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Abstract

Background: A timely decision in the initial stages for patients with an acute illness is important. However, only a few studies
have determined the prognosis of patients based on insufficient laboratory data during the initial stages of treatment.

Objective: This study aimed to develop and validate time adaptive prediction models to predict the severity of illness in the
emergency department (ED) using highly sparse laboratory test data (test order status and test results) and a machine learning
approach.

Methods: This retrospective study used ED data from a tertiary academic hospital in Seoul, Korea. Two different models were
developed based on laboratory test data: order status only (OSO) and order status and results (OSR) models. A binary composite
adverse outcome was used, including mortality or hospitalization in the intensive care unit. Both models were evaluated using
various performance criteria, including the area under the receiver operating characteristic curve (AUC) and balanced accuracy
(BA). Clinical usefulness was examined by determining the positive likelihood ratio (PLR) and negative likelihood ratio (NLR).

Results: Of 9491 eligible patients in the ED (mean age, 55.2 years, SD 17.7 years; 4839/9491, 51.0% women), the model
development cohort and validation cohort included 6645 and 2846 patients, respectively. The OSR model generally exhibited
better performance (AUC=0.88, BA=0.81) than the OSO model (AUC=0.80, BA=0.74). The OSR model was more informative
than the OSO model to predict patients at low or high risk of adverse outcomes (P<.001 for differences in both PLR and NLR).

Conclusions: Early-stage adverse outcomes for febrile patients could be predicted using machine learning models of highly
sparse data including test order status and laboratory test results. This prediction tool could help medical professionals who are
simultaneously treating the same patient share information, lead dynamic communication, and consequently prevent medical
errors.

(JMIR Med Inform 2020;8(3):e16117) doi: 10.2196/16117
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Introduction

For time-sensitive diseases, timely decisions are essential;
however, the availability of data is extremely limited in the
early stages of medicine [1,2]. Data obtained in the long term
after the patient’s visit provide sufficient information, and the
results of analysis to predict the patient’s outcome are highly
accurate. However, the timing and effectiveness of this
long-term data are limited in early decision making because the
results do not reflect the patient’s initial status. Therefore, it is
necessary to develop a time adaptive model that reflects the
decision-making process by utilizing the pattern of interim
information in uncertain situations during the initial stages of
the patient’s visit.

Biomarkers, especially those obtained via laboratory data, play
a key role in clinical decisions in emergency settings [3-5].
Laboratory data are important for predicting the patient’s
prognosis but can lead to delays in decision making since many
test results are not available during the initial stages [6-9]. This
further exacerbates the inherent problems with laboratory data
including a high level of sparsity due to the many test types and
variation in individual orders [8,10]. Therefore, we try to
maximize the utilization of laboratory information through
patterns and the use of order status, which can infer the patient’s
initial status before obtaining test results.

Previous studies have focused on utilizing a sufficient amount
of laboratory test data. Most predictive models have been
developed based on long intervals such as those to predict
mortality occurring within 24 or 48 hours rather than earlier
periods; with these longer periods, researchers can be guaranteed
of adequate information from test results [11,12]. Previous
studies have also used a limited number of the frequently
measured test variables, rather than including all possible tests,
to predict mortality, and they found that sufficient data were
available to develop prediction models [13,14].

This study aimed to develop time adaptive models that predict
adverse outcomes for febrile patients in the emergency
department (ED) based on a machine learning approach and
highly sparse data.

Methods

Study Setting
This retrospective study was conducted with ED data from a
tertiary academic hospital in Seoul, Korea. The hospital has
approximately 2000 beds. The outpatient department has an
average of approximately 9000 patients per day, while the ED
has approximately 220 patients per day. Since the opening of

its comprehensive cancer center in 2003, the hospital has a large
portion of oncology patients undergoing both surgical and
medical procedures. This study was approved by the institutional
review board of the study site (IRB File No: SMC 2018-08-125).
This report follows the Transparent Reporting of a Multivariable
Prediction Model for Individual Prognosis or Diagnosis
(TRIPOD) reporting guideline.

Source of Data
Data were obtained from a clinical data warehouse containing
medical data for research, which enables de-identification and
retrieval of patient information from electronic medical records
for research purposes. It uses global standard terminology and
provides near realtime data through daily updates. In addition
to basic patient demographics, it provides information on tests,
medications, diagnoses, and operations.

Participants
Patients who visited the ED from March 2017 through February
2019 were included in the study. Then, only febrile (body
temperature >38°C) [15] and adult patients (aged ≥18 years)
were included. Patients were excluded if the main reason for
their visit was determined as trauma.

