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Abstract

Background: The detection of dyskalemias—hypokalemia and hyperkalemia—currently depends on laboratory tests. Since
cardiac tissue is very sensitive to dyskalemia, electrocardiography (ECG) may be able to uncover clinically important dyskalemias
before laboratory results.

Objective: Our study aimed to develop a deep-learning model, ECG12Net, to detect dyskalemias based on ECG presentations
and to evaluate the logic and performance of this model.

Methods: Spanning from May 2011 to December 2016, 66,321 ECG records with corresponding serum potassium (K+)
concentrations were obtained from 40,180 patients admitted to the emergency department. ECG12Net is an 82-layer convolutional

neural network that estimates serum K+ concentration. Six clinicians—three emergency physicians and three
cardiologists—participated in human-machine competition. Sensitivity, specificity, and balance accuracy were used to evaluate
the performance of ECG12Net with that of these physicians.

Results: In a human-machine competition including 300 ECGs of different serum K+ concentrations, the area under the curve
for detecting hypokalemia and hyperkalemia with ECG12Net was 0.926 and 0.958, respectively, which was significantly better
than that of our best clinicians. Moreover, in detecting hypokalemia and hyperkalemia, the sensitivities were 96.7% and 83.3%,
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respectively, and the specificities were 93.3% and 97.8%, respectively. In a test set including 13,222 ECGs, ECG12Net had a
similar performance in terms of sensitivity for severe hypokalemia (95.6%) and severe hyperkalemia (84.5%), with a mean
absolute error of 0.531. The specificities for detecting hypokalemia and hyperkalemia were 81.6% and 96.0%, respectively.

Conclusions: A deep-learning model based on a 12-lead ECG may help physicians promptly recognize severe dyskalemias and
thereby potentially reduce cardiac events.

(JMIR Med Inform 2020;8(3):e15931) doi: 10.2196/15931
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Introduction

Dyskalemias—hyperkalemia and hypokalemia—are common
causes of sudden cardiac death in clinical practice [1]. Prompt

recognition and rapid correction of these potassium (K+)
derangements are needed to prevent catastrophic outcomes [2].
Currently, the detection of dyskalemia relies on laboratory tests.
Point-of-care blood testing provides rapid analysis of electrolyte
levels, however, its accuracy and precision may not be as
reliable as that from a clinical central laboratory; this is mainly

due to dilution, which would underestimate plasma K+

concentration, and the inability to discern hemolysis from
pseudohyperkalemia [3,4]. Electrocardiography (ECG) is
universally needed in patients with emergent cardiac or
noncardiac conditions, which may exhibit the typical changes
seen in dyskalemia since cardiac tissue is very sensitive to this
disease. The main ECG changes associated with hypokalemia
include a decreased T wave amplitude, ST-segment depression,
T wave inversion, a prolonged PR interval, and an increased
corrected QT interval (QTc) [5]. The typical ECG findings for
hyperkalemia progress from tall peaked T waves and a shortened
QT interval to a lengthened PR interval and a loss of the P wave,
followed by a widening QRS complex and ultimately a sine
wave morphology [5,6]. Although these morphologic changes
are well known in dyskalemias, even experienced clinicians
frequently do not notice all of these subtle details [7].

Previous researchers have developed ECG quantification

algorithms to predict serum K+ concentration based on T wave
morphology, mainly using the slope and width of T waves.
Hyperkalemia is associated with tall, narrow, and symmetrical
T waves, whereas hypokalemia is associated with flat T waves
[8-12]. The algorithms were mostly derived from continuous
patient monitoring, such as during hemodialysis, with
homogeneous ECG morphologies from a limited set of patients
[8-12]. Recently, applying the processing of T wave
morphologies manually has been used to improve the diagnosis
of hyperkalemia [13]. Nevertheless, using T wave changes alone
to detect dyskalemias is less sensitive and specific than a
comprehensive ECG interpretation [14].

