sources: 5 [38], 6 [73], 18 [19], and 28 [37].
The Veterans Health Administration (VHA) [121,122], as the
largest integrated health care system in the United States,
provides centralized access to data from multiple institutions,
enhancing the credibility of results achieved on such data
[13,14,29,34,55,68,72,77,97].

Availability
Most datasets used in the included studies originated from a
few institutions, thus offering no hard evidence about the
transferability of machine learning models. Knowing that the
format and style of clinical notes may vary substantially across
institutions [119], it is not uncommon to observe a significant
drop in performance when training a model in one institution
and testing it in another [33,61,75,105,109]. This remains an
ongoing concern for the clinical NLP community, where the
confidentiality of data involved requires a careful balance
between accessibility and privacy protection. In this section,
we discuss wider availability of data that provide opportunities
for secondary uses, including research. In this context, the NLP
community challenges play an important role in providing access
to clinical data to a wider pool of researchers and establishing
benchmarks for future comparisons. Not surprisingly, many
studies reviewed here have been enabled by the datasets shared
in community challenges, which are described in Table 2.
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Table 2. Datasets used in clinical natural language processing community challenges.

StudiesAnnotationsSizeaDocumentsProvenanceDataset

[20,49,64,67,96,104]Medical problems, treatments,
tests, and relations among
them

871Discharge summaries,
progress reports

PHCb,

BIDMCc,

UPMCd

2010 i2b2/VA [123]

[63]Coreference chains for the
problem, person, test, result,
treatment, anatomical site,
disease or syndrome, sign or
symptom, etc

978+164Discharge summaries,
progress reports, radiol-
ogy reports, pathology
reports, other reports

PHC,
BIDMC,
UPMC,

Mayoe

2011 i2b2/VA [124]

[64]Clinical events, temporal ex-
pressions, temporal relations

310Discharge summariesPHC, BIDMC2012 i2b2 [125]

[54,57,88,98,114]Disorders, acronyms, and ab-
breviations

300Discharge summaries,
electrocardiogram re-
ports, echocardiogram
reports, radiology re-
ports

BIDMC2013 ShARe/CLEF
eHealth [126]

[18,21,26,52,62,64,80,82,91,107,108]Protected health information;
risk factors for heart disease

1304Longitudinal medical
records

PHC2014 i2b2/UTHealth
[127,128]

[60]Times, events, and temporal
relations among them

600Clinical notes, patholo-
gy reports

Mayo2015 Se-
mEval/THYME [129]

[23,27,42,53,58,65,78,83,92]Protected health information;
symptom severity

1000Psychiatric intake
records

PHC2016 CEGS N-GRID
[130,131]

aSize is expressed as the number of documents.
bPartners Health Care (PHC) is a nonprofit hospital and physician network that includes Brigham and Women’s Hospital and Massachusetts General
Hospital.
cBeth Israel Deaconess Medical Center (BIDMC) is a teaching hospital of Harvard Medical School. Both organizations are based in Boston, Massachusetts,
United States.
dThe University of Pittsburgh Medical Center (UPMC) is a global nonprofit health enterprise that integrates over 35 hospitals, 600 clinical locations,
and a health insurance division.
eThe Mayo Clinic is a nonprofit academic medical center based in Rochester, Minnesota, which focuses on integrated clinical practice, education, and
research. The clinic specializes in treating difficult cases through tertiary care.

Similarly, MIMIC dataset represents a key driver of open
research in clinical NLP. It is notable for being the only freely
accessible critical care database of its kind [120]. Data analysis
is unrestricted once a data use agreement is accepted, enabling
clinical research and education internationally. The open nature
of the data supports the reproducibility of findings and enables
continual research advances. MIMIC is a large, single-center
database that stores deidentified, comprehensive clinical
information relating to patients admitted to critical care units
at the Beth Israel Deaconess Medical Centre in Boston,
Massachusetts, United States, a large tertiary care hospital. Its
content, which spans more than a decade, integrates different
types of data (see Table 3). Of interest to this systematic review
are free-text data, which include various types of notes and
reports. Their integration with coded data offers an opportunity

