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Abstract

Background: Metabolic syndrome is a cluster of disorders that significantly influence the development and deterioration of
numerous diseases. FibroScan is an ultrasound device that was recently shown to predict metabolic syndrome with moderate
accuracy. However, previous research regarding prediction of metabolic syndrome in subjects examined with FibroScan has been
mainly based on conventional statistical models. Alternatively, machine learning, whereby a computer algorithm learns from
prior experience, has better predictive performance over conventional statistical modeling.

Objective: We aimed to evaluate the accuracy of different decision tree machine learning algorithms to predict the state of
metabolic syndrome in self-paid health examination subjects who were examined with FibroScan.

Methods: Multivariate logistic regression was conducted for every known risk factor of metabolic syndrome. Principal components
analysis was used to visualize the distribution of metabolic syndrome patients. We further applied various statistical machine
learning techniques to visualize and investigate the pattern and relationship between metabolic syndrome and several risk variables.

Results: Obesity, serum glutamic-oxalocetic transaminase, serum glutamic pyruvic transaminase, controlled attenuation parameter
score, and glycated hemoglobin emerged as significant risk factors in multivariate logistic regression. The area under the receiver
operating characteristic curve values for classification and regression trees and for the random forest were 0.831 and 0.904,
respectively.

Conclusions: Machine learning technology facilitates the identification of metabolic syndrome in self-paid health examination
subjects with high accuracy.

(JMIR Med Inform 2020;8(3):e17110) doi: 10.2196/17110
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Introduction

Metabolic syndrome is a cluster of disorders, including insulin
resistance or hyperglycemia, visceral adiposity (identified by a
large waistline or overweight), atherogenic dyslipidemia (eg,
raised triglycerides or reduced high-density lipoprotein [LDL]),
and endothelial dysfunction (characterized by elevated blood

pressure) [1]. Metabolic syndrome has significant impacts on
the development and deterioration of several diseases and is a
critical predictor of cardiovascular diseases [2,3]. Numerous
modifiable risk factors and practical intervention strategies
regarding metabolic syndrome have been proposed [4-14].
Identifying high-risk patients to prevent the incidence and
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deterioration of metabolic dysregulation and relevant diseases
is therefore vital.

A recent study showed that nonalcoholic fatty liver disease
(NAFLD) is closely correlated to metabolic syndrome. Patients
with metabolic syndrome frequently show an increase in fat
accumulation in the liver (steatosis) and hepatic insulin
resistance [15]. Nevertheless, the gold-standard method for
NAFLD diagnosis is liver biopsy, which is a highly invasive
procedure for patients. Several reports have demonstrated that
ultrasound using FibroScan, also known as transient elastometry,
can accurately assess the staging of NAFLD in a noninvasive
manner with comparable results to liver biopsy [16,17]. The
new models of FibroScan (marketed after 2013) can assess the
staging of NAFLD using a liver stiffness score (E score) and a
liver steatosis score (controlled attenuation parameter [CAP]
score). Interestingly, the CAP score alone was found to be a
useful indicator of the presence and severity of metabolic
syndrome [18]. Using traditional statistical modeling, we
previously validated this finding, confirming that the CAP score
alone can be used to detect metabolic syndrome with moderate
accuracy (area under the receiver operating characteristic curve
[ROC] of 0.79), and the accuracy was improved to 0.88 when
combined with other biomarkers [19].

Machine learning, whereby a computer algorithm learns from
prior experience, was recently shown to have better performance
over traditional statistical modeling approaches [20-22]. Various
supervised machine learning models based on decision trees
have been successfully applied to medical data [23-29] for
accurate prediction of a wide range of clinical conditions such
as myocardial infarction [30], atrial fibrillation [31], trauma
[32], breast cancer [33-35], Alzheimer disease [36-38], cardiac
surgery [27,39], and others [27,28,40-42]. However, each
decision tree machine learning algorithm has its own strength
and weakness. Therefore, comparing different decision tree
algorithms can reduce the bias in the results and provide a more
robust outcome. Accordingly, the aim of this study was to
determine whether decision tree algorithms can predict the state
of metabolic syndrome among self-paid health examination
subjects who were examined with FibroScan.

Methods

Study Design
This was a single-center retrospective cohort study. The cohort
comprised self-paid health examination subjects at the Health
Management Center of Taipei Medical University Hospital who
were examined with FibroScan from September 2015 to
December 2018.

Setting
The electronic healthcare records of subjects examined with
FibroScan were reviewed at Taipei Medical University Hospital,
which is a private, tertiary-care, 800-bed teaching hospital in
Taiwan. The Institutional Review Board of Taipei Medical
University Hospital approved the study design for data collection
(TMU-JIRB No.: N201903080) in accordance with the original
and amended Declaration of Helsinki. The requirement for

informed consent was waived owing to the retrospective nature
of the study.