With the revolution in artificial intelligence (AI), several
advanced deep-learning models, such as Oxford’s VGGNet
[15], Inception Net [16], ResNet [17], and DenseNet [18], have
been developed, providing an unprecedented opportunity to
improve health care; this was initiated by AlexNet’s victory in
the ImageNet Large Scale Visual Recognition Challenge in
2012 [19]. Existing deep-learning models have been shown to

achieve human-level performance and be effective in medical
applications when large annotated datasets are available
[17,20-22]. This potential to improve diagnosis and patient care
prompted us to develop a deep-learning model to assist
emergency physicians in recognizing ECG changes associated
with dyskalemias.

Our study aimed to train a deep-learning model, ECG12Net, to

predict serum K+ concentration by ECG. The deep-learning
model was an 82-layer convolutional neural network that
underwent a series of training processes to optimize model
performance. The AI system, which will learn from more than
50,000 electrocardiograms to identify critical morphologic
changes, will help to reduce medical errors in emergency
departments (EDs) resulting from intense time pressure and
harried ED staff during busy periods in ED environments [23].
Facilitated by the system’s powerful computing ability, the
performance of the trained model was compared with that of
emergency physicians and cardiologists. Finally, we visualized
ECG12Net’s calculation process to understand why and how it
works.

Methods

Data Source
The data were obtained from Tri-Service General Hospital,
Taiwan, and research approval was given by the Institutional
Review Board (IRB) (IRB No. 1-107-05-047). From May 11,
2011, to December 31, 2016, 40,180 emergency patients were
enrolled who had 66,321 ECG records within 1 hour before or

after serum K+ concentration for reference. Serum K+

concentrations were measured in the laboratory using indirect
ion-selective electrode methods that had been accredited by the
International Organization for Standardization (ISO) standard
ISO-15189 and the College of American Pathologists’
Laboratory Accreditation Program. All hemolyzed samples
were excluded. Potential confounders, such as patients with
chest pain or thyroid disorders, were not excluded from the
study. We divided the dataset into training (~70%), validation
(~10%), and test (~20%) sets by date. Emergency patients
presenting before April 30, 2016, were included in the training
set; those presenting between May 1 and July 20, 2016, were
in the validation set; and those presenting after July 21, 2016,
were in the test set to assess model performance. All records
included in the training set were excluded from the validation
and test sets; thus, there was no overlap among the three
datasets. The ECG recordings were collected using a Philips
12-Lead ECG machine (PH080A). The ECG signal was recorded
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in a digital format. The sampling frequency was 500 Hz with

2.5 seconds recorded in each lead. The estimated K+

concentrations ranged from 1.5 mEq/L to 7.5 mEq/L. Predicted

K+ concentrations less than 1.5 mEq/L or greater than 7.5 mEq/L
were indicated accordingly without further detail (ie, as either
<1.5 mEq/L or >7.5 mEq/L). Patient characteristics and
laboratory results were collected using an electronic health
record system. The estimated glomerular filtration rate was
calculated using the Chronic Kidney Disease Epidemiology
Collaboration formula [24]. Eight basic ECG morphology
parameters (EMPs) were calculated by the Philips 12-Lead ECG
machine: heart rate, PR interval, QRS duration, QT interval,
QTc, P wave axis, RS wave axis, and T wave axis.

The Implementation of ECG12Net
We developed a 12-channel sequence-to-sequence model, which
is modified from DenseNet [18]. The details are shown in

Multimedia Appendix 1. The architecture of ECG12Net is
shown in Figure 1. We designed an ECG lead block with 80
trainable layers whose architecture is shown in Figure 1 A. This
ECG lead block was used to extract 864 features from each
ECG lead, making a basic output prediction based on each lead.
Figure 1 B shows how ECG12Net integrates all the information
from the ECG leads to make an overall prediction. ECG12Net
is composed of 12 of these ECG lead blocks corresponding to
each lead sequence. We designed an attention mechanism based
on a hierarchical attention network to concatenate these blocks,
increasing the interpretive power of ECG12Net [25].
ECG12Net-1, which uses only ECG wave information, contains
82 trainable layers. To improve prediction performance, we
added an EMPNet, which is a multilayer perceptron with two
hidden layers containing eight EMPs, to ECG12Net-1 to create
ECG12Net-2.