Outcome and Predictors
We used a binary composite outcome for severity. Severity was
considered as death or admission to the intensive care unit after
transfer from the ED.

Only laboratory test data were used as predictors, and the list
of laboratory tests was selected by experts. Predictors were
selected based on the typical ED process in which all possible
laboratory tests could be performed after the initial assessment
by physicians [16]. Figure 1 shows the general process from
the typical initial process to patient discharge from the ED. This
study focused on the initial process and the ordering of
laboratory tests and test results in particular. Two models were
developed from the viewpoint of the initial process, using
laboratory test order status and laboratory test results that
became available later.

The laboratory test data provide the order status and result for
each laboratory test, and all the variables were categorized.
Order status indicates whether a patient has an order for a
laboratory test, and the test result reflects whether it was normal,
abnormal, or not reported. When the test was repeatedly
performed, only the first test data were included. We developed
two predictive models using these laboratory test data: order
status only (OSO) for the first model and order status and results
(OSR) for model 2 (Figure 2).
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Figure 1. Process flow in the emergency department.

Figure 2. Representative example of the range of predictors for each model, where each row indicates a patient’s record of laboratory tests. Additional
laboratory tests and patient records can be added. Order status, which indicates whether the test was ordered, was used in the OSO model. The OSR
model was developed using order status and test results, which had three levels: normal, abnormal, and NA (not reported). CRP: C-reactive Protein;
Hb: hemoglobin.

For a group of laboratory tests that are not frequently ordered
but are conducted for only a few patients, the order status
information causes severe data sparsity. Rather than using the
order status information for each of those tests, new variables
were introduced. First, rarely ordered tests (ROTs) were
identified as tests that had an ordered rate <5%. The new
variable ROT was defined as the number of ROTs ordered for
each patient. Likewise, for tests that generate rarely detected
abnormal results (RARs; <5% of the results are abnormal), a
new variable RAR was defined as the number of RARs obtained
among those tests for each patient.

Analytical Methods
Patients were randomly assigned to two cohorts for model
development (70%) and validation (30%), which had similar
distributions with respect to the outcome. We applied and
compared various machine learning methods, including random
forest (RF), support vector machine, logistic regression with
least absolute shrinkage and selection operator, ridge, and elastic
net (EN) regularization [17-21]. For optimization, the grid search
was used for all algorithms, and the stochastic gradient descent
method was used for penalized regression algorithms. The Gini
index was selected to measure the split quality in RF. Linear
and sigmoid kernels were considered for the support vector

JMIR Med Inform 2020 | vol. 8 | iss. 3 | e16117 | p. 3http://medinform.jmir.org/2020/3/e16117/
(page number not for citation purposes)

Lee et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


machine. Moreover, hyperparameters for each algorithm were
tuned with the accuracy measure based on 10-fold
cross-validations that were repeatedly conducted 5 times to
reduce the partition bias in model development.

The predictive models were evaluated with the validation cohort
using various performance measures, such as the area under the
receiver operating characteristic curve (AUC), area under the
precision recall curve (AUPRC), balanced accuracy (BA),
sensitivity, specificity, F1 score, positive likelihood ratio (PLR),
and negative likelihood ratio (NLR) [22]. For each measure,
we provide 95% CIs, which were estimated by bootstrapping
2000 resamples, and selected the optimal thresholds with which
BA was maximized. Moreover, net reclassification improvement
[23] was used to measure the incremental value of adding test
results to the order status in the prediction. Comparison of the
performance between the models was conducted using the
bootstrap-t method [24]. The resulting predictive models were
further compared with the Modified Early Warning Score
(MEWS), a reference algorithm currently used to predict the
severity of a patient’s condition in clinical practice [25]. The
clinical usefulness of the models was demonstrated in two ways.
First, we conducted Spearman correlation analysis to evaluate
whether clinically meaningful variables were selected
consistently across the algorithms. Second, the Kaplan-Meier
method and log-rank test were used to estimate and compare
survival curves between high-risk and low-risk groups as
predicted from the OSR model. We used 2-sided P<.05 for
statistical significance.

Class imbalance existed in our outcome data. This can lead to
the classifier having poor performance because it can create
bias against a class and may not able to distinguish between
noise and the individuals from the minority class [26,27]. We
investigated its effects on prediction performance using various
scenarios in which different techniques and class ratio were
considered for imbalance reduction. Three oversampling and
three undersampling approaches were considered. The
oversampling methods included random, synthetic minority

oversampling technique, and adaptive synthetic sampling. The
undersampling methods included random, NearMiss-2, and
edited nearest neighbors [28]. Furthermore, we increased the
ratio between the minority and majority classes from 1:1 to 1:10
and tried to find the best performance. For each scenario, we
used EN for model development, and the performance was
assessed using 100 bootstrap resamples from the original dataset.

