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Abstract

Background: Electrocardiographic (ECG) monitors have been widely used for diagnosing cardiac arrhythmias for decades.
However, accurate analysis of ECG signals is difficult and time-consuming work because large amounts of beats need to be
inspected. In order to enhance ECG beat classification, machinelearning and deep learning methods have been studied. However,
existing studies have limitations in model rigidity, model complexity, and inference speed.

Objective: To classify ECG beats effectively and efficiently, we propose a baseline model with recurrent neural networks
(RNNSs). Furthermore, we also propose a lightweight model with fused RNN for speeding up the prediction time on central
processing units (CPUS).

Methods: We used 48 ECGs from the MIT-BIH (Massachusetts Institute of Technology-Beth Israel Hospital) Arrhythmia
Database, and 76 ECGs were collected with S-Patch devices developed by Samsung SDS. We developed both baseline and
lightweight models on the MXNet framework. We trained both models on graphics processing units and measured both models
inference times on CPUs.

Results:  Our models achieved overall beat classification accuracies of 99.72% for the baseline model with RNN and 99.80%
for the lightweight model with fused RNN. Moreover, our lightweight model reduced the inference time on CPUs without any
loss of accuracy. The inference time for the lightweight model for 24-hour ECGs was 3 minutes, which is 5 times faster than the
baseline model.

Conclusions: Both our baseline and lightweight models achieved cardiologist-level accuracies. Furthermore, our lightweight
model is competitive on CPU-based wearable hardware.

(JMIR Med Inform 2020;8(3):€17037) doi: 10.2196/17037
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critical adverse outcomes such asembolic stroke[2]. Therefore,
early detection and treatment of arrhythmiaare very important.

Background One of the most widely used diagnostic methods for detecting

Arrhythmia refers to any change causing the heart to beat too ~ arrhythmia is electrocardiographic (ECG) monitoring. ECG

fast or slow, or erratically [1], and can lead to sudden death or monitoring is a simple and noninvasive method for recording
electrical activities of the heart by using electrodes placed on
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human skin. However, at least 24 hours of ECG signals should
be monitored to confirm arrhythmia since it occurs irregularly
[3,4]. Recently, single lead patches that are wireless, compact,
and lightweight have been proposed for long-term wear [5-7].
Despiteimprovementsto measuring ECGs and patient comfort,
itisstill difficult to diagnose arrhythmias because identification
of abnormal ECG patternsfrom large amounts of recorded ECGs
is not trivial. For example, an ECG record, measured for 24
hoursin patientswith aheart rate of 80 bpm, consists of 110,000
beats. It takes at least 2 hours for an expert to anayze this
24-hour ECG signal.

Large-scale machine learning methods have been investigated
to reduce the human efforts for ECG beat classification [8-10].
However, most machine learning approaches with static and
handcrafted features have performed at lower accuracy rates
over new types of ECGs because those features are insufficient
for representing the great diversity of ECG patternsfrom various
patients. Therefore, several self-learning approaches based on
a deep neural network have been proposed recently [11-13].

Among the deep learning approaches, convolutional neural
networks (CNNs) and recurrent neural networks (RNNs) are
most commonly used for ECG classification. CNNs typically
consist of convolution, pooling, and fully connected layers[14].
CNNs extract implicit features of ECGs through each level of
convolution layer and use the abstraction from these features
to solve problems such as classification and regression [15].
Rajpurkar et a [11] used a CNN to classify 12 ECG rhythms,
which are longer units consisting of 2 or more beats. Their
model consisted of 33 convolutional layers with shortcut
connections followed by afully connected layer and a softmax
layer. The model achieved an F1 score of 0.81 compared with
the responses of board-certified cardiologists. Acharyaet al [12]
proposed an ECG beat classification model using a CNN
together with noise removal, wavelet transformation, and
segmentation method. Their model consisted of three
convolutional layers, three max-pooling layers, three fully
connected layers, and finally, a softmax layer with five output
neurons. The model resulted in an average accuracy of 94.03%
compared with the MIT-BIH (Massachusetts Institute of
Technology-Beth Israel Hospital) gold standard.

However, alimitation of CNNsisthat the length of inputs must
befixed sincethefilters of the networks have static sizes. When
it comesto ECG classification, thelength of ECGs can bevaried
according to anindividua’s heart rate. Therefore, adjusting data
such as linear interpolation is required to achieve same-size
inputs [11-13].

In contrast, RNNs are able to handle this sequential problem
because the networks recursively learn data as time progresses
[16]. Tan et a [17] proposed the implementation of a long
short-term memory network (LSTM), which isthe most widely
used method among RNN approach, with a CNN to diagnose
the presence of coronary artery disease from the ECG signals.
Although they focused on specific diseases, they achieved an
F1 score of 0.96. Oh et a [18] diagnosed five types of rhythms:
normal sinus rhythm, left bundle branch block, right bundle
branch block, atrial premature beats, and premature ventricular
contraction. Their model consisted of three 1D convolution
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layers, one LSTM layer, and three fully connected layers. They
achieved a 98.10% accuracy using 10-fold cross-validation.
Yildirim [19] also classified five types of rhythms but chose
bidirectional LSTM (bi-LSTM) instead of unidirectional LSTM
(uni-LSTM). The proposed model was composed of four wavel et
transform layers, two bi-L STMs, and two fully connected layers.
Thismodel showed a recognition accuracy of 99.39%.