Population and Data Collection
The study included all Taiwanese adult patients aged >18 years
who had undergone a self-paid health examination comprising
an abdominal transient elastography inspection using FibroScan
502 Touch (Echosens, Paris, France). Individuals who
underwent FibroScan examination on physician’s orders were
excluded. The routine protocols of the Health Management
Center were applied to all participants. The subjects were first
interviewed by thoroughly trained personnel who verified the
correctness of self-completed questionnaires on demographics,
existing medical conditions, and medication use. In addition,
the personnel confirmed adherence to health examination
prerequisites (eg, overnight fasting for at least 8 hours) for the
package chosen by the study participant. Those found to have
not fulfilled the necessary prerequisites were advised to
reschedule their appointment. Anthropometrics, including
weight, height, waist circumference, and arterial pressure, were
measured. Instruments were regularly calibrated per the
manufacturer’s specifications. According to the chosen package,
the required samples of blood, urine, and specimens were
collected for laboratory tests. Regular laboratory test items
included alpha-fetoprotein, glycated hemoglobin (HbA1c), serum
glutamic oxaloacetic transaminase (GOT), serum glutamic
pyruvic transaminase (GPT), uric acid, creatinine, blood urine
nitrogen, red blood cell count, hemoglobin, hematocrit, mean
corpuscular hemoglobin, mean corpuscular volume, mean
corpuscular hemoglobin concentration, platelet count, white
blood cell count, percentage of neutrophils, lymphocytes,
monocytes, eosinophils and basophils, total protein, albumin,
globulin, albumin/globulin ratio, total bilirubin, direct bilirubin,
alkaline phosphatase, gamma-glutamyl transpeptidase (γ-GT),
total cholesterol, LDL cholesterol, high-density lipoprotein
(HDL) cholesterol, LDL/HDL ratio, triglycerides, fasting blood
sugar, and thyroid-stimulating hormone. The estimated
glomerular filtration rate (eGFR) was calculated using equations
for the Modification of Diet in Renal Disease for Chinese
patients [43], with chronic kidney disease (CKD) measured as

follows: 175 × (Scr)–1.234 × (Age)–0.179 × 0.79 (if female). CKD

was defined as an eGFR of <60 mL/min per 1.73 m2 of body

surface (mL/min/1.73 m2), according to the definition from the
Kidney Disease Outcomes Quality Initiative for CKD ≥ stage
3 [39,44]. Body mass index categories were defined as follows:

obesity, ≥27 kg/m2; overweight, 24-26.9 kg/m2; and normal

weight, <23.9 kg/m2, according to the ranges established for
Asian populations by the Ministry of Health and Welfare of
Taiwan [45].

Outcome
According to the National Cholesterol Education Program Adult
Treatment Panel III definition of metabolic syndrome consensus,
metabolic syndrome was identified if at least three out of the
following five symptoms were present: large waistline (80 cm
for women and 90 cm for men), high triglycerides (150 mg/dL)
or use of medication to control triglycerides, reduced HDL
levels (<50 mg/dL for women and <40 mg/dL for men) or use
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of medication to control HDL, elevated blood pressure (systolic
blood pressure 130 mmHg or diastolic blood pressure 85 mmHg)
or use of relevant medication to control blood pressure, and
increased fasting blood sugar (100 mg/dL) or use of relevant
medication to control blood sugar. The classification of cutoff
points was adopted from the National Cholesterol Education
Program Adult Treatment Panel III definition consensus with
ethnicity-specific cutoff points for waist circumference [46,47]
and an equality principle for the five disorders.

FibroScan
FibroScan is a noninvasive device that assesses the hardness of
the liver using ultrasound-based elastography. Liver hardness

is evaluated by measuring the velocity of a vibration wave,
which is determined by measuring the time that the vibration
wave takes to travel to a particular depth inside the liver from
the skin (Figure 1). For each FibroScan inspection, two scores
are reported: the CAP score and E score. The dashboard of
FibroScan provides a CAP score only when an E score derived
from identical signals is validated as successfully computed;
higher E scores indicate higher transmission velocity and liver
stiffness levels, and higher CAP scores indicate faster wave
amplitude attenuation and higher levels of liver steatosis.
Notably, the adoption of probe size (medium or extra large) is
based on the recommendation of the instrumental autodetection
function.

Figure 1. Illustration of the FibroScan device: liver diagnosis by ultrasound-based elastography. FibroScan measures fibrosis and steatosis in the liver.
Measurements are performed by scanning the right liver lobe through the right intercostal space. The fibrosis result is measured in kiloPascals (kPa),
and is normally between 2.5 and 6 kPa; the highest possible result is 75 kPa. Fibrosis score: F0 to F1, no liver scarring or mild liver scarring; F2, moderate
liver scarring; F3, severe liver scarring; F4, advanced liver scarring (cirrhosis). The steatosis result is measured in decibels per meter (dB/m), and is
normally between 100 and 400 dB/m. Steatosis can be graded from S0 to S3, corresponding to the severity of fatty liver from "0-10%" to "67% or
more".