Figure 1. Architecture of ECG12Net. A. Electrocardiography (ECG) lead block with 80 trainable layers. B. ECG12Net integrates all the information
from the ECG leads to make an overall prediction. The bolded and colored words indicate the output dimensions of the layers, and the words in black
are the required parameters for the layers. conv: convolution; BN: batch normalization; ReLU: rectified linear unit; FC: fully connected; MLP: multilayer
perceptron.

Human-Machine Competition
We evaluated the performance of practicing physicians using
a subtest set. We divided the data into five categories based on

the serum K+ concentration: (1) K+ ≤2.5 mEq/L, (2) 2.5< K+

≤3.5 mEq/L, (3) 3.5< K+ <5.5 mEq/L, (4) 5.5≤ K+ <6.5 mEq/L,

and (5) K+ ≥6.5 mEq/L. Stratified sampling was used to create
the subtest set due to the rarity of cases in the first and fifth

categories. Each category of K+ concentration comprised 60

cases, and a total of 300 cases were used in the test. The
participating physicians included an emergency physician under
training (second-year resident); two emergency physicians, one
with 4 and the other with 13 years of experience; a chief resident
in cardiology; and two cardiologists, one with 2 and the other
with 9 years of experience. The physicians had no access to
patient information and no knowledge of the data. The responses
they provided were entered into an online standardized data
entry program. We calculated their sensitivity and specificity
and compared their results with those of ECG12Net.
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Statistical Analysis and Model Performance
Assessment
The study cohort was divided into training, validation, and test
sets. We presented their characteristics as the means and
standard deviations, the numbers of patients, or the percentages,
where appropriate. This information was compared using either
analysis of variance or the chi-square test as appropriate. We

then analyzed the EMP differences between the five serum K+

groups, and the EMPs were subjected to post hoc analysis. All
the dyskalemia groups were compared to the normal group.

The primary analysis was done to evaluate the performance in
dyskalemia prediction between ECG12Net and the clinicians
in a machine-human competition. Receiver operating
characteristic curves and the areas under the curve (AUCs) were
applied to evaluate the competition results. Additionally, the
sensitivity, specificity, and balance accuracy of dyskalemia
prediction by ECG12Net and the clinical physicians were
calculated. The balance accuracy is defined as the mean of the
sensitivity and specificity obtained in the study. Due to the
stratified sampling process destroying the original prevalence,
the positive predictive value and negative predictive value for
the competition results are not presented.

The secondary analyses were performed on our test set with the
data obtained after July 21, 2016, which had not been used in
the training process. This was a simulated prospective study to
evaluate the performance of the AI models with the mean
absolute error (MAE) as the major measurement index due to
the continuous predictions. Moreover, categorized analyses are
also presented. Sensitivity, specificity, positive predictive value,
negative predictive value, and the squared weighted kappa were

used to evaluate the performance of the models. Finally, we
conducted a series of logistic models to identify the effects of
patient demographic characteristics on the performance of our
deep-learning model.

We used a significance level ofP< throughout the analysis.
Bootstrap 95% CIs were calculated and presented for all measure
indexes based on 10,000 permutations. No additional
adjustments for multiple comparisons were used because of the
small number of planned comparisons. The statistical analysis
was carried out using the software environment R, version 3.4.3
(The R Foundation).

