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Abstract

Background: Cardiac arrest is the most serious death-related event in intensive care units (ICUs), but it is not easily predicted
because of the complex and time-dependent data characteristics of intensive care patients. Given the complexity and time
dependence of ICU data, deep learning–based methods are expected to provide a good foundation for developing risk prediction
models based on large clinical records.

Objective: This study aimed to implement a deep learning model that estimates the distribution of cardiac arrest risk probability
over time based on clinical data and assesses its potential.

Methods: A retrospective study of 759 ICU patients was conducted between January 2013 and July 2015. A character-level
gated recurrent unit with a Weibull distribution algorithm was used to develop a real-time prediction model. Fivefold cross-validation
testing (training set: 80% and validation set: 20%) determined the consistency of model accuracy. The time-dependent area under
the curve (TAUC) was analyzed based on the aggregation of 5 validation sets.

Results: The TAUCs of the implemented model were 0.963, 0.942, 0.917, 0.875, 0.850, 0.842, and 0.761 before cardiac arrest
at 1, 8, 16, 24, 32, 40, and 48 hours, respectively. The sensitivity was between 0.846 and 0.909, and specificity was between
0.923 and 0.946. The distribution of risk between the cardiac arrest group and the non–cardiac arrest group was generally different,
and the difference rapidly increased as the time left until cardiac arrest reduced.

Conclusions: A deep learning model for forecasting cardiac arrest was implemented and tested by considering the cumulative
and fluctuating effects of time-dependent clinical data gathered from a large medical center. This real-time prediction model is
expected to improve patient’s care by allowing early intervention in patients at high risk of unexpected cardiac arrests.
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Introduction

Background
In-hospital cardiac arrest (IHCA) is etiologically different from
out-of-hospital cardiac arrest owing to the variety of underlying
illnesses in hospitalized patients. Unfortunately, despite efforts
to improve survival following IHCA, outcomes have not
significantly improved over the last few decades [1,2]. In
particular, unexpected cardiac arrest is the most serious adverse
event related to death in intensive care units (ICUs). The
common reasons for cardiac arrest in critically ill patients are
severe respiratory insufficiency and hypotension.

Several studies have reported that mortality after IHCA was
associated with the timing of cardiac arrest (day vs night shift),
type of institution (teaching vs nonteaching hospital), and
subsets of patients (ie, age and sex of patients) [3-5]. However,
these are not preventable factors. To reduce mortality, we need
to be able to predict which critically ill patients are at high risk
for IHCA before arrest and the actionable factor to reduce the
risk of cardiac arrest. Although many arrests are preceded by
clinical deterioration that is either unrecognized or not managed
effectively, the complex data of ICU patients make it difficult
to model and monitor early warning signs [6]. An additional
problem with arrest prediction is the nature of time to event
(TTE); we would like to be able to predict not only whether or
not cardiac arrest will occur but also when that event will occur
[7].

Given the complexity and time dependency of ICU data,
machine learning–based methods including the deep
learning–based early warning system and gradient boosting
machine have provided a good basis to develop risk prediction
models using large clinical data contained within electronic
medical records [8-12]. Specifically, several deep neural network
algorithms have been applied to develop an early warning
system for cardiac arrest to predict IHCA a few hours before
the event [12,13]. However, in the time series data, constructing
the label of the data by assuming the dependent variable is
binary has various risks because the time for the onset of
symptoms associated with cardiac arrest varies from patient to
patient. In this study, rather than simply predicting the
probability of cardiac arrest at the current time by binary
classification, parameters of the Weibull distribution were used
to predict the distribution of the probability of occurrence over
time. This allows us to predict when cardiac arrest will occur
at this time point, which will enable clinicians to alter the
clinical trajectory to prevent cardiac arrest.

Objectives
This study aimed to develop a real-time deep learning model
to predict the risk of cardiac arrest in critically ill patients in a
medical intensive care unit (MICU). Then, we evaluated the
performance of this system depending on the remaining time
from the event occurrence.