Machine Learning Technique

Overview
A decision tree is a widely used effective nonparametric machine
learning modeling technique for regression or classification
purposes. To obtain solutions, a decision tree makes a sequential,
hierarchical decision regarding outcome variables based on the
predictor [48].

Classification and Regression Trees
Classification and regression trees (CART), the typical
tree-based models, explore the structure of data, while evolving
to visualize decision rules for predicting a categorical
(classification tree) or continuous (regression tree) outcome
[49]. The decision at each internal node is assessed by
information gain or entropy to compare the value of attributes
in the data from the root to each of the leaves. CART was
generated through the “rpart” package in R [50].
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C5.0
C5.0 is derived from C4.5 and ID3 with improvements according
to the disadvantages of the predecessor trees. The “C50”
package was applied to implement the C5.0 tree [51,52].

Chi-Square Automatic Interaction Detection
Chi-square automatic interaction detection (CHAID) is a specific
decision tree using adjusted significance testing (Bonferroni
testing) for prediction. An algorithm for recursive partitioning
is implemented by maximizing the significance of a chi-square
statistic for crosstabulations between the categorical dependent
variable and the categorical predictors at each partition.
Moreover, CHAID can create nonbinary trees since nominal,
ordinal, and continuous data are used. CHAID tree is available
from the “CHAID” package in R [53].

Conditional Interference Trees
Conditional inference trees (ctrees) embed tree-structured
regression models into a well-defined theory of conditional
inference procedures. They use a significance test procedure to
select variables instead of selecting the variable that maximizes
any information measure. In addition, ctree is applicable to all
types of regression issues, including nominal, ordinal, numeric,
censored, and multivariate response variables, as well as
arbitrary measurement scales of covariates. A flexible and
extensible computational tool in the “partykit” package of R is
suitable for fitting and visualizing ctrees [54,55].

Evolutionary Learning of Globally Optimal Trees
Evolutionary learning of globally optimal trees (evtree) describes
recursive partitioning methods that create models using a
forward stepwise search. An evtree is learned using an
evolutionary algorithm. Notably, a set of trees is initialized with
random split rules in the root nodes. Mutation and crossover
operators are then applied to modify the tree’s structure and
tests that are applied in the internal nodes. After each
modification step, a survivor selection mechanism identifies
the best candidate models for the next iteration, terminating
when the quality of the best trees ceases to improve. The
“evtree” package in R applies an evolutionary algorithm for
learning globally optimal classification and regression trees
[56].

Generalized Linear Model Trees
Generalized linear model trees (glmtree) involve model-based
recursive partitioning based on generalized linear models. They
are convenient for fitting model-based recursive partitions using
“mob” functions in R. A glmtree internally sets up a model-fit
function for mob using the negative log likelihood as the
objective function. It is also implemented by the “partykit”
package in R [54,57].

Random Forest
Random decision forests are an ensemble learning method for
classification, regression or other applications based on decision
tree structures at the time of training. The idea of random forest
is to create multiple decision trees (CART) and then combine
the output generated by each of the decision trees. In the
decision tree algorithm, the Gini index is a measure of the

frequency of a randomly chosen element from the set that would
be incorrectly labeled. The Gini index is calculated by
subtracting the sum of the squared probabilities of each class
from 1. This approach removes the bias that a decision tree
model might introduce to a system while considerably improving
the predictive power. In addition, random forests can be used
to rank the importance of variables in a regression or
classification problem in a natural manner, which can be
conducted in the R package “randomForest” [58].

Statistical Analysis

Basic Statistics
Statistical analysis was conducted using R (version 3.6.1; R
Foundation for Statistical Computing, Vienna, Austria) or SPSS
(version 17.0; SPSS Inc, Chicago, IL, USA) software.

Categorical variables were tested using the chi-square test or
Fisher exact test. The nonparametric Mann-Whitney U-test was
applied to determine differences in the median of continuous
variables between the two groups. Multivariate logistic
regression was employed to assess the significance of clinical
data, and the variance inflation factor was also used to check
for multicollinearity. P<.05 was considered statistically
significant [59,60].

Principal Components Analysis
High-dimension data were processed by principal components
analysis (PCA), using an orthogonal transformation to convert
a set of observations of correlated variables to provide a
two-dimensional or three-dimensional visualization with its
leading principal components.

Receiver Operating Characteristic Curve
ROC curves were used to illustrate the diagnostic ability of
classification trees in the machine learning methodology. The
area under the ROC curve (AUC), true positive rate (also called
sensitivity or recall), and false positive rate (specificity) are
represented in a graphical plot [61]. The F1 score, which
constitutes the harmonic mean of precision and recall, was also
evaluated. The F1 score has been widely used in the natural
language processing literature and for machine learning [62,63].