Results

Cohort Description
The training, validation, and test sets comprised records from
28,183; 3993; and 8004 patients, respectively. Table 1 shows
the patient characteristics, which reveal similar distributions
among the sets of gender, age, body mass index, marital status,
education, and underlying comorbidities, including diabetes
mellitus, coronary artery disease, hypertension, heart failure,
hyperlipidemia, chronic kidney disease, chronic obstructive
pulmonary disease, and pneumothorax. The training, validation,
and test sets consisted of 46,692; 6407; and 13,222 pairs,

respectively, of ECGs and K+ concentrations. The details of the
laboratory and EMP analyses are presented in Multimedia
Appendix 1. The detailed dyskalemia distribution (see
Multimedia Appendix 1) shows a hypokalemia/hyperkalemia
prevalence of 22.7%/2.6%, 22.9%/2.3%, and 22.7%/2.8% in
the training, validation, and test sets, respectively.

Table 1. Patients’ characteristics in the training, validation, and test sets.

P valueTest set

(N=8004)

Validation set

(N=3993)

Training set

(N=28,183)

Characteristic

.08Gender, n (%)

3814 (47.65)1942 (48.64)13,828 (49.07)Female

4190 (52.35)2049 (51.31)14,350 (50.92)Male

.9362.61 (19.25)62.47 (19.33)62.57 (19.45)Age (years), mean (SD)

.09163.29 (36.90)162.19 (9.58)162.24 (9.37)Height (cm), mean (SD)

.7863.75 (13.79)64.11 (14.16)63.98 (14.12)Weight (cm), mean (SD)

.2424.07 (4.49)24.39 (6.71)24.32 (6.38)BMI (kg/m2), mean (SD)

Underlying comorbidities, n (%)

.471009 (12.61)476 (11.92)3553 (12.61)Diabetes mellitus

.57485 (6.06)257 (6.44)1694 (6.01)Coronary artery disease

.941496 (18.69)741 (18.56)5219 (18.52)Hypertension

.81239 (2.99)124 (3.11)825 (2.93)Heart failure

.451078 (13.47)520 (13.02)3868 (13.72)Hyperlipidemia

.501786 (22.31)859 (21.51)6294 (22.33)Chronic kidney disease

.54408 (5.10)193 (4.83)1351 (4.79)Chronic obstructive pulmonary disease

.9224 (0.30)11 (0.28)88 (0.31)Pneumothorax
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Primary Analysis
The results of the human-machine competition are summarized
in Figure 2. The AUCs of our ECG12Net-1 were 0.993, 0.926,
0.958, and 0.976 in the detection of severe hypokalemia,
hypokalemia, hyperkalemia, and severe hyperkalemia,

respectively. Due to the continuous nature of the K+

concentration predictions from ECG12Net, we used clinical cut
points as described in the Methods section for further analysis.
Our clinicians detected severe hypokalemia with sensitivities
and specificities of 45%-78.3% and 74.4%-83.9%, respectively,
whereas ECG12Net-1 achieved a sensitivity of 96.7% (95% CI
91.7-100.0) and a specificity of 93.3% (95% CI 89.4-96.7). In
detecting severe hyperkalemia, the clinicians had nearly perfect
specificity (92.8%-100.0%) but low sensitivity (16.7%-43.3%),
while ECG12Net-1 exhibited a sensitivity of 83.3% (95% CI
73.3-91.7) and a specificity of 97.8% (95% CI 95.6-99.4).
Including mild-to-moderate dyskalemias, ECG12Net-1 had the

highest sensitivity in detecting hypokalemia (67.5%, 95% CI
59.2-75.8) and hyperkalemia (67.5%, 95% CI 59.2-75.8) in the
human-machine competition. The details of the human-machine
competition are shown in Table 2. In terms of balance accuracy,
ECG12Net-1’s performance was significantly better than that
of the best clinician (cardiologist 2) participating in the
hypokalemia detection (80.4%, 95% CI 75.7-84.9, vs 66.7%,
95% CI 61.4-72.1). In detecting severe hyperkalemia, the
balance accuracy of ECG12Net-1 was also significantly better
than that of the best clinician (cardiologist 3) (82.7%, 95% CI
78.2-86.8, vs 70.6%, 95% CI 65.6-75.4). Although ECG12Net-2
exhibited lower performance compared with ECG12Net-1, it
performed much better than all of the clinicians. The results of
the consistency analysis are shown in Multimedia Appendix 1.
When inconsistency arose between the predictions made by
ECG12Net and the experts, ECG12Net was approximately 3.85
times more likely to be correct (P<.001 based on the McNemar
test).