However, existing studies using RNNs have limitations in
application[17-20]. First, subject-specific evaluation to explore
differences between patients is generally not conducted.
Therefore, it is difficult to trust predictions of RNNs on new
patients ECG signals that were not included in the training
data. Second, RNNs have disadvantagesrelated to financial cost
and inferencetime. Most of the papersdid not consider the cost
of using a graphics processing unit (GPU) instead of a central
processing unit (CPU) and did not present the timeto inference
with their deep learning models. Thisweaknessin computational
efficiency is a critical drawback of RNN applications. To
accelerate and maximize the computational efficiency of RNN
layers, MXNet proposed fused RNN operator by applying
several optimization methods: (1) various general matrix
multiplication (GEMM) modes such as combining small
GEMMs, Batch GEMM, and Pack GEMM; (2) vectorization
of elementwise operations using Basic Linear Algebra
Subprogram (BLAYS) libraries and Intel Math Kernel Library
(MKL); and (3) saving and reusing intermediate results during
forward computation [21,22].

Objectives

We used ECG signals measured with Samsung S-Patch 2, a
small (120x29x4.4 mm in size) and light (8 g in weight)
patch-type ECG monitor [7]. To diagnose arrhythmias using
S-Patch devices effectively and efficiently, we propose a
baseline model with RNN that can learn sequential patterns.
Furthermore, we also propose a lightweight model with fused
RNN for conducting the classification process on CPUswith a
shorter prediction time.

Methods

Data Collection

We analyzed an open-source ECG database (PhysioBank
MIT-BIH Arrhythmia Database [23]) together with our own
deidentified dataset collected with the S-Patch device. Overall,
the MIT-BIH Arrhythmia Database contains 48 subjects ECGs,
each measured for 24 hours at 360 Hz.

The S-Patch database was obtained according to the following
procedures. First, we collected the ECGs using S-Patch at the
Samsung Medical Center in Seoul and at Counties Manukau
Health in New Zealand from February 2017 to April 2018. A
skilled nurse at each hospital attached an ECG monitor and
checked whether the ECGs were normally collected over the
first 5 minutes. The patches of S-patch cardiac monitor were
attached on v2 and v5 positions of the 12-lead placement (Figure
1). Second, three experts, who had more than 5 years of
experienceworking in aterritorial hospital, reviewed each record
and excluded onesthat contained noiselevels of morethan 80%
to enhance the data quality. Subsequently, we anonymized data
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by removing personal and location information. Third, thethree
experts annotated each beat using the Web portal. If consensus
could not be reached on the classification of a beat, the experts
rediscussed the issue to make a final decision. Consequently,
we collected 1828-hours of ECG data from 76 subjects. The
average length of the ECGs from S-Patch was 17 hours (from
28 minutesto 45 hours). Each ECG collected with S-Patch was
sampled at 256 Hz.

Figure 1. Usage of S-Patch for Samsung SDS Cardio.

Attach S—Patch on the chest

~—_ __ & -
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Table 1. The five subtype classes and the number of samples.
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In this study, we used five beat categories defined in the
AAMI/IEC (Association for the Advancement of Medical
Instrumentation / International Electrotechnical Commission)
standard [24] (ie, nonectopic [N], supraventricular ectopic [],
ventricular ectopic [V], fusion [F], and paced or unknown [Q]).
Overdll, 5,575,512 ECG beatswere used in this study, as shown
in Table 1.

“e‘

v5

AAMIYIEC categories

MIT-BIHC dataset, n (%)

Number of beats

S-Patch dataset, n (%)

Nonectopic 90,386 (82.19) 5,303,245 (97.03)
Supraventricular ectopic 3026 (2.75) 27,288 (0.5)
Ventricular ectopic 7708 (7.01) 135,013 (2.47)
Fusion 803 (0.74) 0(0)

Paced or unknown 8043 (7.31) 0(0)

Total 109,966 (100.00) 5,465,546 (100.00)

8AAMI: Association for the Advancement of Medical Instrumentation.
BIEC: International Electrotechnical Commission.
°MIT-BIH: Massachusetts Institute of Technology-Beth Israel Hospital.

Data Preprocessing

We performed ECG preprocessing as follows (Figure 2A):
downsampling, noise removal, segmentation, and short-time
Fourier transform (STFT). The examplesof preprocessed signals
for the beat classes are also depicted (Figure 2B): A normal beat
has a regular beat interval with a small wave (P-wave) before
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alarger and sharper wave (QRS wave); a supraventricular beat
hasanirregular beat interval; aventricular beat hasawide QRS
wave with a vague or no P-wave; a fusion beat is a combined
pattern of normal and ventricular beat; and apaced or unknown
beat has none of the abovementioned features and can be
observed in diverse patterns.
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Figure 2. Data preprocessing of electrocardiograms: (A) full steps from downsampling to short-time Fourier transform; (B) an example of a 3-beat
electrocardiographic segment for each class. ECG: electrocardiogram; RNN: recurrent neural network.
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First, we downsampled the ECG signalsto handle the different
sampling rates between data from difference databases. For
consistency, the MIT-BIH records were downsampled to 256
Hz, which is the same as the sampling rate of the S-Patch
dataset. Second, we tried to reduce artifacts in the data. The
ECGs collected with S-Patch are real-world data. Therefore,
they contained all kinds of noise such asloose contacts, motion
artifact, muscular activation interference, baseline wandering,
and AC (dternating current) interference (Figure 3). We
excluded noise caused by |oose contact that falls below 0 mV.
Thereafter, we applied a bandpass filter with a high-frequency
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cutoff at 40 Hz and alow-frequency cutoff at 0.5 Hz to handle
other types of noise. Third, in order to deal with 24-hour ECGs
effectively, we segmented the ECGs into beat units. Since the
duration of abeat isdifferent according to the heart rate of each
patient, we extracted 3-beat ECG signalswith R-peaksidentified
using the algorithm developed by Kathirvel et a [25] instead
of anarbitrary time duration. Specifically, we selected awindow
with alength of 3 beats because information on the middle beat,
which isthe target to be classified, is affected by the preceding
and following beats. Finaly, we applied STFT to all ECG
segments.