to circumvent manual annotation of data for supervised learning
and evaluation purposes. For instance, Berndorfer and
Henriksson [16] used a large dataset of 59,531 discharge
summaries with at least one assigned ICD diagnosis code to
automate the process of diagnosis coding. However, in many
cases, accurate classification of medical conditions exists only
in clinical narratives. Therefore, it may be necessary to annotate
relevant phrases in the free text to train classification models.
For instance, Gehrmann et al [39] manually annotated 1610
discharge summaries from MIMIC to automatically learn which
phrases are relevant for 10 patient phenotypes considered.
Similarly, Tahmasebi et al [87] manually annotated 860
radiology reports from MIMIC and 2 other institutions to
evaluate an unsupervised approach to detecting and normalizing
anatomical phrases.
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Table 3. Description of clinical data types in the Medical Information Mart for Intensive Care.

DescriptionType

Coded data recorded primarily for billing and administrative purposes.Billing

Demographic information, admission and discharge times, and dates of death.Descriptive information

Look-up tables for cross-referencing identifiers (eg, codes) with associated definitions.Dictionaries

Procedures such as dialysis, imaging studies, and placement of lines.Interventions

Blood chemistry, hematology, urine analysis, and microbiology test results.Laboratory measurements

Administration records of intravenous medications and medication orders.Medications

Free-text notes such as provider progress notes and hospital discharge summaries.Notes

Nurse-verified vital signs, approximately hourly (eg, heart rate, blood pressure, and respiratory rate).Physiologic information

Free-text reports of electrocardiogram and imaging studies (x-ray, computed tomography, ultrasound, and magnetic
resonance imaging).

Reports

In addition to openness, an important driver of advancing state
of the art in clinical NLP is an ability to access a wide range of
data sources, many of which may not be compatible with
national or organization-wide standards. As the largest integrated
health care system in the United States, which provides care at
1243 health care facilities, including 172 medical centers and
1062 outpatient sites of care of varying complexity, the VHA
[121,122] has the potential to address this challenge. The VHA
offers veterans (ie, those who served in the active military,
naval, or air service and who were discharged or released under
conditions other than dishonorable) a wide range of inpatient,
outpatient, mental health, rehabilitation, and long-term care
services, which are all linked by an EHR platform. The
construction of the VHA’s information infrastructure, the
Veterans Information Systems Technology Architecture (VistA),
began in 1982 and became operational in 1985. VistA integrates
multiple applications seamlessly that are accessible via a
graphical user interface, the Computerized Patient Record
System, first launched in 1997. Designed primarily to support
clinical care delivery rather than billing, the system has been
used since 2004 to document all routine clinical activities
currently storing more than 16 billion clinical entries.

On average, 1 million free-text notes (eg, progress notes and
discharge summaries), 1.2 million provider-entered electronic
orders, 2.8 million images (radiologic studies,
electrocardiograms, and photographs), and 1 million vital signs
were stored in VistA daily. Such proliferation of data quickly
outgrew the original plans for storage capacity, network
bandwidth, support staff, and information technology budget,
leading to the construction of the Corporate Data Warehouse
(CDW) in 2006. The new repository for patient-level data
aggregated from across the VHA’s national health delivery
system also hosts data from the legacy system, each featuring
its own data rules, definitions, and structures. Given the slow
process of normalizing these idiosyncrasies to a common
standard and the rapidly increasing volume of data, the CDW
allowed selective streaming of data from VistA and structuring
them pragmatically in a way that minimizes redundancy. The
CDW stores comprehensive patient-level data, which are used
primarily to support health care delivery, but their unprecedented
richness and volume provide a great opportunity for secondary
uses such as quality improvement and research. To facilitate

such uses, the VHA has partitioned a section of the CDW for
use by health services and informatics investigators, who can
access these data in secure workspaces within the VHA’s
firewall. The VHA is developing mechanisms to fully deidentify
data extracts so that they can be shared outside of the VHA.