Figure 2. Performance comparison in detecting dyskalemias from the human-machine competition (n=300). The receiver operating characteristic
curves are made by the predictions of ECG12Net-1. The red triangles and blue circles indicate emergency physicians and cardiologists, respectively,

in the human-machine competition. K+ ≤2.5 mEq/L, 2.5< K+ ≤3.5 mEq/L, 3.5< K+ <5.5 mEq/L, 5.5≤ K+ <6.5 mEq/L, and K+ ≥6.5 mEq/L were defined
as severe hypokalemia (n=60), hypokalemia (n=120), normal (n=60), hyperkalemia (n=120), and severe hyperkalemia (n=60), respectively. AUC: area
under the curve.
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Table 2. Comparison between human experts and ECG12Net on the sensitivity and specificity in the subtest set (n=300).

Balance accuracyb,
95% CI

Specificitya (n=180),
95% CI

Sensitivitya, 95% CIType of dyskalemia

Mild to moderate

(n=60)

Severe

(n=60)

Overall

(n=120)

Hypokalemia (K+≤3.5 mEq/L)

0.561 (0.512-0.611)0.822 (0.765-0.875)0.117 (0.040-0.206)0.483 (0.356-
0.613)

0.300 (0.219-
0.385)

Emergency physician 1c

0.626 (0.572-0.682)0.744 (0.680-0.807)0.333 (0.217-0.455)0.683 (0.562-
0.797)

0.508 (0.420-
0.598)

Emergency physician 2d

0.622 (0.569-0.676)0.778 (0.717-0.835)0.233 (0.131-0.345)0.700 (0.581-
0.812)

0.467 (0.378-
0.554)

Emergency physician 3e

0.578 (0.528-0.628)0.839 (0.782-0.892)0.183 (0.091-0.288)0.450 (0.323-
0.579)

0.317 (0.236-
0.403)

Cardiologist 1f

0.667 (0.614-0.721)0.783 (0.722-0.842)0.317 (0.204-0.439)0.783 (0.673-
0.885)

0.550 (0.462-
0.637)

Cardiologist 2g

0.664 (0.608-0.718)0.761 (0.697-0.820)0.367 (0.246-0.492)0.767 (0.654-
0.870)

0.567 (0.477-
0.654)

Cardiologist 3h

0.804 (0.757-0.849)0.933 (0.894-0.967)0.383 (0.267-0.500)0.967 (0.917-
1.000)

0.675 (0.592-
0.758)

ECG12Net-1

0.799 (0.751-0.843)0.922 (0.883-0.961)0.383 (0.267-0.500)0.967 (0.917-
1.000)

0.675 (0.592-
0.758)

ECG12Net-2

Hyperkalemia (K+≥5.5 mEq/L)

0.585 (0.549-0.623)0.978 (0.954-0.995)0.133 (0.053-0.224)0.250 (0.145-
0.365)

0.192 (0.124-
0.266)

Emergency physician 1

0.585 (0.552-0.620)0.994 (0.982-1.000)0.150 (0.065-0.250)0.200 (0.103-
0.304)

0.175 (0.110-
0.244)

Emergency physician 2

0.604 (0.569-0.641)1.000 (1.000-1.000)0.183 (0.089-0.288)0.233 (0.130-
0.344)

0.208 (0.137-
0.282)

Emergency physician 3

0.554 (0.528-0.583)1.000 (1.000-1.000)0.050 (0.000-0.113)0.167 (0.077-
0.266)

0.108 (0.056-
0.167)

Cardiologist 1

0.594 (0.560-0.632)0.989 (0.971-1.000)0.167 (0.078-0.265)0.233 (0.132-
0.345)