Figure 3. Examples of electrocardiographic signal noise: (A) loose contact, (B) motion artifact, (C) muscular activation interference, (D) baseline
wandering, (E) aternating current (AC) interference (low signal-to-noise ratio), (F) AC interference (high signal-to-noise ratio).
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Baseline Model With Recurrent Neural Networ k

We segmented ECG signals into 3-beat units during the
preprocessing; thus, their lengths varied according to the
subjects’ heart rates. Asbasdinesfor ECG pattern classification,
we implemented Vanilla RNNs (Figure 4), which can handle
input sequences with various lengths. However, the variable
length of input data can reduce the learning efficiency of deep

Figure4. Model architecture (general).

Bucketing

Input

Convolution layers

Recurrent layers

Jeon et al

learning models. Therefore, we used a bucketing method to
handle the variable length of inputs. Bucketing is suggested to
improvethe parallelization capabilities of therecurrent training
process. We set up several buckets and assigned each instance
to the bucket with the closest size. Within a bucket, each
instance was padded with zeroes up to the length of the bucket.
Although the buckets had different internal models, their
parameters were shared in time.

- : :

Fully connected

Softmax

Output

After bucketing, the training processfor instances of each bucket
wasasfollows: first, theinput datawas convolved with 11 filters
(3x11in size) with a stride of 1 in the first convolution layer,
which was followed by a convolution layer with 11 filters (3x3
insize) with astride of 1. Second, the outputs of the convolution
layer proceeded through consecutive two Vanilla RNN layers
with hidden states of 1760 for each. Finally, the outputs of the
RNN layers passed to a fully connected layer, and a softmax
function with 5 output nodes was used in the final layer. Batch
normalization was used in each layer of the architecture.

Lightweight Model With Fused Recurrent Neural
Networ k

Baseline model inference was performed on CPUs (Intel Xeon
Platinum 8000 v4). However, it was about 6 times slower than

http://medinform.jmir.org/2020/3/€17037/

the GPU-based inference (Tesla K80). In order to improve the
inference speeds on CPUs, we propose a lightweight model by
reducing the input size and adopting fused RNN (Table 2).

To reduce the input size, we selected a minimum sampling rate
by halving the sampling rate from 256, provided there was no
degradation in accuracy. Finally, we downsampled the MIT-BIH
(360 Hz) and S-Patch data (256 Hz) to 64 Hz. Astheinput size
decreased, the filter size changed from 3x11 to 3x5 and the
number of convolution layers changed from two to one,
compared to the baseline model. Additionally, we changed the
RNN layersto fused RNN instead of VanillaRNN to maximize
the computation efficiency of the RNN layers in CPUs.
Additionally, we used Intel Math Kernel Library 2018 update
3 for matrix-multiplication operation.

JMIR Med Inform 2020 | val. 8| iss. 3| el7037 | p. 5
(page number not for citation purposes)


http://www.w3.org/Style/XSL
http://www.renderx.com/

JMIR MEDICAL INFORMATICS

Table 2. Comparison of the baseline and lightweight models.

Jeon et al

Characteristic Baseline model Lightweight model
Sampling rate (Hz) 256 64
Convolution layer 2 1

Convolution filter size

Recurrent layer VanillaRNN?

3x11x11, stride 1; 3x3x11, stride 1

3x5x11, stride 1

Fused RNN

3RNN: recurrent neural network.

Experimental Setup

We divided atotal of 124 subjects into two groups—112 and
12 subjects for the train (including validation) and test sets,
respectively. The train set consisted of 43 subjects from
MIT-BIH and 69 from S-Patch, and the test set consisted of 5
subjects from MIT-BIH and 7 from S-Patch. Specificaly, the
12 subjectsinthetest set were carefully selected by cardiologists
to evaluate various types of beats.

Normal beats comprised more than 90% of the total data;
therefore, we randomly sampled beatsin the normal classequal
to thetotal number of beatsin other classes every epoch to avoid
this data imbalance problem. Moreover, most of the samples
for abnormal classeswerefrom MIT-BIH; thus, dataimbalance
between MIT-BIH and S-Patch were al so handled by balancing
the number of samples for normal and other classes.

We used MXNet to create the baseline model with RNN and
the lightweight model with fused RNN [26]. We trained both
models on GPUs (OS: Linux, CPU: Intel Xeon E5-2686 v4
processor, memory: 488 GB, GPU: four NVIDIA K80 GPU)
with Xavier initialization and Adam optimizer. The baseline
model’s|earning rate was 5E-06 with a batch size of 1000 over
400 epochs, and the lightweight model’ slearning rate was 1E-05
with a batch size of 900 over 300 epochs. After training, we
selected the best model with the highest validation accuracies
for the three classes (N, S, and V Classes).

http://medinform.jmir.org/2020/3/€17037/

Evaluation Metric

Classification performance was measured by four standard
metrics (ie, accuracies, sensitivities, specificities, and positive
predictive values) that have been used in theliterature [9,12,13].
These were calculated using the four valuesfrom the confusion
matrix, true positive (TP), true negative (TN), false positive
(FP), and false negative (FN). The accuracy is the ratio of the
number of correctly classified patterns to the total numbers of

patterns classified, e, The sensitivity is the rate of correctly
classified events among all events, . The specificity is the

rate of correctly classified noneventsamong all nonevents, e,
The positive predictive value is the rate of correctly classified

events in all detected events, e, In addition to the
metrics, we calculated an overall accuracy using the equation
proposed by Landis and Koch [27]. To measure the inference
speed, 24-hour ECGs with 64,976 beats were inferenced on
both the GPUsand CPUs (OS: Linux, CPU: eight 3.0 GHz Intel
Xeon Platinum processors, memory: 16 GB).

