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Abstract

Background: Electrocardiographic (ECG) monitors have been widely used for diagnosing cardiac arrhythmias for decades.
However, accurate analysis of ECG signals is difficult and time-consuming work because large amounts of beats need to be
inspected. In order to enhance ECG beat classification, machine learning and deep learning methods have been studied. However,
existing studies have limitations in model rigidity, model complexity, and inference speed.

Objective: To classify ECG beats effectively and efficiently, we propose a baseline model with recurrent neural networks
(RNNs). Furthermore, we also propose a lightweight model with fused RNN for speeding up the prediction time on central
processing units (CPUs).

Methods: We used 48 ECGs from the MIT-BIH (Massachusetts Institute of Technology-Beth Israel Hospital) Arrhythmia
Database, and 76 ECGs were collected with S-Patch devices developed by Samsung SDS. We developed both baseline and
lightweight models on the MXNet framework. We trained both models on graphics processing units and measured both models’
inference times on CPUs.

Results: Our models achieved overall beat classification accuracies of 99.72% for the baseline model with RNN and 99.80%
for the lightweight model with fused RNN. Moreover, our lightweight model reduced the inference time on CPUs without any
loss of accuracy. The inference time for the lightweight model for 24-hour ECGs was 3 minutes, which is 5 times faster than the
baseline model.

Conclusions: Both our baseline and lightweight models achieved cardiologist-level accuracies. Furthermore, our lightweight
model is competitive on CPU-based wearable hardware.

(JMIR Med Inform 2020;8(3):e17037) doi: 10.2196/17037
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Introduction

Background
Arrhythmia refers to any change causing the heart to beat too
fast or slow, or erratically [1], and can lead to sudden death or

critical adverse outcomes such as embolic stroke [2]. Therefore,
early detection and treatment of arrhythmia are very important.

One of the most widely used diagnostic methods for detecting
arrhythmia is electrocardiographic (ECG) monitoring. ECG
monitoring is a simple and noninvasive method for recording
electrical activities of the heart by using electrodes placed on
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human skin. However, at least 24 hours of ECG signals should
be monitored to confirm arrhythmia since it occurs irregularly
[3,4]. Recently, single lead patches that are wireless, compact,
and lightweight have been proposed for long-term wear [5-7].
Despite improvements to measuring ECGs and patient comfort,
it is still difficult to diagnose arrhythmias because identification
of abnormal ECG patterns from large amounts of recorded ECGs
is not trivial. For example, an ECG record, measured for 24
hours in patients with a heart rate of 80 bpm, consists of 110,000
beats. It takes at least 2 hours for an expert to analyze this
24-hour ECG signal.

Large-scale machine learning methods have been investigated
to reduce the human efforts for ECG beat classification [8-10].
However, most machine learning approaches with static and
handcrafted features have performed at lower accuracy rates
over new types of ECGs because those features are insufficient
for representing the great diversity of ECG patterns from various
patients. Therefore, several self-learning approaches based on
a deep neural network have been proposed recently [11-13].

Among the deep learning approaches, convolutional neural
networks (CNNs) and recurrent neural networks (RNNs) are
most commonly used for ECG classification. CNNs typically
consist of convolution, pooling, and fully connected layers [14].
CNNs extract implicit features of ECGs through each level of
convolution layer and use the abstraction from these features
to solve problems such as classification and regression [15].
Rajpurkar et al [11] used a CNN to classify 12 ECG rhythms,
which are longer units consisting of 2 or more beats. Their
model consisted of 33 convolutional layers with shortcut
connections followed by a fully connected layer and a softmax
layer. The model achieved an F1 score of 0.81 compared with
the responses of board-certified cardiologists. Acharya et al [12]
proposed an ECG beat classification model using a CNN
together with noise removal, wavelet transformation, and
segmentation method. Their model consisted of three
convolutional layers, three max-pooling layers, three fully
connected layers, and finally, a softmax layer with five output
neurons. The model resulted in an average accuracy of 94.03%
compared with the MIT-BIH (Massachusetts Institute of
Technology-Beth Israel Hospital) gold standard.

However, a limitation of CNNs is that the length of inputs must
be fixed since the filters of the networks have static sizes. When
it comes to ECG classification, the length of ECGs can be varied
according to an individual’s heart rate. Therefore, adjusting data
such as linear interpolation is required to achieve same-size
inputs [11-13].