Methods

Study Design and Subjects
We conducted a retrospective study with patients admitted to
the MICU at the Asan Medical Center in Seoul, South Korea,
between January 1, 2013, and July 31, 2015. For the
development of a deep learning–based prediction model of
cardiac arrest in critical ill patients of the MICU, we identified
759 distinct patients aged 18 years or older who stayed in the
MICU for 1 day or more (Figure 1). All clinical data were
extracted from our deidentified clinical data warehouse [14].
The extracted clinical data were categorized by patient
demographics, diagnosis, medication, vital signs, medication,
and inputs and outputs (Multimedia Appendix 1). As most
clinical data were time series data, they were automatically
recorded using patient monitoring devices. Vital signs and
laboratory test data were collected at equally spaced intervals
of 1 hour and 1 day, respectively.

The data were preprocessed in 2 ways. First, we selected features
that patients have in common (see Feature selection in Figure
1). The features were divided into 6 broad categories (vitals,
Sequential Organ Failure Assessment scores, laboratory results,
demographics, diagnosis, and medications), and 45 common
variables of 981 patients were selected. Second, we created a
data pipeline to fit a gated recurrent unit (GRU) algorithm
structure (see Data structure settings in Figure 2). Patient
observations that had too many missing values were excluded
to prevent biased model estimation. To filter out observations
with many missing variables, 2 criteria were used: Pid and Pir

(Figure 1). Pid refers to the amount of missing observations after
2 tables (data pipeline fitted for the GRU structure and features)
were joined. The threshold for Pid was set to 1000. Pir is the
ratio approach and is calculated as Pid divided by the total
observations of patients in outcome variables. The threshold
for Pir was set to 20%. Furthermore, a threshold (τ) is defined
to prevent large values of remaining hours in the uncensored
group (ie, patients who did not experience cardiac arrest) from
causing biased model estimation. For instance, if the uncensored
group has many values greater than many hours (ie, 72 hours),
then the likelihood of cardiac arrest may be estimated to be
lower than that in the censored group. In addition, to accurately
predict the occurrence of cardiac arrest, it is important to allow
the model to learn the relationship between the time remaining
just before cardiac arrest (eg, 1-3 hours) and the variables.
Hence, only patients whose data were observed at least 1 hour
before cardiac arrest were included in the study (Figure 2).
Finally, the 2 tables (data structure that fits the GRU algorithm
and features) were joined.

This study was approved by the institutional review board of
the Asan Medical Center, Korea (institutional review board
number 2015-1015). The need for informed consent was waived
by the ethics committee as this study involved routinely
collected medical data that were anonymously managed at all
stages, including data cleaning and statistical analyses.
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Figure 1. Data preprocessing flowchart. Obs: observation; TTE: time to event.

Figure 2. Character-level gated recurrent unit structure combined with the Weibull distribution.

Development of Risk Prediction Model
The Weibull distribution, a continuous probability distribution,
is a parametric model that can calculate the distribution form

of survival time. Given the advantage of parametric models in
survival analysis, the Weibull model is often used to estimate
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failure rate over time [15,16]. The probability density function
of a Weibull random variable is shown in Figure 3.

Figure 3. The probability density function of a Weibull random variable.
k: shape parameter; λ: scale parameter; x: the quantity of time to failure.

The distribution consists of 2 parameters—the shape parameter
k and the scale parameter λ. The variable x is the quantity of
time to failure. Failure rates decrease over time when the shape
parameter is less than 1. Conversely, failure rates increase over
time when the shape parameter is greater than 1. The scale
parameter is a location parameter that affects the width of the
distribution. The larger the scale parameter value, the larger the
width of the distribution.

Character-level gated recurrent unit (Char-GRU) is often used
to predict the next token given a sequence of previous tokens
[17]. In this research setting, each patient time history (45
historical variables for 1 patient) was preprocessed to become
a set of overlapping time histories (see the list of 45 variables
in Multimedia Appendix 1). Thus, the data structure consists
of a 3-dimensional array: the number of observations × the
number of time steps × the number of variables.

Figure 2 represents the structure of the input tensor o, n, v

stands for oth observation, nth time step, vth variable, respectively.
For outcome variables, the algorithm estimates 2 parameters of
the Weibull distribution by accumulating input variables for up
to 48 hours (ie, 2 days). Thus, the 3-dimensional structure of
tensor values at the input stage is changed to a 2-dimensional
structure through the GRU network, and the parameters of shape
and scale are estimated by the last point of the network.