The preprocess was conducted using R version 3.4.4 [29], and
the analytic process was performed with Python version 3.6.2
(Python Software Foundation, Wilmington, DE) using pandas,
numpy, sklearn, and imblearn library. More details related to
the model development are available in Multimedia Appendix
1.

Results

Patient Demographics
A total of 154,402 patients visited the ED between March 1,
2017, and February 28, 2019. Based on the inclusion and
exclusion criteria, 9491 patients remained in the final dataset
used for modeling (Multimedia Appendix 2). The randomly
divided model development and validation cohorts included
6645 and 2846 patients, respectively, with a composite adverse
outcome frequency of 4.6% in the 2 datasets. The baseline
characteristics reflect only the initial patient status. The mean
age (SD) was 55.2 years (17.7 years); 4839 of the 9491 patients
(51.0%) were female; and 432 of the 9491 patients (4.6%)
experienced the composite adverse outcome. Patients in the
development and validation cohorts were similarly distributed
(Table 1).

The three most frequently observed laboratory tests were C
reactive protein, chlorine, and sodium. Among a total of 286
laboratory tests after preprocessing, 201 ROTs (order rate <5%)
and 231 tests with RARs (abnormal rate <5%) were identified.
The OSO model had 85 order status variables as well as the
ROT variable. Similarly, the OSR model had 55 result variables,
the RAR variable, and the variables in the OSO model.
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Table 1. Baseline characteristics of the total sample and comparisons between the two patient cohorts used to develop and validate the two models.

P valueModel validation cohort (n=2846)Model development cohort (n=6645)Total sampleCharacteristic

Sex, n (%)

.641440 (50.6)3399 (51.2)4839 (51.0)Female

1406 (49.4)3246 (48.8)4652 (49.0)Male

.1755.6 (17.6)55.0 (17.8)55.2 (17.7)Age (years), mean (SD)

Transportation, n (%)

.422259 (79.4)5224 (78.6)7483 (78.8)Other

587 (20.6)1421 (21.4)2008 (21.2)Ambulance

Route, n (%)

.15387 (13.6)830 (12.5)1217 (12.8)Indirect

2459 (86.4)5815 (87.5)8274 (87.2)Direct

Mentality, n (%)

.692757 (96.9)6449 (97.1)9206 (97.0)Alert

89 (3.1)196 (2.9)285 (3.0)Not alert

Pulse rate, n (%)

.352152 (75.7)4956 (74.8)7108 (75.1)Normal (60-120 beats per minute)

690 (24.3)1671 (25.2)2361 (24.9)Abnormal (<60 or >120 beats per
minute)

Respiratory rate, n (%)

1.002822 (99.2)6577 (99.2)9399 (99.2)Normal (10-30 breaths per minute)

22 (0.8)51 (0.8)73 (0.8)Abnormal (<10 or >30 breaths per
minute)

Systolic blood pressure, n (%)

.802168 (76.2)5044 (75.9)7212 (76.0)Normal (90-140 mmHg)

678 (23.8)1601 (24.1)2279 (24.0)Abnormal (<90 or >140 mmHg)

Diastolic blood pressure, n (%)

.442052 (72.1)4738 (71.3)6790 (71.5)Normal (60-90 mmHg)

794 (27.9)1907 (28.7)2701 (28.5)Abnormal (<60 or >90 mmHg)

SpO2
a, n (%)

.482714 (97.2)6356 (97.5)9070 (97.4)Normal (>90)

79 (2.8)166 (2.5)245 (2.6)Abnormal (<90)

Outcome, n (%)

.992717 (95.5)6342 (95.4)9059 (95.4)Normal

129 (4.5)303 (4.6)432 (4.6)Composite adverse outcomeb

aSpO2 : peripheral oxygen saturation.
bDefined as death or admission to the intensive care unit.

Model Performance and Specification
The OSO and OSR models were each developed based on 5
different algorithms. The RF-based models were selected as the
final predictive OSO and OSR models because they had better
performance overall in terms of the most evaluation measures,
including specificity, precision, F1 score, NLR, and PLR

(Multimedia Appendix 3). Note that the EN-based OSR model
was comparable to the RF-based OSR model. Compared to the
MEWS (AUC = 0.68), the final OSO and OSR models showed
significant AUC improvement, at 12% and 20%, respectively
(Table 2, Multimedia Appendix 4). Both models had better
performance than the MEWS according to most of the other
measures, including the AUPRC, maximum BA, and F1 score.