In contrast, RNNs are able to handle this sequential problem
because the networks recursively learn data as time progresses
[16]. Tan et al [17] proposed the implementation of a long
short-term memory network (LSTM), which is the most widely
used method among RNN approach, with a CNN to diagnose
the presence of coronary artery disease from the ECG signals.
Although they focused on specific diseases, they achieved an
F1 score of 0.96. Oh et al [18] diagnosed five types of rhythms:
normal sinus rhythm, left bundle branch block, right bundle
branch block, atrial premature beats, and premature ventricular
contraction. Their model consisted of three 1D convolution

layers, one LSTM layer, and three fully connected layers. They
achieved a 98.10% accuracy using 10-fold cross-validation.
Yildirim [19] also classified five types of rhythms but chose
bidirectional LSTM (bi-LSTM) instead of unidirectional LSTM
(uni-LSTM). The proposed model was composed of four wavelet
transform layers, two bi-LSTMs, and two fully connected layers.
This model showed a recognition accuracy of 99.39%.

However, existing studies using RNNs have limitations in
application [17-20]. First, subject-specific evaluation to explore
differences between patients is generally not conducted.
Therefore, it is difficult to trust predictions of RNNs on new
patients’ ECG signals that were not included in the training
data. Second, RNNs have disadvantages related to financial cost
and inference time. Most of the papers did not consider the cost
of using a graphics processing unit (GPU) instead of a central
processing unit (CPU) and did not present the time to inference
with their deep learning models. This weakness in computational
efficiency is a critical drawback of RNN applications. To
accelerate and maximize the computational efficiency of RNN
layers, MXNet proposed fused RNN operator by applying
several optimization methods: (1) various general matrix
multiplication (GEMM) modes such as combining small
GEMMs, Batch GEMM, and Pack GEMM; (2) vectorization
of elementwise operations using Basic Linear Algebra
Subprogram (BLAS) libraries and Intel Math Kernel Library
(MKL); and (3) saving and reusing intermediate results during
forward computation [21,22].

Objectives
We used ECG signals measured with Samsung S-Patch 2, a
small (120×29×4.4 mm in size) and light (8 g in weight)
patch-type ECG monitor [7]. To diagnose arrhythmias using
S-Patch devices effectively and efficiently, we propose a
baseline model with RNN that can learn sequential patterns.
Furthermore, we also propose a lightweight model with fused
RNN for conducting the classification process on CPUs with a
shorter prediction time.

Methods

Data Collection
We analyzed an open-source ECG database (PhysioBank
MIT-BIH Arrhythmia Database [23]) together with our own
deidentified dataset collected with the S-Patch device. Overall,
the MIT-BIH Arrhythmia Database contains 48 subjects’ECGs,
each measured for 24 hours at 360 Hz.

The S-Patch database was obtained according to the following
procedures. First, we collected the ECGs using S-Patch at the
Samsung Medical Center in Seoul and at Counties Manukau
Health in New Zealand from February 2017 to April 2018. A
skilled nurse at each hospital attached an ECG monitor and
checked whether the ECGs were normally collected over the
first 5 minutes. The patches of S-patch cardiac monitor were
attached on v2 and v5 positions of the 12-lead placement (Figure
1). Second, three experts, who had more than 5 years of
experience working in a territorial hospital, reviewed each record
and excluded ones that contained noise levels of more than 80%
to enhance the data quality. Subsequently, we anonymized data
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by removing personal and location information. Third, the three
experts annotated each beat using the Web portal. If consensus
could not be reached on the classification of a beat, the experts
rediscussed the issue to make a final decision. Consequently,
we collected 1828-hours of ECG data from 76 subjects. The
average length of the ECGs from S-Patch was 17 hours (from
28 minutes to 45 hours). Each ECG collected with S-Patch was
sampled at 256 Hz.

In this study, we used five beat categories defined in the
AAMI/IEC (Association for the Advancement of Medical
Instrumentation / International Electrotechnical Commission)
standard [24] (ie, nonectopic [N], supraventricular ectopic [S],
ventricular ectopic [V], fusion [F], and paced or unknown [Q]).
Overall, 5,575,512 ECG beats were used in this study, as shown
in Table 1.