The challenging point of learning the model was related to the
censoring feature of the data structure (ie, 1=cardiac arrest
occurred or 0=censored). The TTE of cardiac arrest is actually
observed data, unlike in the case where the data point is not
censored. However, the TTE of cardiac arrest is unknown when
the data point is censored. In this study, τ was defined as a
threshold value indicating the time to safety in the censored
group. We set 72 hours as a threshold based on the median
number of hours that patients stayed in the MICU.

Cost Function and Model Structure
The outcomes of Char-GRU with the Weibull distribution
algorithm are 2 parameters corresponding to the shape and scale
of the Weibull model. These 2 parameters enable calculation
of likelihood through the function proposed in Figure 3. The
goal is to obtain the optimal parameter of the Weibull
distribution from the sequential patient data; therefore, the
negative log of the likelihood is set to the objective function to
maximize the likelihood of the training batch. With the objective
function, the Char-GRU network parameters were optimized
using the Adam stochastic optimization [18].

The total number of patients was 759, consisting of 37 cardiac
arrest patients and 722 non–cardiac arrest patients. As 45

variables for 1 patient are repeatedly observed 48 times, the
number of observations for cardiac arrest patients is 1776 and
that for censored patients is 34,656. Thus, the shape of the input
data delivered to the GRU algorithm is a 3-dimensional array
of 36,432 × 48 × 45. If 45 variables of a timewise vector are
missing, we apply a masking layer that skips the vector and the
learning. It is then delivered sequentially to a layer of 50 GRU
units. The activation function of this layer is an all hyperbolic
tangent function. Next, a fully connected layer of 20 units is
connected with the hyperbolic activation function. Finally, the
2 fully connected layers are connected to estimate the shape
and scale, the parameters of the Weibull distribution with a
softplus activation and exponential function, respectively.

Cross-Validation Procedure
A fivefold cross-validation test (training set: 80% and validation
set: 20%) was implemented to determine the consistency of the
model’s accuracy. Overall, 5 models were learned independently
from each dataset each time. Time-dependent receiver operating
characteristic (ROC) analysis was performed from the
aggregated set of the probability of an individual having cardiac
arrest in each time step, which was estimated from 5 validation
sets [19]. The mechanism for applying the result of the deep
learning model to time-dependent ROC analysis is as follows:
tensors, which were 3-dimensional in the input level, were
passed through the GRU network to estimate the Weibull
distribution by learning the shape and scale parameters. The
Weibull distribution in this study setting indicates the likelihood
(from 0%, low risk, to 100%, high risk) of a heart attack within
the next hours from the current point in time. In other words,
the time-dependent risk of cardiac arrest for each patient was
estimated based on the deep learning model. Thus, the
time-dependent risk probability of having a cardiac arrest was
passed to the time-dependent ROC analysis.

Open Source Software
All procedures for data preprocessing and model implementation
were conducted through the open source programming languages
R and Python. To handle data in the format of a data frame (ie,
data table) and an array, 2 open source libraries—Pandas and
Numpy—were used. Char-GRU with a Weibull distribution
was implemented in Keras (version 2.2.2), a wrapper library
from Tensorflow (version 1.10.0), and a representative open
source tool supporting the implementation of deep learning
algorithms. Detailed concepts and mechanisms at the code level
of this algorithm have been well documented in a previous study
[16,20]. The ROC analysis was performed based on the R
package pROC.

Results

Patient Characteristics
A total of 759 patients admitted in the ICU of the Asan Medical
Center from March 2015 to March 2017 were enrolled in the
study. Descriptive analysis was performed in 2 broad categories:
demographics with 3 variables and diagnostic status with 8
variables. The Student t test was used for continuous variables
such as age; the chi-square test was used for categorical
variables such as Diab (ie, 1=diabetes or 0=no diabetes). The

JMIR Med Inform 2020 | vol. 8 | iss. 3 | e16349 | p. 4http://medinform.jmir.org/2020/3/e16349/
(page number not for citation purposes)

Kim et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


results of a descriptive analysis are reported in Table 1. Both
age and body weight in the cardiac arrest group were statistically
higher than those in the non–cardiac arrest group (ie, censored

group; P<.001). However, there were no statistical differences
between the 2 groups for the remaining variables, including
gender and underlying diseases.