Missing Values
Data with missing values were statistically regulated by the
expectation-maximization algorithm, which is an iterative
procedure that preserves the relationship with other variables.
Only 9 factors had missing values, and most of them accounted
for less than 5% of the sample size. Direct bilirubin, which had
the largest proportion of missing values (298/1333, 22.36%),
was at high risk of multicollinearity; thus, it was not a crucial
element in the model [64].

Comparison of Decision Trees
To compare the performance of the aforementioned decision
trees, the same setting for the training set and testing set was
considered. In addition, the boundary for each tree’s height was
limited between 4 and 5 instead of pruning each decision tree
according to its own criteria. Finally, outcomes from each
decision tree were summarized to investigate common and
reliable results supporting the conclusions.
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Results

After data cleaning, a total of 1333 individuals undergoing
self-paid annual health examination were enrolled in this study.
The baseline characteristics of the 193 patients diagnosed with
metabolic syndrome and 1140 participants without metabolic
syndrome are compared in Table 1. All categorical elements
were found to be extremely significant in the chi-square test.
Among the continuous variables, most of the risk factors were
highly significantly different between groups in the
nonparametric test, although not enough evidence was found
for age, alpha-fetoprotein, bilirubin, and thyroid stimulating
hormone to support rejection of the null hypothesis. However,
large samples and P value problems had to be considered owing

to the numerous and complex data in this analysis [65]. The
foremost factors were then validated by a series of additional
evaluations.

The visualization of the two groups was achieved by PCA with
the advantage of dimensionality reduction (Figure 2). All factors
with significant outcomes by the tests mentioned above and
shown in Table 1 depicted an intermixing view because the two
groups of patients overlapped (Figure 2), with weak explanatory
power for the first two principal components PC1 and PC2 at
27.7% and 13.2%, respectively. A variety of views in
three-dimensional PCA plots are also displayed in Multimedia
Appendix 1. The two groups could not be clearly discriminated,
even if the coordinates were rotated in the three-dimensional
graph.
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Table 1. Descriptive statistics and testing of risk factors in health examination data with potential metabolic syndrome as the dependent variable.

P valueMetabolic syndrome (N=193)No metabolic syndrome (N=1140)Risk factors

Chronic kidney diseasea, n (%)

.00171 (36.8)585 (51.32)Stage 1

115 (59.6)530 (46.49)Stage 2

6 (3.1)24 (2.11)Stage 3

1 (0.5)1 (0.09)Stage 4

Sex, n (%)

<.00144 (22.8)564 (49.47)female

149 (77.2)576 (50.53)male

Obesitya, n (%)

<.0010 (0.0)49 (4.30)underweight

22 (11.4)667 (58.51)normal weight

65 (33.7)293 (25.70)overweight I

106 (54.9)131 (11.49)overweight II

.1245 (40-51)44 (38-50)Age (years), median (IQR)

<.0014.7 (4.5-4.8)4.6 (4.4-4.8)Hepatic indices, median (IQR)

.152.43 (1.71-3.14)2.26 (1.637-3.12)Albumin (g/dL)

<.00162 (54-75)58 (48-69)AFPb (ng/mL)

<.00124 (19-31)20 (17-24)ALKpc (IU/L)

<.00133 (22-51)19 (13-27)GOTd (IU/L)

.080.7 (0.5-0.9)0.6 (0.5-0.8)GPTe (IU/L)

.660.2087 (0.2-0.3)0.2 (0.2-0.3)Total bilirubin (mg/dL)

<.00129 (20-45)16 (12-25)Direct bilirubin (mg/dL)

<.001311 (271-340)239 (209-274)γ-GTf (U/L)

<.0014.9 (4.3-5.8)4 (3.4-4.8)CAPg score (dB/m)

.0313 (11-15)12 (10-15)E score (kPa)

Nephritic indices, median (IQR)

BUNh (mg/dL)

<.0010.9 (0.7-1.0)0.8 (0.6-0.9)Creatinine (mg/dL)

<.00186.23 (75.05-98.82)91.07 (81.3-105.17)MDRDi

<.0016.3 (5.5-7.3)5.2 (4.3-6.5)UAj (mg/dL)

Blood lipid and thyroid markers, median (IQR)

.03194 (165-220)187 (165-208)Cholesterol (mg/dL)

<.001136 (106-158)121 (101-142)LDLk (mg/dL)

<.0015.7 (5.4-6.1)5.4 (5.2-5.7)HbA1c
l (%)

.831.89 (1.38-2.51)1.93 (1.30-2.52)TSHm (μIU/mL)

aProgressive discrete variables.
bAFP: alpha-fetoprotein.
cALKp: alkaline phosphatase.
dGOT: glutamic-oxalocetic transaminase.
eGPT: glutamic-pyruvic transaminase.
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fγ-GT: gamma-glutamyl transpeptidase.
gCAP: controlled attenuation parameter.
hBUN: blood urea nitrogen.
iMDRD: Modification of Diet in Renal Disease.
jUA: uric acid.
kLDL: low-density lipoprotein cholesterol.
lHbA1c: glycated hemoglobin.
mTSH: thyroid-stimulating hormone.