Results

Accuracy of Baseline and Lightweight M odels

Figure 5 shows the overall performances in the classification
of ECGs for the baseline (RNN) and lightweight (fused RNN)
models. Therewas no significant difference between thebaseline
and lightweight models because the overall accuracies were
close to each other: 99.72% for baseline and 99.80% for the
lightweight model.
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Figure5. Normalized confusion matrix of the recurrent neural network (RNN) and fused RNN models.
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Tables 3 and 4 demonstrate the accuracies of the baseline and
lightweight models for Class S (99.82% and 99.90%,
respectively) and for Class V (99.91% and 99.89%,
respectively). These results were far superior to those of
previousworks, wherein theresultsranged from 92.4%to 97.6%
for Class S and from 96.7% to 99.0% for Class V [13,28,29].
Note that we excluded the resultsfor Class F because the number
of beatsin Class F was only 17.

Table 3. A confusion matrix of the baseline model for the test set.

Furthermore, both baseline and lightweight models performed
higher than 97% in subject-specific accuracies, similar to the
overall accuracy (Table 5). These results ensured the internal
reliability of the models. The accuracy fluctuation range was
2.42% for baseline (from 97.56% to 99.88%) and 0.84% for
lightweight model (from 99.12% to 99.96%). Our lightweight
model with fused RNN improved overall accuracy and internal
reliability even though it is relatively lighter.

Class (ground truth)  Classification results
Predicted class Acc (%) PPVY (%) SEN" (%) SPEC' (%)
n@ P ve fd q°

N 481,491 362 215 2 46 99.75 99.87 99.86 98.31

S 438 3935 20 0 5 99.82 89.47 89.17 99.91

\% 172 116 33,980 5 11 99.90 99.11 99.29 99.95

F 1 0 2 8 6 N/Al N/A N/A N/A

Q 71 0 5 0 1984 99.97 96.31 96.69 99.99

3/N: nonectopic.

bys: supraventricular ectopic.
SIV: ventricular ectopic.

d/F: fusion beat.

€/Q: paced or unknown beat.
facc: accuracy.

9PPV: positive predictive value.
NSEN: sensitivity.

ISPEC: specificity.

INot applicable.
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Table4. A confusion matrix of the lightweight model for the test set.

Class (ground truth)  Classification results

Predicted class Acch (%) PPVY (%) SEN" (%) SPEC' (%)
n? & ve fd q®

N 481,587 130 403 1 7 99.83 99.89 99.92 99.11

S 264 4123 6 0 0 99.91 93.85 94.80 99.96

v 51 9% 34157 7 0 99.89 99.55 98.80 99.92

F 5 0 5 7 0 N/A] N/A N/A N/A

Q 43 0 0 0 2017 99.99 97.91 99.65 100.00

3/N:: nonectopic.

bys: supraventricular ectopic.
SVIV: ventricular ectopic.

dt/F: fusion beat.

€9/Q: paced or unknown beat.
facc: accuracy.

9PPV: positive predictive value.
hSEN: sensitivity.

ISPEC: specificity.

INot applicable.

Table5. Overal accuracies of the baseline and lightweight models according to subjectsin the test set. (Subject numbers 100 to 223 are from MIT-BIH,

and the rest are from S-patch.)
Subject # Rhythm Beats, n RNN? Fused RNN
AcCP? (%) PPV (%) SENY (%) SPEC®(%) ACC (%) PPV (%) SEN (%) SPEC (%)

100 Normal 2273 99.74 99.34 99.34 99.84 99.91 99.78 99.78 99.95
104 Paced 2225 98.04 95.10 95.10 98.78 99.12 97.80 97.80 99.45
108 Normal 1756 97.56 93.91 93.91 98.48 99.66 99.15 99.15 99.79
202 Afibf 2133 98.87 97.19 97.19 99.30 99.51 98.78 98.78 99.70
223 vTY 2604 97.45 93.63 93.63 98.41 98.54 96.35 96.35 99.09
12006 Normal 60,867 99.87 99.66 99.66 99.92 99.90 99.76 99.76 99.94
12007 Normal 75,805 99.87 99.66 99.66 99.92 99.99 99.97 99.97 99.99
12008 Normal 78,866 99.94 99.84 99.84 99.96 99.98 99.96 99.96 99.99
12010 sVTand VT 75,914 99.89 99.72 99.72 99.93 99.97 99.94 99.94 99.98
12011 Bigeminy 66,229 99.92 99.79 99.79 99.95 99.71 99.27 99.27 99.82
12012 Normal 63,820 99.98 99.94 99.94 99.99 99.99 99.99 99.99 99.99
12358 Noise 85,091 99.97 99.92 99.92 99.98 99.96 99.90 99.90 99.97

3RNN: recurrent neural network.
bACC: accuracy.