Table 1. Descriptive statistics of the demographics and underlying diseases of the patients.

P value (test type)Censored group (n=722)Cardiac group (n=37)Variables

Demographics

<.001 (t test)60.526 (13.991)62.509 (12.311)Age (years), mean (SD)

<.001 (t test)57.816 (13.435)59.734 (13.166)Weight (kg), mean (SD)

.15 (chi-square test)Gender, n

45128Male

2719Female

Diagnosis, n

.35 (chi-square test)Hematologic malignancy

1058Yes

61729No

.43 (chi-square test)Liver disease

1118Yes

61129No

.97 (chi-square test)Oxygenation index

282Yes

69435No

.99 (chi-square test)Respiratory index

100Yes

71237No

.84 (chi-square test)Heart failure

614Yes

66133No

.92 (chi-square test)Diabetes

21812Yes

50425No

.68 (chi-square test)Coronary Sinus Pressure

180Yes

70437No

.85 (chi-square test)Dialysis

763Yes

64634No

aThe digits outside the parentheses mean P value.

Model Learning Results
As 5 cross-validation procedures were performed in this study,
each of the 5 models was trained independently. Multimedia
Appendix 1 shows the cost values over 1000 epochs for the
training set and the validation set of each model. Although there
were many points where the cost changed rapidly over the
course of learning, the cost value decreased continuously over

the epochs. From the first fold to the fifth fold, the cost value
for the validation set was 0.217, 0.242, 0.271, 0.329, and 0.251
(Multimedia Appendix 1). As there is no clear criterion on when
to stop training parameters during model training, we stopped
model training with a heuristic approach based on the shape of
the cost function. Specifically, the overall cost value hardly
decreased when the epochs exceed 300. However, the cost
values of both the training and validation sets suddenly increased
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after 500 epochs and settled after 700 epochs (Multimedia
Appendix 1). To check if the cost instability was recaptured,
we trained the model up to 1000 epochs and then stopped the
learning.

Time-Dependent Model Performance
Overall, 5 time-dependent areas under the curve (TAUCs) were
calculated using the aggregated set of 5 validation sets (Figure
4). In this study, these TAUCs were segmented according to 5
time points. The TTE equated to 1, 8, 16, 24, 32, 40, or 48 hours
remaining to cardiac arrest in the cardiac arrest group and to be
censored in the non–cardiac arrest group. The number of cardiac
arrest cases according to the 5 folds was 41 (6.63%), 41 (6.63%),
42 (6.77%), 42 (6.77%), and 42 (6.77%). We show the

performance of the 5 folds through the median for all time points
(Multimedia Appendix 1). TAUCs for TTEs 1, 8, 16, 24, 32,
40, and 48 hours were calculated as 0.963, 0.942, 0.917, 0.875,
0.850, 0.842, and 0.761, respectively, indicating that model
performance decreases as TTE increases. For all time points,
the area under the curve of performance for the 5 folds is
increased linearly (Multimedia Appendix 1). The average
correlation coefficient between TAUC and time point in 5 folds
was 0.910. Despite the smaller number of patients with cardiac
arrest as compared with censored patients, the sensitivity ranged
from 0.846 to 0.909. The specificity was generally high, ranging
from 0.923 to 0.946, except for 48 hours, when there was a lack
of prior information.
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Figure 4. Results of time-dependent receiver operating characteristic analysis according to the fold change. AUC: area under the curve.