JMIR Med Inform 2020 | vol. 8 | iss. 3 | e16117 | p. 5http://medinform.jmir.org/2020/3/e16117/
(page number not for citation purposes)

Lee et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 2. Internal validation of the models using different laboratory information, reported as the score and 95% CI.

Difference

(OSO vs OSR)f

Difference

(MEWS vs OSO)e
OSRdOSOcMEWSbMeasurea

0.08 (0.08 to 0.08)0.12 (0.12 to 0.12)0.88 (0.85 to 0.91)0.80 (0.76 to 0.84)0.68 (0.63 to 0.73)AUCg

0.14 (0.14 to 0.14)0.11 (0.11 to 0.11)0.39 (0.30 to 0.47)0.25 (0.18 to 0.33)0.14 (0.10 to 0.20)AUPRCh

0.10 (0.10 to 0.10)0.22 (0.21 to 0.22)0.81 (0.76 to 0.89)0.70 (0.62 to 0.82)0.49 (0.42 to 0.61)Sensitivity

0.04 (0.04 to 0.04)–0.04 (–0.04 to –0.04)0.81 (0.75 to 0.83)0.78 (0.66 to 0.83)0.82 (0.66 to 0.83)Specificity

0.07 (0.07 to 0.07)0.09 (0.09 to 0.09)0.81 (0.78 to 0.84)0.74 (0.71 to 0.77)0.65 (0.62 to 0.69)Balanced ac-
curacy

0.04 (0.04 to 0.04)0.02 (0.02 to 0.02)0.17 (0.13 to 0.20)0.13 (0.10 to 0.16)0.11 (0.08 to 0.14)Precision

0.06 (0.06 to 0.06)0.04 (0.04 to 0.04)0.28 (0.23 to 0.32)0.22 (0.17 to 0.26)0.18 (0.14 to 0.22)F1 score

1.07 (1.06 to 1.08)0.49 (0.48 to 0.5)4.22 (2.92 to 4.94)3.10 (2.25 to 4.29)2.68 (1.76 to 3.27)PLRi

–0.14 (–0.15 to –0.14)–0.25 (–0.25 to –0.25)0.23 (0.12 to 0.31)0.39 (0.24 to 0.49)0.63 (0.49 to 0.73)NLRj

aCalculations were completed with the validation set, and 95% CIs were computed using 2000 bootstrap replicates for each performance measure.
bMEWS: Modified Early Warning Score.
cOSO: model with order status only.
dOSR: model with both order status and test result.
eDifference in each performance measure between the MEWS and OSO model.
fDifference in each performance measure between the OSO and OSR models.
gAUC: area under the receiver operating characteristic curve.
hAUPRC: area under the precision recall curve.
iPLR: positive likelihood ratio.
jNLR: negative likelihood ratio.

Compared with the OSO model, the OSR model showed
significant improvement in the AUC, at 8%, and maximum BA,
at 7%. Additionally, the OSR model was more informative than
the OSO model in predicting low-risk and high-risk patients in
terms of outcome (P<.001 for difference in both PLR and NLR).
A significant additional increment in reclassification was also
observed between the OSO and OSR models (net reclassification
improvement=0.15). Despite the lack of information from
laboratory test results, the OSO model showed considerable
performance (AUC = 0.80). Therefore, the order pattern itself
can be important information for prediction, and it is better to
use the OSO model in the early stages than to wait until test
results are obtained. However, because it utilizes laboratory test
results obtained later in time, the OSR model has higher
accuracy and better performance than the OSO model.
According to the Kaplan-Meier survival curves (log-rank test,
P<.001) comparing the predicted outcome groups, the OSR
model can classify patients well (Figure 3). The complementary
use of these two models can be beneficial both before and after
all laboratory test results are available in clinical situations such
as those in the ED.

Important variables selected from the RF-based and EN-based
models were moderately correlated in terms of their value

importance and odds ratios, respectively (rs=0.603 and 0.626
for the OSO and OSR models, respectively; Multimedia
Appendix 5). Among the top 10 variables selected in each of
the RF-based and EN-based models, 80% and 60%, respectively,
were shared by the OSO and OSR models. Therefore, the
important variables were very similar between the RF and EN
models, potentially suggesting our models are robust, regardless
of the algorithm used. The order statuses of cardiac troponin I,
creatine kinase, and creatine kinase-MB were the top 3 variables
in terms of importance in both the RF-based and EN-based OSO
models. The order status of creatine kinase remained in the top
10 important variables in the OSR models. The lactic acid test
result was the most important variable in both the RF-based and
EN-based OSR models.