0.200 (0.131-
0.274)

Cardiologist 2

0.706 (0.656-0.754)0.928 (0.888-0.963)0.533 (0.403-0.661)0.433 (0.305-
0.558)

0.483 (0.393-
0.571)

Cardiologist 3

0.827 (0.782-0.868)0.978 (0.956-0.994)0.517 (0.383-0.633)0.833 (0.733-
0.917)

0.675 (0.592-
0.758)

ECG12Net-1

0.828 (0.783-0.869)0.972 (0.944-0.994)0.533 (0.400-0.650)0.833 (0.733-
0.917)

0.683 (0.600-
0.767)

ECG12Net-2

aThe test provides three selections for prediction: hypokalemia (K+ ≤3.5 mEq/L), normokalemia (3.5 mEq/L< K+ <5.5 mEq/L), and hyperkalemia (K+

≥5.5 mEq/L).
bThe balance accuracy value represents the average of the overall sensitivity and specificity.
cEmergency physician 1: second-year resident.
dEmergency physician 2: 4 years of experience.
eEmergency physician 3: 13 years of experience.
fCardiologist 1: chief resident of cardiology.
gCardiologist 2: 2 years of experience.
hCardiologist 3: 9 years of experience.

Performance of ECG12Net on the Test Set
The model performance on the test set is shown in Multimedia
Appendix 1. The performance of ECG12Net was better than

that of each lead. ECG12Net-1 had the lowest MAE (0.531).
Including EMP information did not improve the prediction of

K+ concentration (MAE ECG12Net-1: 0.531; MAE
ECG12Net-2: 0.538). When categorizing among three

JMIR Med Inform 2020 | vol. 8 | iss. 3 | e15931 | p. 6https://medinform.jmir.org/2020/3/e15931
(page number not for citation purposes)

Lin et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


classes—hypokalemia, normokalemia, and hyperkalemia—and
five classes, with the addition of severe hypokalemia and severe
hyperkalemia, as described in Multimedia Appendix 1, a similar
performance was observed by ECG12Net-1; this demonstrated
the highest squared weighted kappa of 0.354 in the three-class
categorization and 0.396 in the five-class categorization. For
the detection of hypokalemia, the sensitivity, specificity, positive
predictive value, and negative predictive value of ECG12Net-1

were 50.7%, 81.6%, 44.7%, and 85.0%, respectively; for
hyperkalemia, they were 50.8%, 96.0%, 26.9%, and 98.5%,
respectively. The confusion scatter plots for the predictions by
the two ECG12Nets are shown in Figure 3. Importantly, in
detecting severe hypokalemia and hyperkalemia, ECG12Net-1
demonstrated a sensitivity of 95.6% and 84.5%, respectively.
ECG12Net-2 exhibited similar prediction capabilities for severe
hypokalemia and hyperkalemia as ECG12Net-1.

Figure 3. Confusion scatter plots of ECG12Net-1 and ECG12Net-2 predictions on the test set (n=13,222). The x-axis indicates the true K+ concentration
from laboratory testing. The y-axis presents the predicted K+ concentration by ECG12Net-1 (A) and ECG12Net-2 (B). Red points represent the highest
density, followed by yellow, green, light blue, and dark blue. Perfect model performance would fall only along the red diagonal line. We categorized

the K+ concentration into five groups (K+ ≤2.5 mEq/L, 2.5< K+ ≤ 3.5 mEq/L, 3.5< K+ <5.5 mEq/L, 5.5≤ K+ <6.5 mEq/L, and K+ ≥6.5 mEq/L) and
calculated the case counts in each grid.