®PPV: positive predictive value.
dSEN: sensitivity.

€SPEC: specificity.

PAfib: atrial fibrillation.

OV T: ventricular tachycardia.
hsvT: supraventricular tachycardia.
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I nference Speed

The inference time of the baseline model on GPUs took 15
minutes and 12 seconds. On the other hand, the lightweight
model on CPUstook 3 minutesand 1 second (Table 6). Namely,
our lightweight model took only 2 milliseconds to process one
beat, and this implies that our model is competitive on a
CPU-based wearable hardware [30]. The inference speed

Table 6. Comparison of accuracies and latencies.

Jeon et al

according to each parameter can be foundinthe AWS Re:Invent
[31]; controlling the sampling rate and adopting fused RNNs
each reduced the inference time. Thisresult also demonstrated
that replacing Vanilla RNNs to fused RNNs does not change
the processes or parameters constituting a network but only
accelerates the processes; consequently, the inference speed
was improved without |oss of accuracy.

Model Latency (min) Accuracy (%)
RNNZin GPUS 1512 99.72
RNN in CPUS® 120 99.80
Fused RNN in CPUs 3.01 99.80

3RNN: recurrent neural network.
bGPU: graphics processing unit.
CCPU: central processing unit.

Discussion

Principal Findings

The results showed that both baseline and lightweight models
achieved high prediction performances (ie, accuracies of over
99%). The fina model, fused RNNSs, showed superior
performancein both subclasses. supraventricular and ventricular
beat. In addition, the reliability of the lightweight mode with
fused RNNs was supported with a prediction accuracy of over
99% in each subject aswell as overall model performance.

Limitations

The accuracy of thelightweight model with fused RNN for best
classification was high, but there were still incorrect cases.
These false cases were caused with specific rhythms, such as
supraventricular tachycardia, bigeminy, and paroxysmal atrial
fibrillation.

http://medinform.jmir.org/2020/3/€17037/

We reviewed 1018 beats that were falsely predicted by the
lightweight model and interpreted the errors. As a result, the
besats composing the abnormal rhythm were often misunderstood
(Figure 6). For example, in the case of subject #12010,
supraventricular bestsin the supraventricular tachycardiarhythm
were predicted incorrectly as normal beats. Thisis because the
supraventricular beats in supraventricular tachycardia rhythm
have very short intervals between two consecutive beats but
have similar morphology to nhormal beats in normal rhythm
(Figure 6A). Supraventricular beats can be easily misjudged as
normal beats when the model reviewed only one segment, which
has 3 beats. In another example, subject #12011, normal beats
in the bigeminy rhythm were predicted as ventricular rhythm.
This is because the intervals between normal beats in the
bigeminy rhythm are relatively longer due to the leading and
trailing ventricular beats. Therefore, normal beats in bigeminy
rhythm have adifferent morphology from thosein other rhythms
(Figure 6B). The differences in beat morphology were also
confirmed in the atrial fibrillation rhythm (Figure 6C).
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Figure 6. Beatsin rhythmswith different shapes. SVT: supraventricular tachycardia; S: supraventricular ectopic; N: nonectopic.
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(B)
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Bigeminy Rhythm
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Atrial fibrillation rhythm

The case review confirmed that the rhythm affects each ECG
beat. Therefore, it isnecessary to devel op arhythm model using
awider ECG window. Although Rajpurkar et al [11] recently
conducted a classification task for 14 ECG rhythms, most
existing studies on rhythm predictionswere limited to a specific
rhythm such as atrial fibrillation [32,33]. We are developing a
universal rhythm prediction model that integrates the results of
the beat model developed in this study and other features such
as R-R interval and R-peak amplitude.

In our case, the subject-specific evaluation was conducted to
demonstrate the reliability of the deep learning models.
However, it is necessary to perform an evaluation based on
real-world data to support the model’s reliability, which can
provide generalized predictions for new data. Currently, thisis
in progress at atertiary hospital in South Korea.

Future Works

The lightweight deep learning model for ECG classification
proposed in this paper was adopted as an analysis module for
Samsung SDS Cardio. Cardio is a service that collects ECG
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signals with S-Patch, sends the signals to a cloud-based Web
portal for ECG diagnosis, and reports the diagnosis to users
through their mobile or gear applications. This service also can
be extended to health monitoring for elderly people, who are
vulnerable to cardiovascular disease, and for first responders
such as firemen. Furthermore, our ECG classifier can be
embedded into a health care system together with
patient-generated biomedical information analysis (eg, mobile
search log, geotagged data) [34] and provide wider and deeper
information to users.

Conclusion

We proposed lightweight deep neural network model sthat were
effective and efficient for ECG beat classification. The proposed
modelsweretrained using both the standard Pysionet MIT-BIH
database and Samsung S-Patch 2 dataset collected by two major
hospitals in New Zealand and South Korea. Our lightweight
model with fused RNN achieved a cardiologist-level accuracy
of 99.80%. Furthermore, the lightweight model conducted ECG
beat predictions on a CPU five times faster than the baseline
model with Vanilla RNNs without accuracy loss.