Similar to MIMIC, integration of structured (coded) and
unstructured (free-text) data offers an opportunity to circumvent
manual annotation of data for supervised learning and evaluation
purposes. In this manner, Ben-Ari et al [14] utilized
postoperative notes of 32,636 patients by cross-referencing them
to prescription data. However, most studies still rely on manual
annotation of information that is not well documented in
structured data. For example, Bates et al [13] manually annotated
8288 radiology reports as fall or not fall at the document level.
Similarly, Maguen et al [68] annotated 3467 randomly selected
psychotherapy notes with respect to the use of evidence-based
psychotherapy. Patterson et al [77] manually annotated 2000
colonoscopy procedure notes with an indication, which included
screening, nonscreening, noncolonoscopy, and unknown. Walsh
et al [97] annotated 3900 snippets of text referring to axial
spondyloarthritis in a corpus sampled from 500 million clinical
notes and 120 million radiology notes. Divita et al [29] sampled
948 records from 164 preselected document types and annotated
them manually to identify 5819 positively asserted symptoms
within the documents. Kim et al [55] annotated a corpus of 1465
echocardiography reports, radiology reports, and other note
types from multiple medical centers sampled at random for
mentions and assessments of left ventricular ejection fraction.
Fodeh et al [34] sampled 1058 clinical notes of 101 types and
manually annotated fine-grained information about pain
assessments, which included not only pain mention but also its
features such as intensity, quality, site, and etiology. Meystre
et al [72] sampled a cohort of 1083 patients and annotated their
clinical notes of more than 10 preselected types with information
regarding congestive heart failure treatment performance
measures. These in-document annotations were summarized at
the clinical note and patient level for binary classification of
patients as meeting the treatment performance measure or not.
These studies illustrate the extent of manual annotation effort
involved in developing machine learning approaches to clinical
NLP. Unfortunately, manual annotations remain underexploited
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because the fruits of such labor are rarely shared outside the
original teams of investigators.

Types of Narratives
The vast majority of studies focused on a single type of clinical
narrative. This may be driven by a specific clinical application.
For instance, Mai and Krauthammer [69] focused exclusively
on free-text test orders to predict whether a patient would test
positive for a particular virus in a quest to reduce viral testing
volumes. To support service improvement, Elmessiry et al [30]
focused solely on patient complaints. Similarly, applications
related to patient safety focused on relevant documents such as
adverse event reports [15], patient safety event reports [35], and
incident reports [101].

Not surprisingly, most clinical applications of NLP focus on
diagnosis and prognosis as they are central to medicine.
Clinicians and health policymakers need to make predictions
about the diagnosis and disease prognosis to support their
decision making. These 2 applications focus primarily on various
types of reports. For instance, electroencephalography reports
were used to study epilepsy [41,70], whereas echocardiography
reports were used to extract information relevant to
cardiovascular medicine [55]. Most studies explored radiology
reports [13,24,43,45,85,87,110,111]. They typically focus on a
single imaging modality such as computer tomography
[11,48,71,106,112] or magnetic resonance imaging (MRI)
[17,47,94]. Such a segregated approach may be warranted by
the intrinsic differences in the types of images produced, which
may be reflected in the types of information discussed in the
corresponding reports. For instance, MRI better differentiates
between soft tissues than x-ray imaging does. Therefore, their
respective reports may focus on different types of anatomical
structures and their pathologies. This implies that machine
learning models trained on one type of report may not be
transferrable to another.

Nonetheless, aggregating findings from multiple imaging
modalities [19,46,73] and other types of examination may
increase diagnostic accuracy, especially when planning surgical
treatments. In particular, pathology and radiology form the core
of cancer diagnosis, leading to an initiative to integrate
pathology and radiology studies to support making correct
diagnoses and appropriate patient management and treatment
decisions [132]. In this context, Bahl et al [10] combined
mammographic reports, image-guided core needle biopsy
reports, and surgical pathologic reports to avoid unnecessary
surgical excisions. An important data source that supports this
type of integration is RadBank, a database that links radiology
and pathology reports [133]. It contains more than 2 million
reports and allows full- text search by patient history, findings,
and diagnosis by radiology and pathology. Still, the majority
of studies focused on pathology reports alone [8,22,38,66,75,76].
Combinations of different report types were mostly used in
enabling studies that focused on NLP tasks without a specific
clinical application in mind (eg, NER approaches trained on
electrocardiography, echocardiography, and radiology reports)
[54,57,88,98,114].