Risk Score Comparison
Figure 5 shows how the risk probability in the cardiac arrest
and the non–cardiac arrest groups changed over time. For the
group with a cardiac arrest, the risk probability increases as the
time for a cardiac arrest approaches. Conversely, the group
without a cardiac arrest did not show an increase in the risk of

cardiac arrest when the data were closer to the censored time.
From 48 to 16 hours before cardiac arrest, the interquartile range
(IQR) values overlap for the cardiac and noncardiac groups.
However, the IQR of the risk probability of the 2 groups is
separated from 15 hours ago. The median risk probability value
from 15 hours ago also differs more than 10 times, and the
difference continues to increase 1 hour before cardiac arrest.
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Figure 5. Risk probability comparison between cardiac arrest and the non–cardiac arrest groups. The x-axis represents the time point, and the y-axis
represents the distribution of probability density values for cardiac arrest obtained for each patient corresponding to each time point.

Predicted Cumulative Distribution Function at Time
Point
An additional problem with arrest prediction is predicting when
a cardiac arrest event will occur. A cumulative distribution
function was derived through the shape and scale inferred by
the model from each time point. Using the Weibull distribution
parameter derived for the 48 time points, curves corresponding
to cumulative distribution functions were drawn (A in Figure
6). Each line represents the probability of a cardiac arrest

occurring from the start time point of the parameters until the
remaining time. The closer the time to the cardiac arrest, the
higher the beginning of the cumulative distribution function.
This shows that even when the time point is far from cardiac
arrest, a patient can be predicted to be high risk. Furthermore,
the predicted time remaining until the patient has a cardiac arrest
is presented (B in Figure 6). As the time approaches the cardiac
arrest, the time remaining before the cardiac arrest occurs is
estimated to be very small.

Figure 6. (A) Cumulative distribution function lines from the predicted time point to censoring time point for a patient with cardiac arrest at 48 time
points; Each function line is color-coded. (B) Predicted hours remaining until a patient has cardiac arrest; the y-axis was limited to less than 25 hours
for readability. pTime: predicted time.
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Conversely, the distribution of the cumulative distribution
function of a certain patient without cardiac arrest shows that,
at all time points, the probability does not increase over time

(A in Figure 7). Likewise, the time remaining until the patient
has cardiac arrest is predicted to be very high (ie, more than 25
hours) over the entire time (B in Figure 7).

Figure 7. (A) Cumulative distribution function lines from the predicted time point to censoring time point for a patient without cardiac arrest at 48
time points; Each function line is color-coded. (B) Predicted hours remaining until a patient has cardiac arrest; the y-axis was limited to less than 25
hours for readability. pTime: predicted time.

Discussion

Principal Findings
In this study, we developed the prediction model for cardiac
arrest in critically ill patients through machine learning using
electronic medical records. Besides vital sign, we used the
underlying disease, laboratory data, medication, and organ
failure as parameters to improve the accuracy of the prediction
model. The TAUCs for TTE of 8, 16, and 24 hours were 0.942,
0.91, and 0.811, respectively, and the model performance
decreased in accordance with increasing TTE.

Informative Outcomes
In previous studies related to cardiac arrest predictions, modeling
techniques that predict whether an event occurs within a
predefined predicted time window have often been implemented
[4,9,12]. Although these approaches are efficient in terms of
model implementation, these approaches have limitations
because it is impossible to forecast whether cardiac arrest occurs
or not outside a defined window or when it will occur. To
overcome the limitations, we attempted to combine the Weibull
distribution estimation technique with a Char-GRU. This
modeling approach provides information about the cardiac arrest
risk probability over the future time. Therefore, it is possible to
provide an answer to how many hours are left until cardiac arrest
occurs without a predefined time threshold that may limit the
information. Thus, it is obviously much more informative to
predict cardiac arrest in clinical practice.

Early Warning in Real Time
The early recognition of cardiac arrest and its prompt correction
are critical to reducing the mortality of critically ill patients. To
decide clinically who is unstable or who is going to deteriorate,
many intensivists often scrutinize the vital signs of intensive
care patients, such as blood pressure, heart rate, respiratory rate,
and peripheral capillary oxygen saturation [21,22]. However,

several studies have shown that these signs may not be effective
in forecasting the risk early (ie, several hours before) [21,23].
This may be because of insufficient information on vital signs
in predicting cardiac arrest in advance. However, considering
that critical patient data are continuously generated in real time
from numerous sources, including vital signs and information
from organ support devices [12,13], the use of big data may
provide models with sufficient information for the early
prediction of cardiac arrest. Furthermore, the use of deep
learning models, taking into account cumulative historical
patterns of large clinical data, is expected to be very effective
in predicting cardiac arrest in advance. In this regard, we
implemented a deep learning–based model using a large dataset
of 45 variables and found that the model could potentially be
used for the early prediction of cardiac arrest.