References

1.  American Heart Association. 2016. About Arrhythmia URL: https.//www.heart.org/en/heal th-topi cs/arrhythmia/

about-arrhythmia [accessed 2016-08-30]

2. Sayantan G, Kien PT, Kadambari KV. Classification of ECG beats using deep belief network and active learning. Med
Biol Eng Comput 2018 Oct;56(10):1887-1898. [doi: 10.1007/s11517-018-1815-2] [Medline: 29651694]
3. Lobodzinski SS, Laks MM. New devices for very long-term ECG monitoring. Cardiol J 2012;19(2):210-214 [FREE Full

text] [Medline: 22461060]

4.  Guirguis E. Holter monitoring. Can Fam Physician 1987 Apr;33:985-992 [FREE Full text] [Medline: 21263911]

http://medinform.jmir.org/2020/3/e17037/

XSL-FO

RenderX

IJMIR Med Inform 2020 | vol. 8 | iss. 3| €17037 | p. 10
(page number not for citation purposes)


https://www.heart.org/en/health-topics/arrhythmia/about-arrhythmia
https://www.heart.org/en/health-topics/arrhythmia/about-arrhythmia
http://dx.doi.org/10.1007/s11517-018-1815-2
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29651694&dopt=Abstract
http://www.cardiologyjournal.org/en/darmowy_pdf.phtml?id=108&indeks_art=1571
http://www.cardiologyjournal.org/en/darmowy_pdf.phtml?id=108&indeks_art=1571
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=22461060&dopt=Abstract
http://europepmc.org/abstract/MED/21263911
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21263911&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

JMIR MEDICAL INFORMATICS Jeon et &

5.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

25.

26.

27.

28.

Turakhia MP, Hoang DD, Zimetbaum P, Miller JD, Froelicher VF, Kumar UN, et al. Diagnostic utility of a novel leadless
arrhythmia monitoring device. Am J Cardiol 2013 Aug 15;112(4):520-524 [EREE Full text] [doi:
10.1016/j.amjcard.2013.04.017] [Medline: 23672988]

Engel J, MehtaV, Fogoros R, Chavan A. Study of arrhythmia prevalence in NUVANT Mobile Cardiac Telemetry system
patients. : IEEE; 2012 Aug Presented at: 2012 Annual International Conference of the |EEE Engineering in Medicine and
Biology Society; 28 Aug.-1 Sept. 2012; San Diego, CA, USA p. 2440-2443. [doi: 10.1109/embc.2012.6346457]
KoreaFood Drug Administration, Medical Device Safety Bureau. Approval information (No 16-4537). URL : https://emed.
mfds.go.kr [accessed 2016-06-16]

MartisR, AcharyaU, Lim C, Suri J. Characterization of ECG beatsfrom cardiac arrhythmiausing discrete cosine transform
in PCA framework. Knowledge-Based Systems 2013 Jun;45:76-82 [FREE Full text] [doi: 10.1016/j.knosys.2013.02.007]
Martis RJ, Acharya UR, Lim CM, Mandana KM, Ray AK, Chakraborty C. Application of higher order cumulant features
for cardiac health diagnosis using ECG signals. Int JNeural Syst 2013 Aug;23(4):1350014. [doi:
10.1142/S0129065713500147] [Medline: 23746287]

HoT,Huang C, LinC, La F, Ding J,HoY, et a. A telesurveillance system with automatic electrocardiogram interpretation
based on support vector machine and rule-based processing. IMIR Med Inform 2015 May 07;3(2):€21 [FREE Full text]
[doi: 10.2196/medinform.4397] [Medline: 25953306]

Rajpurkar P, Hannun A, Haghpanahi M, Bourn C, Ng A. Cardiologist-level arrhythmia detection with convolutional neural
networks (preprint). arXiv.org 2017:6 [FREE Full text]

AcharyaUR, Oh SL, Hagiwara Y, Tan JH, Adam M, Gertych A, et a. A deep convolutional neural network model to
classify heartbeats. Comput Biol Med 2017 Oct 01;89:389-396. [doi: 10.1016/j.compbiomed.2017.08.022] [Medline:
28869899

Kiranyaz S, Ince T, Gabbouj M. Real-Time Patient-Specific ECG Classification by 1-D Convolutional Neural Networks.
|EEE Trans Biomed Eng 2016 Mar;63(3):664-675. [doi: 10.1109/TBME.2015.2468589] [Medline: 26285054]
Ferreira A, Giraldi G. Convolutional Neural Network approaches to granite tiles classification. Expert Systems with
Applications 2017 Oct;84:1-11 [FREE Full text] [doi: 10.1016/j.eswa.2017.04.053]

Bengio Y. Learning Deep Architecturesfor Al. FNT in Machine Learning 2009;2(1):1-127. [doi: 10.1561/2200000006]
Amodei D, Ananthanarayanan S, Anubhai R, Bai J, Battenberg E, Case C, et al. Deep speech 2nd-to-end speech recognition
in english and mandarin. 2016 Presented at: International Conference on Machine Learning; June 19-24 2016; New York
City, NY, USA p. 173-182 URL : http://proceedings.mlr.press'v48/amodei 16.html [doi: 10.1007/978-3-030-14596-5 12]
Tan JH, Hagiwara Y, Pang W, Lim I, Oh SL, Adam M, et al. Application of stacked convolutional and long short-term
memory network for accurate identification of CAD ECG signals. Comput Biol Med 2018 Mar 01;94:19-26. [doi:
10.1016/j.compbiomed.2017.12.023] [Medline: 29358103]

OhSL, NgEYK, Tan RS, AcharyaUR. Automated diagnosis of arrhythmia using combination of CNN and L STM techniques
with variable length heart beats. Comput Biol Med 2018 Nov 01;102:278-287. [doi: 10.1016/j.compbiomed.2018.06.002]
[Medline: 29903630]