Heterogeneity across different types of reports, including cardiac
catheterization procedure reports, coronary angiographic reports

together with integrated reports that combine history and
physical report, discharge summary, outpatient clinic notes,
outpatient clinic letter, and inpatient discharge medication report
retrieved from the Emory Cardiovascular Biobank [134] was
utilized to train robust machine learning models [115]. Different
subsets drawn from clinical notes, admission notes, discharge
summaries, progress reports, radiology reports, allergy entries,
and free-text medication orders are typically used to support
fundamental NLP applications such as spell-checking [56];
coreference resolution [63]; WSD [100], including that of
abbreviations [105]; and NER [20,64]. Finally, colonoscopy
reports were used to explore the feasibility of NLP in a clinical
setting [77,93].

Discharge summaries are used as the primary communication
means between hospitals and primary care and, as such, are
essential for ensuring patient safety and continuity of care. Their
content and structure may vary greatly between institutions and
clinicians [135]. Typical components include dates of admission
and discharge, reason for hospitalization, significant findings
from history and examination, significant laboratory findings,
significant radiological findings, significant findings from other
tests, list of procedures performed, procedure report findings,
stress test report findings, pathology report findings, discharge
diagnosis, condition at discharge, discharge medications,
follow‐up issues, pending test results, and information
provided to patients and family. Practically, discharge
summaries may be viewed as amalgamations of different types
of clinical narratives, some of which we discussed previously.
Although this may make their processing more challenging,
any algorithms trained on discharge summaries are more likely
to be applicable across a wider range of clinical narratives.
Discharge summaries tend to provide the most informative
accounts of patient phenotypes and have been used to automate
cohort selection [39]. This also makes them well suited for
training and testing NER approaches [59,96,104], extraction of
relationships between them [49,67], or predicting diagnoses
[16].

Other types of clinical narratives considered include physician
notes [84], progress notes [25,40,90], EHR notes [74,81,116],
surgical notes [14,79], and emergency department notes
[50,109]. Unspecified type of clinical notes [102] were used
mostly for classification [9,12,31,61,86,95,103,113], WSD [33],
and disambiguation and IE [36,51,99].

Psychiatric notes were used mainly in an NLP community
challenge to extract protected health information and symptom
severity [23,27,42,53,58,65,78,83,92]. These narratives are key
enablers of mental health informatics as the fine-grained context
of actionable information does not readily lend itself to
predefined coding schemes. Other types of documents used to
support mental health applications include psychotherapy notes
[68], event and correspondence notes [32], progress notes [40],
and those in general clinical context including admission notes
and discharge summaries [117].

Longitudinal EHRs were mainly used in NLP community
challenges [18,21,26,52,62,80,82,91,107,108]. In practical
applications, cumulative patient profiles were used to predict
frequent emergency department visits [37]. Longitudinal records
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consisting of encounter and clinical notes were used to determine
whether a candidate problem is genuine or not [28]. Similarly,
encounter notes were used to determine whether a specific
dermatological problem was definite, probable, or negative [44].

Clinical Applications
This section focuses on the clinical applications of NLP
approaches based on machine learning. We mapped 21 clinical

applications against 7 NLP tasks (see Figure 4). It should be
noted that we excluded a total of 39 studies that did not provide
sufficient information to support answering RQs defined in
Table 1. These studies may have described their own clinical
applications, which are not discussed in this section.

Figure 4. Clinical applications underpinned by natural language processing tasks.

Not surprisingly, the vast majority of studies focused on the
task of text classification, which naturally lends itself to
supervised machine learning. Most commonly, the classification
results were used to support phenotyping, prognosis, care
improvement, resource management, and surveillance.