Figure 2. Principal components analysis (PCA) of metabolic and nonmetabolic groups by two-dimensional and three-dimensional visualization. (a)
PCA with 95% CI shown as ellipses for all risk factors in Table 1. (b) PCA with 95% CI shown as ellipses for specific major variables in Table 3. Light
blue nodes represent people diagnosed with metabolic syndrome, and dark blue nodes represent people without metabolic syndrome. PC1 explains the
most variability among the samples, followed by PC2, PC3, and so on. (c) Three-dimensional PCA including PC1, PC2, and PC3 for all risk factor data
from Table 1. (d) Three-dimensional PCA for specific major variables from Table 3.

Next, we applied multivariate logistic regression to assess factors
influencing metabolic syndrome. As shown in Table 2, the
number of significant variables was reduced to 3, and included

obesity, CAP score, and HbA1c. Among these, HbA1c was
obtained from blood tests, whereas information on obesity and
the CAP score was obtained through noninvasive means.
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Notably, obesity and HbA1c exhibited high odds ratios, exceeding 2. In addition, the variance inflation factor was taken
into account for multicollinearity.

Table 2. Multivariate logistic regression analysis of risk factors related to metabolic syndrome.

P valueΔVIFcVIFbOdds ratioa (95% CI)Factor

.991.6303.5900.742 (0.335-1.641)Sex, Male/Female

.151.5061.6221.025 (0.999-1.051)Age, years

<.0011.4061.4292.915 (2.175-3.907)Obesity

.121.1761.2181.866 (0.821-4.239)Albumin, g/dL

.481.1531.1621.045 (0.915-1.193)AFPd, ng/mL

.521.1401.1580.995 (0.983-1.007)ALKpe, IU/L

--7.2260.959 (0.923-0.997)GOTf, IU/L

.511.5557.7471.023 (1.003-1.045)GPTg, IU/L

.391.2468.3342.599 (0.562-12.015)Total bilirubin, mg/dL

--8.4130.011 (0-2.507)Direct bilirubin, mg/dL

.771.3791.4141.002 (0.994-1.009)γ-GTh, U/L

<.0011.3981.4551.011 (1.007-1.016)CAPi score, dB/m

.611.2561.2841.046 (0.926-1.182)E score, kPa

.272.5503.3871.135 (0.615-2.097)CKDj

.131.3381.3970.952 (0.893-1.016)BUNk, mg/dL

--10.9574.288 (0.196-94.014)Creatinine, mg/dL

.392.8634.8601.012 (0.994-1.031)MDRDl

.081.5961.6421.127 (0.967-1.314)UAm, mg/dL

--9.8551.003 (0.986-1.021)Cholesterol, mg/dL

.821.0699.7010.994 (0.976-1.012)LDLn mg/dL

<.0011.2301.2362.170 (1.631-2.888)HbA1c
o, %

.131.0781.0860.876 (0.727-1.054)TSHp, μIU/mL

aThe odds ratio represents the exp(β), which is the exponential of the estimator in logistic regression.
bVIF: variance inflation factor (to check multicollinearity); factors with high VIF values are italicized.
cΔVIF: variance inflation factor after removal of predictor variables with high VIF values; VIF values with a sharp decline are italicized.
dAFP: alpha-fetoprotein.
eALKp: alkaline phosphatase.
fGOT: glutamic-oxalocetic transaminase.
gGPT: glutamic-pyruvic transaminase.
hγ-GT: gamma-glutamyl transpeptidase.
iCAP: controlled attenuation parameter.
jCKD: chronic kidney disease.
kBUN: blood urea nitrogen.
lMDRD: Modification of Diet in Renal Disease.
mUA: uric acid.
nLDL: low-density lipoprotein cholesterol.
oHbA1c: glycated hemoglobin.
pTSH: thyroid-stimulating hormone.

To inspect the potential indices used for metabolic syndrome,
several types of decision trees were applied to health

examination data for the classification of metabolic syndrome
(Figure 3). In general, obesity, CAP score, and HbA1c were
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found to be important predictive variables in the decision trees.
Moreover, important variables appearing in each node of the
decision trees were recorded 100 times (Table 3). CAP score,
obesity, and HbA1c were regarded as outstanding variables in
the root, and E score, γ-GT, LDL, and GPT were secondary

variables in the decision trees. The thresholds for factors
classified as nodes are listed on the branches of each decision
tree. In addition, a right skew pattern at the leaves was apparent
and expected because the classification of metabolic syndrome
was achieved efficiently and hierarchically by the decision trees
(Figure 3).