Figure 1. Usage of S-Patch for Samsung SDS Cardio.

Table 1. The five subtype classes and the number of samples.

Number of beatsAAMIa/IECb categories

S-Patch dataset, n (%)MIT-BIHc dataset, n (%)

5,303,245 (97.03)90,386 (82.19)Nonectopic

27,288 (0.5)3026 (2.75)Supraventricular ectopic

135,013 (2.47)7708 (7.01)Ventricular ectopic

0 (0)803 (0.74)Fusion

0 (0)8043 (7.31)Paced or unknown

5,465,546 (100.00)109,966 (100.00)Total

aAAMI: Association for the Advancement of Medical Instrumentation.
bIEC: International Electrotechnical Commission.
cMIT-BIH: Massachusetts Institute of Technology-Beth Israel Hospital.

Data Preprocessing
We performed ECG preprocessing as follows (Figure 2A):
downsampling, noise removal, segmentation, and short-time
Fourier transform (STFT). The examples of preprocessed signals
for the beat classes are also depicted (Figure 2B): A normal beat
has a regular beat interval with a small wave (P-wave) before

a larger and sharper wave (QRS wave); a supraventricular beat
has an irregular beat interval; a ventricular beat has a wide QRS
wave with a vague or no P-wave; a fusion beat is a combined
pattern of normal and ventricular beat; and a paced or unknown
beat has none of the abovementioned features and can be
observed in diverse patterns.
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Figure 2. Data preprocessing of electrocardiograms: (A) full steps from downsampling to short-time Fourier transform; (B) an example of a 3-beat
electrocardiographic segment for each class. ECG: electrocardiogram; RNN: recurrent neural network.

First, we downsampled the ECG signals to handle the different
sampling rates between data from difference databases. For
consistency, the MIT-BIH records were downsampled to 256
Hz, which is the same as the sampling rate of the S-Patch
dataset. Second, we tried to reduce artifacts in the data. The
ECGs collected with S-Patch are real-world data. Therefore,
they contained all kinds of noise such as loose contacts, motion
artifact, muscular activation interference, baseline wandering,
and AC (alternating current) interference (Figure 3). We
excluded noise caused by loose contact that falls below 0 mV.
Thereafter, we applied a bandpass filter with a high-frequency

cutoff at 40 Hz and a low-frequency cutoff at 0.5 Hz to handle
other types of noise. Third, in order to deal with 24-hour ECGs
effectively, we segmented the ECGs into beat units. Since the
duration of a beat is different according to the heart rate of each
patient, we extracted 3-beat ECG signals with R-peaks identified
using the algorithm developed by Kathirvel et al [25] instead
of an arbitrary time duration. Specifically, we selected a window
with a length of 3 beats because information on the middle beat,
which is the target to be classified, is affected by the preceding
and following beats. Finally, we applied STFT to all ECG
segments.

Figure 3. Examples of electrocardiographic signal noise: (A) loose contact, (B) motion artifact, (C) muscular activation interference, (D) baseline
wandering, (E) alternating current (AC) interference (low signal-to-noise ratio), (F) AC interference (high signal-to-noise ratio).
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Baseline Model With Recurrent Neural Network
We segmented ECG signals into 3-beat units during the
preprocessing; thus, their lengths varied according to the
subjects’heart rates. As baselines for ECG pattern classification,
we implemented Vanilla RNNs (Figure 4), which can handle
input sequences with various lengths. However, the variable
length of input data can reduce the learning efficiency of deep

learning models. Therefore, we used a bucketing method to
handle the variable length of inputs. Bucketing is suggested to
improve the parallelization capabilities of the recurrent training
process. We set up several buckets and assigned each instance
to the bucket with the closest size. Within a bucket, each
instance was padded with zeroes up to the length of the bucket.
Although the buckets had different internal models, their
parameters were shared in time.

Figure 4. Model architecture (general).

After bucketing, the training process for instances of each bucket
was as follows: first, the input data was convolved with 11 filters
(3×11 in size) with a stride of 1 in the first convolution layer,
which was followed by a convolution layer with 11 filters (3×3
in size) with a stride of 1. Second, the outputs of the convolution
layer proceeded through consecutive two Vanilla RNN layers
with hidden states of 1760 for each. Finally, the outputs of the
RNN layers passed to a fully connected layer, and a softmax
function with 5 output nodes was used in the final layer. Batch
normalization was used in each layer of the architecture.