The data had severe outcome imbalance: 95.4% (9059) for the
majority class and 4.6% (432) for the minority class. However,
the sensitivity analysis to calibrate the imbalance with various
reduction scenarios did not reveal any considerable improvement
in the prediction performance. Therefore, our models are not
affected much by the imbalance problem (Multimedia Appendix
6).
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Figure 3. The curves indicate how the actual outcome developed over time when the patients were divided into high-risk and low-risk categories, as
predicted from the OSR model. The graph was plotted using the Kaplan-Meier survival curve, and the P-value shows the log-rank test result.

Discussion

Principal Findings
In this study, we developed a time adaptive model to predict
adverse outcomes for patients in the ED. These patients are
likely to have insufficient and unconfirmed clinical information,
especially in the early stages of the ED process. The OSO model,
which only utilizes test order status, supports our hypothesis
that it is feasible to predict patient prognosis based only on the
fact that a laboratory test has been ordered and without the test
results. Patient demographics or vital signs were also not
required for the prediction.

Febrile patients have a considerable number of laboratory tests
to consider. The ED receives patients with different illnesses
and febrile patients with various diseases in particular. Fever is
also the most common sign of potential sepsis [30,31], requiring
more laboratory tests. Febrile patients were selected as the target
population to investigate the sparsity and large number of tests
typically required initially and to reflect as many tests as
possible.

The OSO model mimics the ED physician’s clinical reasoning
process in practical settings, while prediction models developed
previously are limited by using only confirmed results [11-14].
For time-sensitive conditions, multiple tests are performed
simultaneously, resulting in a combination of confirmed and
unconfirmed results, which necessitates models that can be
applied in real practice. This study is the first step to overcome
these limitations. Furthermore, it is possible to predict the initial
outcome of patients with a severe condition using the OSO
model and then update the prediction using the OSR model
when additional information becomes available in a time
adaptive manner.

In modern medicine, a multidisciplinary approach is a
cornerstone of better quality [32,33]. In the ED, multiple
providers work as a team to simultaneously treat various
conditions [7]. Analyzing laboratory test orders and results
could benefit the whole treatment team by interpreting the initial
impression and intention of physicians who give the orders for
tests. It is possible that each physician may not be aware of the
intention of others while simultaneously treating the same
patient [7,34,35]. In this context, the prediction tool can help

JMIR Med Inform 2020 | vol. 8 | iss. 3 | e16117 | p. 7http://medinform.jmir.org/2020/3/e16117/
(page number not for citation purposes)

Lee et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


share information, lead dynamic communication, and
consequently prevent medical errors.

This study could be expanded further by including vital signs,
procedures, and medications for better prediction. In addition,
the application could be broadened to include diagnosis as well
as adverse outcomes, especially for diseases where the patient’s
response over time after a particular treatment is important.
Additionally, it can be extended to anticipate clinical decisions,
which may be integrated as clinical decision support. The time
variable is the most essential component for these predictions,
and this model has successfully shown its feasibility.

Limitations
This study has some limitations. First, the models were
developed and internally validated using data from a single
large hospital. Although cross-validation was performed with
repetition, optimization, and several candidates of
hyperparameters, along with survival analysis to increase their
clinical impact, further studies are required for external and
prospective validation.

Second, the primary parameters such as laboratory results, which
may vary across individuals and clinical fields, were from febrile
patients. Therefore, it could be difficult to apply these to other
populations, although we attempted to include as many tests as
possible. However, we believe the important variables that were

selected related to laboratory tests from the 2 models are
clinically relevant for the outcome variables, so there is potential
to extend the models to other target populations in future studies.

Third, the OSO and OSR models were not developed with a
continuous time sequence. Instead of creating a continuous
model, we tried to build representative models to reflect test
order status and results. Further research will be required to
create a continuous model for practical use, which can be applied
to various time thresholds.

Last, the imbalance of data could have affected the performance
of models developed using raw data. Although various methods
to deal with the issues related with imbalanced data were applied
to develop and validate the model, only a few of algorithms
among the methods for calibrating the class imbalance were
used. It is possible that the use of other algorithms would have
changed the results even though the results in this study were
not significantly improved after addressing the issue of
imbalanced data. Therefore, various additional algorithms should
be used to address the imbalanced data in future studies.

Conclusions
Adverse outcomes during the early stages for febrile patients
could be predicted using a time adaptive model and machine
learning approach based on the highly sparse data from test
order status and laboratory test results.
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