Figure 3. Metabolic syndrome prediction by various decision tree models. The decision tree takes on a flowchart-like structure. The six most commonly
used decision trees are shown: (a) classification and regression tree (CART), (b) C5.0 classification tree modified from C4.5 and ID3 tree, (c) chi-square
automatic interaction detection (CHAID), (d) conditional inference tree (ctree), (e) evolutionary learning of globally optimal tree (evtree), and (f)
generalized linear model tree (glmtree). Each decision tree is applied for the prediction of metabolic syndrome to explore the factors with the greatest
influence as an index to distinguish metabolic syndrome.
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Table 3. Major factors as classified nodes in decision treesa.

Secondary nodedPrimary nodec (root included)RootbDecision tree

Total bilirubin (0.19)

Albumin (0.18)

ALKpl (0.17)

CAP score (0.17)

GPTm (0.17)v

LDLn (0.15)v

MDRDo (0.13)

TSHp (0.10)

HbA1c (0.93)

Obesity (0.54)

γ-GTh (0.40)v

Age (0.36)

GOTi (0.31)

UAj (0.28)

AFPk (0.25)

E score (0.21)v

CAP score (0.99)

HbA1c
g(0.95)

Obesity (0.94)

E score (0.05)v

CAP f score (0.91)

Obesity (0.09)

CARTe

Sex (0.28)

Obesity (0.23)

AFP (0.19)

CKDq (0.16)

UA (0.11)

HbA1c (0.52)

Total bilirubin (0.41)

GOT (0.35)

γ-GT (0.34)v

E score (0.29)v

Obesity (1.06)

CAP score (0.94)

HbA1c (0.25)

CAP score (0.90)

Obesity (0.06)

HbA1c (0.04)

C5.0

AFP (0.12)

HbA1c (0.12)

CAP score (1.21)

GPT (0.41)v

E score (0.32)v

LDL (0.32)v

TSH (0.19)

Sex (0.16)

Obesity (1.00)

GPT (0.99)v

HbA1c (0.74)

CAP score (0.70)

LDL (0.42)v

γ-GT (0.06)v

Obesity (1.00)CHAIDr

AFP (0.16)Obesity (1.23)

CAP score (0.67)

HbA1c (0.66)

LDL (0.17)v

HbA1c (0.89)

CAP score (0.85)

Obesity (0.51)

γ-GT (0.14)v

Obesity (0.96)

CAP score (0.04)
ctrees

GOT (0.19)

γ-GT (0.13)v

GPT (0.11)v

HbA1c (0.48)

CAP score (0.44)

Obesity (0.42)

UA (0.26)

E score (0.25)v

ALKp (0.19)

Obesity (0.82)

HbA1c (0.58)

CAP score (0.53)

Escore (0.10)v

UA (0.10)

rGT (0.05)v

Obesity (0.33)

HbA1c (0.30)

CAP score (0.17)

Escore (0.05)v

UA (0.05)

evtreet

LDL (0.23)v

CAP score (0.22)

MDRD (0.18)

GOT (0.15)

Obesity (1.13)

HbA1c (0.85)

γ-GT (0.79)v

Escore (0.35)v

GPT (0.26)v

Obesity (1.16)

CAP score (0.92)

HbA1c (0.79)

LDL (0.06)v

CAP score (0.85)

Obesity (0.15)
glmtreeu

aMajor variables are listed with their weights as candidate nodes in each decision tree; since some variables may be considered candidate nodes in the
decision tree more than once, the proportion of variables can be larger than 1.
bThe root shows factors appearing as the first classified node and their proportions.
cThe primary node (italicized) includes variables selected as the top three nodes (root included) with their proportions (>0.05); variables with lower
weights as candidate nodes in the primary nodes are excluded.
dThe secondary node includes all remaining candidate nodes in each decision tree with their proportions; only candidate nodes with proportions >0.1
with a certain influence in the classification of metabolic syndrome are shown.
eCART: classification and regression trees.
fCAP: controlled attenuation parameter.
gHbA1c: glycated hemoglobin.
hγ-GT: gamma-glutamyl transpeptidase.
iGOT: glutamic-oxalocetic transaminase.
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jUA: uric acid.
kAFP: alpha-fetoprotein.
lALKp: alkaline phosphatase.
mGPT: glutamic-pyruvic transaminase.
nLDL: low-density lipoprotein cholesterol.
oMDRD: Modification of Diet in Renal Disease.
pTSH: thyroid-stimulating hormone.
qCKD: chronic kidney disease.
rCHAID: chi-square automatic interaction detection.
sctree: conditional inference tree.
tevtree: evolutionary learning of globally optimal tree.
uglmtree: generalized linear model tree.
vSecondary variables for classification of metabolic syndrome in several decision tree algorithms.