Lightweight Model With Fused Recurrent Neural
Network
Baseline model inference was performed on CPUs (Intel Xeon
Platinum 8000 v4). However, it was about 6 times slower than

the GPU-based inference (Tesla K80). In order to improve the
inference speeds on CPUs, we propose a lightweight model by
reducing the input size and adopting fused RNN (Table 2).

To reduce the input size, we selected a minimum sampling rate
by halving the sampling rate from 256, provided there was no
degradation in accuracy. Finally, we downsampled the MIT-BIH
(360 Hz) and S-Patch data (256 Hz) to 64 Hz. As the input size
decreased, the filter size changed from 3×11 to 3×5 and the
number of convolution layers changed from two to one,
compared to the baseline model. Additionally, we changed the
RNN layers to fused RNN instead of Vanilla RNN to maximize
the computation efficiency of the RNN layers in CPUs.
Additionally, we used Intel Math Kernel Library 2018 update
3 for matrix-multiplication operation.
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Table 2. Comparison of the baseline and lightweight models.

Lightweight modelBaseline modelCharacteristic

64256Sampling rate (Hz)

12Convolution layer

3×5×11, stride 13×11×11, stride 1; 3×3×11, stride 1Convolution filter size

Fused RNNVanilla RNNaRecurrent layer

aRNN: recurrent neural network.

Experimental Setup
We divided a total of 124 subjects into two groups—112 and
12 subjects for the train (including validation) and test sets,
respectively. The train set consisted of 43 subjects from
MIT-BIH and 69 from S-Patch, and the test set consisted of 5
subjects from MIT-BIH and 7 from S-Patch. Specifically, the
12 subjects in the test set were carefully selected by cardiologists
to evaluate various types of beats.

Normal beats comprised more than 90% of the total data;
therefore, we randomly sampled beats in the normal class equal
to the total number of beats in other classes every epoch to avoid
this data imbalance problem. Moreover, most of the samples
for abnormal classes were from MIT-BIH; thus, data imbalance
between MIT-BIH and S-Patch were also handled by balancing
the number of samples for normal and other classes.

We used MXNet to create the baseline model with RNN and
the lightweight model with fused RNN [26]. We trained both
models on GPUs (OS: Linux, CPU: Intel Xeon E5-2686 v4
processor, memory: 488 GB, GPU: four NVIDIA K80 GPU)
with Xavier initialization and Adam optimizer. The baseline
model’s learning rate was 5E-06 with a batch size of 1000 over
400 epochs, and the lightweight model’s learning rate was 1E-05
with a batch size of 900 over 300 epochs. After training, we
selected the best model with the highest validation accuracies
for the three classes (N, S, and V Classes).

Evaluation Metric
Classification performance was measured by four standard
metrics (ie, accuracies, sensitivities, specificities, and positive
predictive values) that have been used in the literature [9,12,13].
These were calculated using the four values from the confusion
matrix, true positive (TP), true negative (TN), false positive
(FP), and false negative (FN). The accuracy is the ratio of the
number of correctly classified patterns to the total numbers of

patterns classified, . The sensitivity is the rate of correctly

classified events among all events, . The specificity is the

rate of correctly classified nonevents among all nonevents, .
The positive predictive value is the rate of correctly classified

events in all detected events, . In addition to the
metrics, we calculated an overall accuracy using the equation
proposed by Landis and Koch [27]. To measure the inference
speed, 24-hour ECGs with 64,976 beats were inferenced on
both the GPUs and CPUs (OS: Linux, CPU: eight 3.0 GHz Intel
Xeon Platinum processors, memory: 16 GB).

Results

Accuracy of Baseline and Lightweight Models
Figure 5 shows the overall performances in the classification
of ECGs for the baseline (RNN) and lightweight (fused RNN)
models. There was no significant difference between the baseline
and lightweight models because the overall accuracies were
close to each other: 99.72% for baseline and 99.80% for the
lightweight model.
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Figure 5. Normalized confusion matrix of the recurrent neural network (RNN) and fused RNN models.