Yildirim O. A novel wavelet sequence based on deep bidirectional LSTM network model for ECG signal classification.
Comput Biol Med 2018 May 01,96:189-202. [doi: 10.1016/j.compbiomed.2018.03.016] [Medline: 29614430]

Kwon S, Hong J, Choi E, Lee E, Hostallero DE, Kang WJ, et a. Deep Learning Approaches to Detect Atrial Fibrillation
Using Photoplethysmographic Signals: Algorithms Development Study. IMIR Mhealth Uhealth 2019 Jun 06;7(6):€12770
[FREE Full text] [doi: 10.2196/12770] [Medline: 31199302]

Apache MXNet (incubating). LSTMCell. 2019. URL : https:.//github.com/apache/incubator-mxnet/bl ob/master/python/
mxnet/rnn/rnn_cell.py [accessed 2019-12-27]

Apache MXNet (achieved proposal). Fused RNN Operators for CPU. 2018. URL : https://cwiki.apache.org/confluence/
display/MXNET/Fused+RNN+Operators+for+CPU [accessed 2019-12-27]

Goldberger AL, Amaral LA, GlassL, Hausdorff IM, Ivanov PC, Mark RG, et a. PhysioBank, PhysioToolkit, and PhysioNet:
components of a new research resource for complex physiologic signals. Circulation 2000 Jun 13;101(23):E215-E220
[FREE Full text] [Medline: 10851218]

International Electrotechnical Commission. Medical electrical equipment Part 2-27: Particular requirements for the safety,
including essential performance, of electrocardiographic monitoring equipment. 2011. URL : https://webstore.iec.ch/
publication/2638 [accessed 2011-12-27)

Kathirvel P, Sabarimalai Manikandan M, Prasanna S, Soman K. An Efficient R-peak Detection Based on New Nonlinear
Transformation and First-Order Gaussian Differentiator. Cardiovasc Eng Tech 2011 Oct 12;2(4):408-425 [FREE Full text]
[doi: 10.1007/s13239-011-0065-3]

Chen T, Li M, Li Y, LinM, Wang N, Wang M, et a. Mxnet: A flexible and efficient machine learning library for
heterogeneous distributed systems (preprint). arXiv.org 2015:3 [FREE Full text]

Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics 1977 Mar;33(1):159-174.
[Medline: 843571]

Li T, Zhou M. ECG Classification Using Wavelet Packet Entropy and Random Forests. Entropy 2016 Aug 05;18(8):285
[FREE Full text] [doi: 10.3390/€18080285]

http://medinform.jmir.org/2020/3/e17037/ JMIR Med Inform 2020 | vol. 8 |iss. 3| e17037 | p. 11

(page number not for citation purposes)


http://lib.plagh.cn:8080/medlib/s/gov/nih/nlm/ncbi/www/G.https/pubmed/?term=Diagnostic+Utility+of+a+Novel+Leadless+Arrhythmia+monitoring+Device
http://dx.doi.org/10.1016/j.amjcard.2013.04.017
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23672988&dopt=Abstract
http://dx.doi.org/10.1109/embc.2012.6346457
https://emed.mfds.go.kr
https://emed.mfds.go.kr
https://doi.org/10.1016/j.knosys.2013.02.007
http://dx.doi.org/10.1016/j.knosys.2013.02.007
http://dx.doi.org/10.1142/S0129065713500147
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23746287&dopt=Abstract
http://medinform.jmir.org/2015/2/e21/
http://dx.doi.org/10.2196/medinform.4397
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=25953306&dopt=Abstract
https://arxiv.org/pdf/1707.01836v1.pdf
http://dx.doi.org/10.1016/j.compbiomed.2017.08.022
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28869899&dopt=Abstract
http://dx.doi.org/10.1109/TBME.2015.2468589
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=26285054&dopt=Abstract
https://doi.org/10.1016/j.eswa.2017.04.053
http://dx.doi.org/10.1016/j.eswa.2017.04.053
http://dx.doi.org/10.1561/2200000006
http://proceedings.mlr.press/v48/amodei16.html
http://dx.doi.org/10.1007/978-3-030-14596-5_12
http://dx.doi.org/10.1016/j.compbiomed.2017.12.023
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29358103&dopt=Abstract
http://dx.doi.org/10.1016/j.compbiomed.2018.06.002
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29903630&dopt=Abstract
http://dx.doi.org/10.1016/j.compbiomed.2018.03.016
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29614430&dopt=Abstract
https://mhealth.jmir.org/2019/6/e12770/
http://dx.doi.org/10.2196/12770
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31199302&dopt=Abstract
https://github.com/apache/incubator-mxnet/blob/master/python/mxnet/rnn/rnn_cell.py
https://github.com/apache/incubator-mxnet/blob/master/python/mxnet/rnn/rnn_cell.py
https://cwiki.apache.org/confluence/display/MXNET/Fused+RNN+Operators+for+CPU
https://cwiki.apache.org/confluence/display/MXNET/Fused+RNN+Operators+for+CPU
http://circ.ahajournals.org/cgi/pmidlookup?view=long&pmid=10851218
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=10851218&dopt=Abstract
https://webstore.iec.ch/publication/2638
https://webstore.iec.ch/publication/2638
https://doi.org/10.1007/s13239-011-0065-3
http://dx.doi.org/10.1007/s13239-011-0065-3
https://arxiv.org/pdf/1512.01274.pdf
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=843571&dopt=Abstract
https://doi.org/10.3390/e18080285
http://dx.doi.org/10.3390/e18080285
http://www.w3.org/Style/XSL
http://www.renderx.com/

JMIR MEDICAL INFORMATICS Jeon et &

29.