EHR-based phenotyping approaches leverage data collected
routinely in the course of health care delivery to identify cohorts
of individuals that share certain clinical characteristics, events,
and service patterns [136]. Their data can then be used for the
secondary purposes of observational and interventional studies,
prospective recruitment into clinical trials, health services
research, public health surveillance, and comparative
effectiveness research. Standardized computable phenotypes
can enable large-scale studies while ensuring reliability and
reproducibility. For instance, historical trial patient enrollment
decisions were used to demonstrate the potential of NLP to
increase trial screening efficiency by 450% and reduce workload
associated with patient cohort identification by 90% [137].
Different types of events identified from EHRs include falls
[13] and long bone fractures [43]. Most often, EHR phenotyping
focused on a single medical condition, eg, axial spondyloarthritis
[97], hypertension [89], systemic lupus erythematosus [95],
dermatitis [44], obesity [61], celiac disease [22], epilepsy [41],
autism [84], or psychiatric problems in general [40]. Two studies
differentiated between multiple disorders. Tran and Kavuluru

[92] focused on 11 mental disorders including attention-deficit
hyperactivity disorder, anxiety, bipolar disorder, dementia,
depression, eating disorder, grief, obsessive compulsive
spectrum disorder, psychosis, and posttraumatic stress disorder.
Gehrmann et al [39] focused on a less homogeneous list of 10
disorders including advanced cancer, advanced heart disease,
advanced lung disease, chronic neurologic dystrophies, chronic
pain, alcohol abuse, substance abuse, obesity, psychiatric
disorders, and depression.

In terms of prognosis, text classification results were used to
predict 3-month survival [12], the likelihood of intracranial
hemorrhage [11] and the development of coronary artery disease
[18,26,52,62,80,82,91,107,108] or prognosis based on cancer
staging [75].

At the other end of the spectrum from text classification were
lower-level tasks such as coreference resolution [63,110] and
WSD [33,100,105], which were not associated with any
particular clinical application. However, their importance lies
in enabling other higher-level NLP tasks. Similarly, as a subtask
of IE, NER can be used to support structuring text into
predefined templates, whose slots need to be filled with named
entities of relevant types. The majority of NER studies were
related to NLP community challenges such as those described
in studies by Uzuner et al [123], Suominen et al [126], and
Stubbs et al [131]. They focused on entities such as medical
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problems, tests, and treatments [20,49,67,96,104]; disorders
[54,57,88,98,114]; and protected health information [27,58,65].

Unlike NER, the more complex task of IE found a wider variety
of clinical applications, the most prominent of which include
prognosis and care improvement. For instance, cancer stage is
one of the most important prognostic parameters in cancer, but
this information is typically recorded in clinical narratives,
which means that medical abstractors have to read through large
volumes of text to extract such information. Given the
importance and laboriousness of this task, it is not a coincidence
that all IE approaches with prognosis as the most obvious
clinical application focused on cancer staging [8,38,111].
Another IE approach related to cancer focused on extraction of
symptoms experienced by patients during chemotherapy [36].
Rather than prognosis, this information can be used to improve
patient care through modifying treatments and recognizing and
managing symptoms. Similarly, extraction of information about
assessments and medications can be used to improve
management and outpatient treatment of patients suffering from
chronic heart failure [72].

Triage is a process for sorting patients into groups based on
their need for or likely benefit from medical treatment.
Clustering, which is the task of grouping objects in a way that
objects within a cluster are more similar to one another than to
those in other clusters, can, therefore, naturally be applied to
triage patients. Clustering was used to identify latent groups of
lymphoma patients from their pathology reports [66]. Another
study confirmed that automatically generated clusters of
radiology reports coincided with major topics in radiology
investigations [46]. Surprisingly, triage was not found to be a
common clinical application of NLP and was largely associated
with a single author [45-48].