Tables 3 and 4 demonstrate the accuracies of the baseline and
lightweight models for Class S (99.82% and 99.90%,
respectively) and for Class V (99.91% and 99.89%,
respectively). These results were far superior to those of
previous works, wherein the results ranged from 92.4% to 97.6%
for Class S and from 96.7% to 99.0% for Class V [13,28,29].
Note that we excluded the results for Class F because the number
of beats in Class F was only 17.

Furthermore, both baseline and lightweight models performed
higher than 97% in subject-specific accuracies, similar to the
overall accuracy (Table 5). These results ensured the internal
reliability of the models. The accuracy fluctuation range was
2.42% for baseline (from 97.56% to 99.88%) and 0.84% for
lightweight model (from 99.12% to 99.96%). Our lightweight
model with fused RNN improved overall accuracy and internal
reliability even though it is relatively lighter.

Table 3. A confusion matrix of the baseline model for the test set.

Classification resultsClass (ground truth)

SPECi (%)SENh (%)PPVg (%)ACCf (%)Predicted class

qefdvcsbna

98.3199.8699.8799.75462215362481,491N

99.9189.1789.4799.8250203935438S

99.9599.2999.1199.9011533,980116172V

N/AN/AN/AN/Aj68201F

99.9996.6996.3199.97198405071Q

an/N: nonectopic.
bs/S: supraventricular ectopic.
cv/V: ventricular ectopic.
df/F: fusion beat.
eq/Q: paced or unknown beat.
fACC: accuracy.
gPPV: positive predictive value.
hSEN: sensitivity.
iSPEC: specificity.
jNot applicable.
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Table 4. A confusion matrix of the lightweight model for the test set.

Classification resultsClass (ground truth)

SPECi (%)SENh (%)PPVg (%)ACCf (%)Predicted class

qefdvcsbna

99.1199.9299.8999.8371403130481,587N

99.9694.8093.8599.910064123264S

99.9298.8099.5599.890734,1579651V

N/AN/AN/AN/Aj07505F

100.0099.6597.9199.99201700043Q

an/N: nonectopic.
bs/S: supraventricular ectopic.
cv/V: ventricular ectopic.
df/F: fusion beat.
eq/Q: paced or unknown beat.
fACC: accuracy.
gPPV: positive predictive value.
hSEN: sensitivity.
iSPEC: specificity.
jNot applicable.

Table 5. Overall accuracies of the baseline and lightweight models according to subjects in the test set. (Subject numbers 100 to 223 are from MIT-BIH,
and the rest are from S-patch.)

Fused RNNRNNaBeats, nRhythmSubject #

SPEC (%)SEN (%)PPV (%)ACC (%)SPECe (%)SENd (%)PPVc (%)ACCb (%)

99.9599.7899.7899.9199.8499.3499.3499.742273Normal100

99.4597.8097.8099.1298.7895.1095.1098.042225Paced104

99.7999.1599.1599.6698.4893.9193.9197.561756Normal108

99.7098.7898.7899.5199.3097.1997.1998.872133Afibf202

99.0996.3596.3598.5498.4193.6393.6397.452604VTg223

99.9499.7699.7699.9099.9299.6699.6699.8760,867Normal12006

99.9999.9799.9799.9999.9299.6699.6699.8775,805Normal12007

99.9999.9699.9699.9899.9699.8499.8499.9478,866Normal12008

99.9899.9499.9499.9799.9399.7299.7299.8975,914SVTh and VT12010

99.8299.2799.2799.7199.9599.7999.7999.9266,229Bigeminy12011

99.9999.9999.9999.9999.9999.9499.9499.9863,820Normal12012

99.9799.9099.9099.9699.9899.9299.9299.9785,091Noise12358

aRNN: recurrent neural network.
bACC: accuracy.
cPPV: positive predictive value.
dSEN: sensitivity.
eSPEC: specificity.
fAfib: atrial fibrillation.
gVT: ventricular tachycardia.
hSVT: supraventricular tachycardia.
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Inference Speed
The inference time of the baseline model on GPUs took 15
minutes and 12 seconds. On the other hand, the lightweight
model on CPUs took 3 minutes and 1 second (Table 6). Namely,
our lightweight model took only 2 milliseconds to process one
beat, and this implies that our model is competitive on a
CPU-based wearable hardware [30]. The inference speed

according to each parameter can be found in the AWS Re:Invent
[31]; controlling the sampling rate and adopting fused RNNs
each reduced the inference time. This result also demonstrated
that replacing Vanilla RNNs to fused RNNs does not change
the processes or parameters constituting a network but only
accelerates the processes; consequently, the inference speed
was improved without loss of accuracy.