Flexibility and Operational Reality
As cumulative and fluctuating effects of clinical variables over
time can be reflected in deep learning algorithms, the use of
long time series data to predict cardiac arrest is ideal. However,
it is not appropriate to take no action until the patient has
accumulated sufficient time series data. Waiting for sufficient
time (ie, 48 hours) to accumulate patient time series data in
clinical settings is undesirable for both patients and intensivists.
Even if variables have not yet accumulated for a sufficient
amount of time, a model should be available. In this situation,
the Char-GRU structure allows the model to use the clinical
variables. Specifically, the Char-GRU model can predict the
risk of a patient’s cardiac arrest using clinical variables
accumulated up to the present time (ie, 3 hours after entering
the ICU) [17].

Estimation Efficiency
The early detection of disease onset is challenging in terms of
the configuration of deep learning algorithm structures and data
pipelines, as there is no reference for early time. Previous studies
have been limited in predicting the onset of an illness just 1
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time step ahead (a week or a month before) [24,25]. However,
disease onset could be forecasted at various time points. For
instance, the probability of 3 hours before, 2 hours before, and
1 hours before the onset of a disease may be predicted at the
same time. In this setting, 3 dimensions—the number of
observations, time steps, and disease indication (1=onset or
0=nononset)—should be considered in determining cardiac
arrest. However, it is inefficient to predict cardiac arrest onsets
over all time steps because it is unknown how many hours earlier
the onsets should be predicted. However, when estimating the
occurrence of a disease by estimating a Weibull distribution,
the dimension of the outcome variables (ie, shape and scale
parameters) is 2 (observation ID and Weibull distribution
parameters—shape and scale). In other words, this setting
estimates the time remaining until the onset of the disease in
the form of a continuous variable so that the time dimension
(ie, the cardiac arrest onset over time remaining) is removed
from the outcome variable area. Therefore, this method is much
more efficient because it can significantly reduce the need for
various experiments.

Limitations
This study has limitations that need to be addressed in further
studies before applying Char-GRU with the Weibull distribution
algorithm to clinics. In this study, rigorous validation was not
performed while focusing on algorithm implementation using
clinical data. As clinical data from only 1 medical institution
were used, various additional validations are needed to
generalize the results. To conduct rigorous validation, it is

recommended to validate deep learning–based Weibull models
using published data such as the modified early warning score
[12].

Another limitation is the inability to fully control the reflection
of certain effects in the collected data, which may affect the
model results. For instance, data from a treated patient who is
perceived to be in a very dangerous condition may cause a bias
against the time series characteristics in the high-risk group
[26]. In other words, the patient’s data reflecting the time series
characteristics of the non–cardiac arrest group would ultimately
reflect the time series characteristics of the cardiac arrest group
if the patient had not been treated [26,27]. In the previous
studies, such data were just removed or corrected based on
statistical methods [26,28]. Therefore, further research that
validates this algorithm requires in-depth consideration of data
selection and preprocessing.

Conclusions
The cardiac arrest survival rate in hospitals is about 24%, and
even after survival, patients suffer from fatal problems such as
brain damage [29,30]. However, because of the difficulty in
forecasting cardiac arrest in advance, adequate prior
interventions were rarely provided. We hope that the early
prediction of cardiac arrest is linked to early intervention for
the prevention of cardiac arrest. For that purpose, further
research is essential to discuss how to operate deep learning
models linked with a database and what forms of model
outcomes should be provided to medical providers in practice.
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Abbreviations
Char-GRU: character-level gated recurrent unit
GRU: gated recurrent unit
ICU: intensive care unit
IHCA: in-hospital cardiac arrest
IQR: interquartile range
MICU: medical intensive care unit
ROC: receiver operating characteristic
TAUC: time-dependent area under the curve
TTE: time to event
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