Summary
In this review, we examined the key properties of data used to
train and evaluate machine learning models. We found that the
size of the training dataset tends to be relatively small. For
instance, the vast majority of studies included only hundreds
or thousands of documents. Relatively small proportions were
utilized for training even when much larger datasets were
available. Beside their volume being small, training data were
typically sourced from few institutions. In addition to the NLP
community challenges such as i2b2, ShARe/CLEF eHealth,
and CEGS N-GRID, most commonly used data sources were
MIMIC and VHA. The vast majority of studies focused on a
single type of clinical narratives, which ranged from imaging
reports to hospital discharge summaries. Most often, training
data were used to support the tasks of text classification, IE,
and NER. Only a handful of studies focused on tasks such as
clustering, ranking, coreference resolution, and WSD. Most
commonly, the classification results were used to support clinical
applications such as phenotyping, prognosis, care improvement,
resource management, and surveillance. The remaining NLP
tasks did not have clear clinical applications. In fact, the majority
were used to enable other higher-level NLP tasks.

Discussion

The use of text data in health informatics applications present
quite a few challenges, the main ones being the preservation of
patient privacy and the annotation bottleneck. Consequently,
the training datasets become inflicted with problems typically
associated with an unrepresentative sample. In other words,
they may not reflect the distribution of characteristics of the
target problem. In machine learning, such bias may lead to
overfitting, a modeling error that occurs when a complex model
adapts to idiosyncrasies of the training data and fails to
generalize the underlying properties of the problem.

Unfortunately, most datasets used in the included studies
originated from few institutions, thus offering no hard evidence
about the generalizability and transferability of machine learning
models. With the format and style of clinical notes varying
substantially across institutions [119], a significant drop in
performance was observed when training a model in one
institution and testing it in another [33,61,75,105,109]. In this
context, NLP community challenges play an important role in
providing access to clinical data to a wider pool of researchers
and establishing benchmarks for future comparisons. Not
surprisingly, many studies included in this systematic review
were enabled by the datasets shared in NLP community
challenges. Unfortunately, relying on these challenges to provide
clinical text data to NLP researchers seems like putting a
Band-Aid on a proverbial bullet wound. Alternative
opportunities have presented themselves in the form of synthetic
health data, which contain the health records of realistic albeit
not real patients. For instance, Synthea, the original open source
synthetic health data software, can be used to simulate disease
progression and the corresponding medical care to produce
risk-free health care records at scale [138]. As synthetic data
are not associated with any privacy concerns, crowdsourcing
remains an option for their annotation though it may still require
medical expertise, which remains an expensive commodity.

In terms of data annotation, lessons can be learned from other
fields such as computer vision and speech processing, which
have similarly been plagued by the lack of annotated data. They
use data augmentation techniques to diversify data available
for training of machine learning models without actually
collecting any new data [139]. Similar techniques are now
increasingly used to augment text data in a quest to improve
generalization performance of the corresponding machine
learning models [140-143]. Alternatively, transfer learning can
be applied to leverage knowledge (features, parameters, etc)
acquired in one domain and/or task with sufficient training data
to support learning in another, which has got significantly less
training data, thereby reducing expensive data annotation efforts
[144,145]. In some cases, manual data annotation can be avoided
altogether by applying the concept of distant supervision, which
relies on an existing knowledge base to annotate text data
automatically [146].

Some problems (eg, in-hospital death [102], discharge [90],
readmission [9], and emergency department visits [37]), where
labels are readily available, lend themselves naturally to
supervised learning approaches. For instances, EHRs combine
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free-text data with codes from controlled medical terminologies,
which can be utilized as class labels [118]. These codes were
used to train predictive models from historical data to identify
patients at risk [16,22,50], facilitate disease surveillance [76],
or optimize the cost and quality of care [81]. For other problems,
where data have to be annotated manually from scratch, insisting
on supervised learning is very much like trying to fit a square
peg through a round hole, leaving unsupervised approaches
such as topic modeling largely underexplored even though they
may be better fit for purpose for clinical applications such as
EHR phenotyping, patient triage, care, and service improvement.

In summary, we identified the data annotation bottleneck as one
of the key obstacles to machine learning approaches in clinical
NLP. Active learning has been explored as a way of using the
annotation efforts in a more strategic manner. However, the
clinical NLP community could benefit from using alternatives
such as data augmentation, transfer learning, and distant
supervision. Ultimately, unsupervised learning avoids the need
for data annotation altogether and, therefore, should be used
more frequently to support clinical NLP.
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