Table 6. Comparison of accuracies and latencies.

Accuracy (%)Latency (min)Model

99.7215.12RNNa in GPUsb

99.80120RNN in CPUsc

99.803.01Fused RNN in CPUs

aRNN: recurrent neural network.
bGPU: graphics processing unit.
cCPU: central processing unit.

Discussion

Principal Findings
The results showed that both baseline and lightweight models
achieved high prediction performances (ie, accuracies of over
99%). The final model, fused RNNs, showed superior
performance in both subclasses: supraventricular and ventricular
beat. In addition, the reliability of the lightweight model with
fused RNNs was supported with a prediction accuracy of over
99% in each subject as well as overall model performance.

Limitations
The accuracy of the lightweight model with fused RNN for beat
classification was high, but there were still incorrect cases.
These false cases were caused with specific rhythms, such as
supraventricular tachycardia, bigeminy, and paroxysmal atrial
fibrillation.

We reviewed 1018 beats that were falsely predicted by the
lightweight model and interpreted the errors. As a result, the
beats composing the abnormal rhythm were often misunderstood
(Figure 6). For example, in the case of subject #12010,
supraventricular beats in the supraventricular tachycardia rhythm
were predicted incorrectly as normal beats. This is because the
supraventricular beats in supraventricular tachycardia rhythm
have very short intervals between two consecutive beats but
have similar morphology to normal beats in normal rhythm
(Figure 6A). Supraventricular beats can be easily misjudged as
normal beats when the model reviewed only one segment, which
has 3 beats. In another example, subject #12011, normal beats
in the bigeminy rhythm were predicted as ventricular rhythm.
This is because the intervals between normal beats in the
bigeminy rhythm are relatively longer due to the leading and
trailing ventricular beats. Therefore, normal beats in bigeminy
rhythm have a different morphology from those in other rhythms
(Figure 6B). The differences in beat morphology were also
confirmed in the atrial fibrillation rhythm (Figure 6C).
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Figure 6. Beats in rhythms with different shapes. SVT: supraventricular tachycardia; S: supraventricular ectopic; N: nonectopic.

The case review confirmed that the rhythm affects each ECG
beat. Therefore, it is necessary to develop a rhythm model using
a wider ECG window. Although Rajpurkar et al [11] recently
conducted a classification task for 14 ECG rhythms, most
existing studies on rhythm predictions were limited to a specific
rhythm such as atrial fibrillation [32,33]. We are developing a
universal rhythm prediction model that integrates the results of
the beat model developed in this study and other features such
as R-R interval and R-peak amplitude.

In our case, the subject-specific evaluation was conducted to
demonstrate the reliability of the deep learning models.
However, it is necessary to perform an evaluation based on
real-world data to support the model’s reliability, which can
provide generalized predictions for new data. Currently, this is
in progress at a tertiary hospital in South Korea.

Future Works
The lightweight deep learning model for ECG classification
proposed in this paper was adopted as an analysis module for
Samsung SDS Cardio. Cardio is a service that collects ECG

signals with S-Patch, sends the signals to a cloud-based Web
portal for ECG diagnosis, and reports the diagnosis to users
through their mobile or gear applications. This service also can
be extended to health monitoring for elderly people, who are
vulnerable to cardiovascular disease, and for first responders
such as firemen. Furthermore, our ECG classifier can be
embedded into a health care system together with
patient-generated biomedical information analysis (eg, mobile
search log, geotagged data) [34] and provide wider and deeper
information to users.

Conclusion
We proposed lightweight deep neural network models that were
effective and efficient for ECG beat classification. The proposed
models were trained using both the standard Pysionet MIT-BIH
database and Samsung S-Patch 2 dataset collected by two major
hospitals in New Zealand and South Korea. Our lightweight
model with fused RNN achieved a cardiologist-level accuracy
of 99.80%. Furthermore, the lightweight model conducted ECG
beat predictions on a CPU five times faster than the baseline
model with Vanilla RNNs without accuracy loss.
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