PCA was then applied again to visualize the nonmetabolic
syndrome and metabolic syndrome groups according to the
prominence of factors from the decision trees, which comprised
the CAP score, obesity, and HbA1c (Figure 2b). PC1 and PC2
explained greater variability of 56.7% and 29.1%, respectively.
With this analysis, discrimination between the two groups was
evident, although the junction of the two groups was explicit
in the union (Multimedia Appendix 2).

Finally, the accuracies of various decision trees were determined
using 500 rounds of random sampling from the entire health

examination dataset with fixed-size divisions of training and
testing sets (Table 4). Independent training and testing sets were
used for each evaluation to confirm the performance and
reliability of each model. The AUC of the ROC curve was
determined to evaluate the performance of each decision tree
and random forest (Table 4, Figure 4, and Multimedia Appendix
3). Prominent variables obtained with random forest are shown
in Figure 4. In general, CAP score, obesity, HbA1c, GPT, and
γ-GT were the leading variables in accuracy, whereas CAP
score, HbA1c, obesity, GPT, γ-GT, and E score played essential
roles in random forest for classification.

Table 4. Accuracya and area under the curve (AUC) values of various decision trees in receiver operating characteristic curve analysis.

AUCF1-scoreAccuracyDecision tree

maximummeanminimummaximummeanminimum

0.8310.9480.9190.8880.9140.8570.797CARTb

0.7690.9510.9220.8840.9210.8610.805C5.0

0.8670.9560.9300.8940.9170.8730.823CHAIDc

0.8960.9540.9230.8830.9140.8640.801ctreed

0.8150.9530.9200.8800.9060.8570.805evtreee

0.889––––––gglmtreef

0.9040.9590.9280.8880.9400.8700.812Random forest

aAccuracy and F1-score were calculated from 500 machine learning trials with different training sets for comparison with the number of candidate trees
from random forest. Accuracy is the probability of true positives and true negatives for all data, whereas F1-score is a measure of performance, which
is the harmonic mean of precision and recall. The dataset was divided 80% as the training set and 20% as the testing set independently for each analysis
with randomized sampling.
bCART: classification and regression trees.
cCHAID: chi-square automatic interaction detection.
dctree: conditional inference tree.
eevtree: evolutionary learning of globally optimal tree.
fglmtree: generalized linear model tree.
gThe terminal nodes of the R package glmtree are not a simple classification form to calculate the confusion matrix for accuracy; therefore, the area
under the curve was used to reach a balance in comparison between the seven decision tree techniques on the same training and testing set.
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Figure 4. Random forest model for predicting classification performance and variable importance. Receiver operating characteristic (ROC) curve with
area under the curve values for (a) classification and regression tree and (b) random forest. The color bar indicates the value of specificity in the false
positive rate. (c) Variable importance ordered by accuracy of a mean decrease in random forest. (d) Variable importance ordered by the gini index of
a mean decrease in random forest. The leading variables obtained by random forest are listed in darker blue, and less important variables are in lighter
blue.

Discussion

Principal Findings
The use of artificial intelligence in health care, particularly
machine learning methods, can help to discover underlying
patterns and correlations through the learning of data-driven
prediction models. We applied various machine learning
techniques to visualize and investigate predictive variables
leading to metabolic syndrome, which revealed that obesity,
serum GOT, serum GPT, CAP score, and HbA1c are the most
important predictive variables.

Among these predictive variables, the predictive power of the
CAP score was similar to that of other key indices such as
obesity. Despite the significance of the CAP score, these factors
make sense cumulatively rather than as exclusive alternatives.

In other words, more research is required to determine whether
the CAP score can be used as a standalone test method to screen
for metabolic syndrome, and whether a minimum set of
nonblood test variables can be combined with the CAP score
to improve the accuracy of predicting metabolic syndrome.
Such future research may help subjects who are resistant to the
inconvenience of overnight starvation or painful blood assays.

Metabolic syndrome demonstrates a spectrum of physiological
manifestations with groups of pathologies that are complicated
and progressive. Traditional diagnostic criteria often
dichotomize the population into those with metabolic syndrome
and those without. However, based on the results of our PCA,
such a sharp distinction may be inappropriate. We found that
CAP score, obesity, and HbA1c were the principal factors
predicting metabolic syndrome, although E score, γ-GT, LDL,
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and GPT also considerably affected the predictions. Notably,
GPT had more predictive power than GOT. We consider this
difference to be related to aspartate aminotransferase as a
relatively less specific indicator of liver damage than alanine
aminotransferase, which is common in patients with fatty liver.
Our study suggests that current diagnostic criteria for metabolic
syndrome fail to capture its wide range of presentations, and
should thus be expanded to include hepatic and nephritic indices.