Model Interpretation
A total of 58 severe hypokalemia cases were correctly detected
by ECG12Net-1, of which 15 (26%) were overlooked by
clinician consensus. The classical ECG findings of U wave and
ST segment depression, especially in leads V2 and V3, were
consistently recognized as severe hypokalemia by both the
clinicians and ECG12Net-1 (see Figure 4 A). As shown in
Figure 4 B, ECG12Net-1 predicted a case of severe hypokalemia
from ST segment depression in the V3 lead; this case was
misdiagnosed by all the clinicians. Two cases of severe
hypokalemia were misclassified by ECG12Net-1 but diagnosed
correctly by the clinicians (data not shown). These cases had

severe noise in the presented ECG; however, the clinicians made
the correct diagnosis based on the presence of a prolonged QTc.

A total of 50 severe hyperkalemia cases were correctly detected
by ECG12Net-1, with 36 (72%) of these cases overlooked by
clinician consensus. Figure 4 C shows a typical ECG
presentation of severe hyperkalemia with tented T waves
accompanied by a long QRS complex duration, which was
correctly diagnosed by all clinicians and ECG12Net-1. Figure
4 D shows a case of severe hyperkalemia correctly recognized
by ECG12Net-1, with ST depression followed by a peaked T
wave in lead V6, which was misdiagnosed as hypokalemia by
all the clinicians. There were also 10 cases of severe
hyperkalemia overlooked by ECG12Net-1 and all clinicians.
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Figure 4. Visualization analysis for ECG12Net-1 in selected severe hypokalemia and hyperkalemia cases. The lighter areas (green or yellow) indicate
areas of focus by ECG12Net-1. Clinicians consistently recognized panel A as a typical case of severe hypokalemia but overlooked panel B. Similarly,

clinicians consistently recognized panel C as severe hyperkalemia but overlooked panel D. From A to D, the real K+ concentrations were 2.3 mEq/L,
2.5 mEq/L, 9.1 mEq/L, and 7.1 mEq/L, respectively. AI: artificial intelligence.

Discussion

In this study, we developed a deep-learning model, ECG12Net,
to detect dyskalemias through ECG analysis. Using a deep
convolutional network extracting many useful ECG features
with a training set of more than 50,000 ECGs, ECG12Net
performed better than clinicians in detecting dyskalemias.
Notably, ECG12Net performed well with sensitivities of 95.6%
and 84.5% in detecting severe hypokalemia and severe
hyperkalemia, respectively.

ECG interpretation is one of the most important skills in medical
practice. Previous studies have analyzed morphological features,
for instance, the R wave peak [26] and the QRS complex [27],
combined with machine learning approaches for disease
detection, such as atrial fibrillation [28]. These systems were
relatively imprecise, making it troublesome to quantify specific
rhythm morphologies [29]. Although some recent studies have
used deep convolutional neural networks and recurrent neural
networks mainly for arrhythmia detection [30-35], most of the
data were collected from wearable devices without offering all
the important information provided by a 12-lead ECG [11]. The
clinical value of these findings is also dampened by the lack of

laboratory-based diagnosis and annotation and the relatively
small volumes of data. In contrast, our database was
unprecedented, comprising 40,180 patients and 66,321
laboratory-annotated ECG records collected by standard 12-lead
ECG machines.

Galloway et al recently developed a deep-learning model to
screen for hyperkalemia in patients with chronic kidney disease,
stage III or higher, using ECG [36]. We applied ECG12Net to
a broad set of patients in the ED and developed a continuous
prediction of both hypokalemia and hyperkalemia. Moreover,
although the three-category classification task in our study is
more difficult than the two-category classification task in theirs,
our ECG12Net achieved an AUC greater than 0.9 in detecting
hyperkalemia, which is similar to that of their model with an
AUC of 0.85-0.88. This highlights the strength of ECG12Net.