30.

31.

32.

33.

Zubair M, Kim J, Yoon C. An automated ECG beat classification system using convolutional neural networks. : 1EEE;
2016 Presented at: 2016 6th International Conference on IT Convergence and Security (ICITCS); 2016 Sep 26; Prague,
Czech Republic p. 1-5 URL: https://doi.org/10.1109/ICITCS.2016.7740310 [doi: 10.1109/icitcs.2016.7740310]
Saadatnejad S, Oveisi M, Hashemi M. LSTM-Based ECG Classification for Continuous Monitoring on Personal Wearable
Devices. |EEE J Biomed Health Inform 2019 Apr 15. [doi: 10.1109/JBHI.2019.2911367] [Medline: 30990452]

Hagay L, Seungjai M. AWS Re:Invent 2018. 2018 Nov 26. Deep Learning for Developers: An Introduction, Featuring
Samsung SDS URL: https://tinyurl.com/tz6m9dt [accessed 2020-03-06]

XiaY, Wulan N, Wang K, Zhang H. Detecting atrial fibrillation by deep convolutional neural networks. Comput Biol Med
2018 Feb 01;93:84-92. [doi: 10.1016/j.compbiomed.2017.12.007] [Medline: 29291535]

Clifford G, Liu C, Moody B, Lehman LWH, Silval, Li Q, et a. AF Classification from a Short Single Lead ECG Recording:
the PhysioNet/Computing in Cardiology Challenge 2017. Comput Cardiol (2010) 2017 Sep;44 [FREE Full text] [doi:
10.22489/CinC.2017.065-469] [Medline: 29862307]

Agarwal V, Zhang L, Zhu J, Fang S, Cheng T, Hong C, et al. Impact of Predicting Health Care Utilization Via Web Search
Behavior: A Data-Driven Analysis. JMed Internet Res 2016 Sep 21;18(9):€251 [FREE Full text] [doi: 10.2196/jmir.6240]
[Medline: 27655225]

Abbreviations

AAMI: Association for the Advancement of Medical |nstrumentation
ACC: accuracy

BLAS: Basic Linear Algebra Subprogram
CNN: convolutional neural network

CPU: central processing unit

ECG: electrocardiogram (electrocardiographic)
F: fusion beat

FN: false negative

FP: false positive

GEMM: general matrix multiplication

GPU: graphics processing unit

I[EC: International Electrotechnical Commission
MIT-BIH: Massachusetts Institute of Technology-Beth Israel Hospital
MKL: Intel Math Kernel Library

N: nonectopic

PPV: positive predictive value

Q: paced or unknown beat

RNN: recurrent neural network

S: supraventricular ectopic

SEN: sensitivity

SPEC: specificity

STFT: short-time Fourier transform

TN: true negative

TP: true positive

V: ventricular ectopic

Edited by G Eysenbach; submitted 14.11.19; peer-reviewed by L Zhang, G Lim; commentsto author 05.12.19; revised version received
21.01.20; accepted 07.02.20; published 12.03.20

Please cite as:

Jeon E, Oh K, Kwon S, Son H, Yun 'Y, Jung ES KimMS

A Lightweight Deep Learning Model for Fast Electrocardiographic Beats Classification Wth a Wearable Cardiac Monitor: Development
and Validation Sudy

JMIR Med Inform 2020;8(3):e17037

URL: http://medinform.jmir.org/2020/3/e17037/

doi: 10.2196/17037

PMID: 32163037

http://medinform.jmir.org/2020/3/e17037/ JMIR Med Inform 2020 | vol. 8 | iss. 3| e17037 | p. 12

RenderX

(page number not for citation purposes)


https://doi.org/10.1109/ICITCS.2016.7740310
http://dx.doi.org/10.1109/icitcs.2016.7740310
http://dx.doi.org/10.1109/JBHI.2019.2911367
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30990452&dopt=Abstract
https://www.slideshare.net/AmazonWebServices/deep-learning-for-developers-an-introduction-featuring-samsung-sds-aim301r1-aws-reinvent-2018
http://dx.doi.org/10.1016/j.compbiomed.2017.12.007
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29291535&dopt=Abstract
http://europepmc.org/abstract/MED/29862307
http://dx.doi.org/10.22489/CinC.2017.065-469
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=29862307&dopt=Abstract
https://www.jmir.org/2016/9/e251/
http://dx.doi.org/10.2196/jmir.6240
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27655225&dopt=Abstract
http://medinform.jmir.org/2020/3/e17037/
http://dx.doi.org/10.2196/17037
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32163037&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

JMIR MEDICAL INFORMATICS Jeon et &

©Eunjoo Jeon, Kyusam Oh, Soonhwan Kwon, HyeongGwan Son, Yongkeun Yun, Eun-Soo Jung, Min Soo Kim. Originally
published in IMIR Medical Informatics (http://medinform.jmir.org), 12.03.2020. Thisis an open-access article distributed under
thetermsof the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work, first published in IMIR Medical Informatics, is

properly cited. The complete bibliographic information, alink to the original publication on http://medinform.jmir.org/, as well
asthis copyright and license information must be included.

http://medinform.jmir.org/2020/3/€17037/ JMIR Med Inform 2020 | vol. 8 | iss. 3| e17037 | p. 13

(page number not for citation purposes)


http://www.w3.org/Style/XSL
http://www.renderx.com/