Liver-related indices such as γ-GT, GPT, and E score ranked
among the highest predictors in our models. A previous study
also showed a strong correlation between liver function tests
and metabolic syndrome based on Pearson correlation
coefficients [66]. HbA1c is reported to be more closely associated
with several chronic diseases than fasting plasma glucose. In
addition, although fasting glucose levels are commonly believed
to be reproducible across days, acute perturbations of glucose
homeostasis due to stress and other factors have been described.
By contrast, HbA1c is not influenced by acute perturbations or
insufficient fasting; thus, it can be measured at any time.
Accordingly, HbA1c might prove to be a more suitable predictor
of metabolic syndrome [67].

Multivariate logistic regression has been extensively utilized
in medical research, and its many biases have been well
documented. One of the drawbacks we observed in our models
was the multicollinearity problem. To avoid multicollinearity
(Table 2), GOT, direct bilirubin, creatinine, and cholesterol
were eliminated from the regression model. By contrast, the
decision trees had few such disadvantages and offered more
intuitive visualizations. The trained decision tree models could
also be more easily interpreted by human experts, which is vital
for establishing various important pathways to metabolic
syndrome. In general, our result that random forest has the best

accuracy in detecting metabolic syndrome agrees with previous
research [68]. One of the reasons for the better accuracy of a
random forest model is that it creates multiple decision trees
and then combines the output generated by each tree; each tree
is built from a sample drawn with replacement from the training
set. This approach therefore removes the bias that a decision
tree model might introduce in the system, thus substantially
improving the predictive power.

Limitations
This study has several limitations. First, this was a retrospective
study, and therefore a sufficiently powered prospective cohort
study is needed to conclusively address the usefulness of
supervised machine learning models to diagnose metabolic
syndrome. Second, this study included only health-conscious
Taiwanese participants that underwent a self-paid health
examination; therefore, this study should be replicated and
validated in other populations. Third, this study failed to include
some new obesity biomarkers (such as leptin and adiponectin)
that may further improve the prediction of metabolic syndrome
[69].

Conclusion
To the best of our knowledge, this is the first study to apply
machine learning algorithms to identify metabolic syndrome in
subjects examined with FibroScan. We found that decision tree
learning algorithms identified metabolic syndrome in self-paid
health examination subjects with high accuracy, and obesity,
serum GOT, serum GPT, CAP score, and HbA1c emerged as
important predictive variables. More research is required to
validate the CAP score as a standalone test method to screen
for metabolic syndrome, and to determine whether a minimum
set of nonblood tests variables can be combined with the CAP
score to improve the accuracy of predicting metabolic syndrome.
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Multimedia Appendix 1
Three-dimensional principal components analysis (PCA) of all risk factors. The three-dimensional PCA plots provide different
visual points to observe the scatter of both the metabolic syndrome and nonmetabolic syndrome groups. All factors in Table 1
are considered in this analysis. The leading principal components PC1, PC2, and PC3—which explain more variability among
the samples—are shown in all three-dimensional graphs. The aggregation of two groups is obvious when rotating the coordinate
in the three-dimensional graph.
[PNG File , 330 KB-Multimedia Appendix 1]

Multimedia Appendix 2
Three-dimensional principal components analysis of only the major risk factors. In this case, the distinction between the metabolic
syndrome and nonmetabolic syndrome groups is apparent because only the major variables obtained from Table 3 are included,
although the borders of the two groups still overlap.
[PNG File , 317 KB-Multimedia Appendix 2]
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Multimedia Appendix 3
Receiving operator characteristic curves and area under the curve (AUC) values of six decision trees. The specificity is revealed
by the color bar, and the diagonal line is presented as a dashed line. Most AUC values exceed 0.80 except for that of the C5.0
tree.
[PNG File , 388 KB-Multimedia Appendix 3]
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Abbreviations
AFP: alpha-fetoprotein
ALKp: alkaline phosphatase
AUC: area under the curve
BUN: blood urea nitrogen
CAP score: controlled attenuation parameter score
CART: classification and regression tree
CHAID: Chi-square automatic interaction detection
CKD: chronic kidney disease
ctree: conditional interference tree
eGFR: estimated glomerular filtration rate
E score: liver stiffness score
evtree: evolutionary learning of globally optimal trees
γ-GT: gamma-glutamyl transpeptidase
GOT: serum glutamic oxaloacetic transaminase
GPT: serum glutamic pyruvic transaminase
HbA1c: glycated hemoglobin
HDL: high-density lipoprotein
LDL: low-density lipoprotein
MDRD: Modification of Diet in Renal Disease
NAFLD: nonalcoholic fatty liver disease
PCA: principal components analysis
ROC: receiver operating characteristic
TSH: thyroid-stimulating hormone
UA: uric acid
VIF: variance inflation factor
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