The EMPs of different K+ concentration groups yielded several
interesting findings. The EMPs, such as the PR and QTc
intervals, and the data used for analysis were all collected from
the original ECGs (see Multimedia Appendix 1). The impact
of hyperkalemia on the T wave axis was more profound and
substantial than the axes of the P and RS waves. Hypokalemia
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was actually associated with a widening of the QRS complex,
which may be explained by the decrease in conduction velocity

caused by reduced K+ concentrations after hemodialysis [37].
Although the longest QTc occurred in the severe hypokalemia
group, a well-documented finding, the QTc was longer in
patients with hyperkalemia as well. In fact, for most of the
intervals and durations, the nadir was in normokalemia, with
increases on both forms of dyskalemia. Although the underlying
mechanisms are unclear, these findings uncovered by big data
may guide directions for further research.

Interestingly, the algorithm focusing only on morphologic
changes (ie, ECG12Net-1) performed slightly better than that
with additional EMP information (ie, ECG12Net-2). That the
addition of EMP information did not improve the model’s
predictive ability corroborates prior research that found that
deep-learning models can automatically extract useful features
for prediction without preprocessing [17,20,21]. This also
highlights the importance of morphologic changes in ECG over
EMPs in the detection of dyskalemias.

There are several clinical applications of ECG12Net shown in
Multimedia Appendix 1. First, severe dyskalemia could be
identified by ECG12Net within 5 minutes, much faster than
laboratory testing, leading to more prompt management. Second,
pseudodyskalemia, defined as an abnormal reported serum or

plasma K+ concentration despite a normal in vivo K+

concentration, can be excluded early by ECG12Net to avoid
inappropriate treatment. Third, the performance of ECG12Net
is more than 10% better than that of the best cardiologist in our
study, whose performance was similar to other experts in prior
studies [38,39]. This means that emergency physicians could
have access to a consistent, beyond cardiologist-level decision
aid available 24 hours a day to help diagnose and manage
dyskalemic patients. Fourth, the developed ECG12Net model
can be included in a wearable device for dyskalemia detection,
especially for patients with advanced chronic kidney disease or
uremia on dialysis. Finally, the ECG12Net model could be
incorporated into ECG machines in ambulances or remote areas
to facilitate telemedicine.

Explainable AI plays a critical role in clinical practice [40,41].
The so-called “black box” approach in the deep-learning models
often precludes the understanding of the decision-making

process [42]. To increase the interpretability of our model, we
established heatmaps to visualize the focus in the ECG by
ECG12Net using class activation mappings [25,43], which can
help physicians understand the logic of the AI decisions.
Although our ECG12Net was approximately 3.85 times more
likely to be correct when inconsistencies occurred between the
AI and human predictions (see Multimedia Appendix 1),
physicians who can integrate the AI suggestions with the
symptoms and signs of patients should make the final decision
to take appropriate action.

Some limitations of this study should be mentioned. First, the
studied patients were only enrolled from one academic medical

center, despite the similar distribution of blood K+ concentration
in other large studies [44,45]. Multicenter validation is needed
to confirm the value and application of this study. Second, only
six clinicians participated in the competition with ECG12Net’s
performance. Although their performance in severe
hyperkalemia detection was consistent with that of the previous
studies [38,39], comparisons should be made with more experts
to confirm the superiority of ECG12Net. Third, only the patients

in the ED with both an ECG and a serum K+ test were enrolled
in this study, which may have caused selection bias and
constrained the generalizability of the results. Fourth, although
the sensitivity heatmap provides a glimpse into the basis for
ECG12Net’s prediction, the reason why the particular ECG
segment was highlighted remains unclear. Finally, ECG12Net
showed decreased sensitivity in detecting mild-to-moderate
hypokalemia, which accounts for the majority of dyskalemias,
leading to low weighted averages of the sensitivities.
Hypokalemia-associated ECG changes usually occur when the

serum K+ level falls below 3 mEq/L [46], which may explain
why our algorithm failed to accurately distinguish the ECG
morphologies of mild-to-moderate hypokalemia from
normokalemia.

In conclusion, we established a deep-learning model called
ECG12Net to detect dyskalemias in the ED. The collaboration
between physicians and AI can lead to better health care for our
patients. This model will help emergency physicians promptly
recognize severe dyskalemias and potentially reduce sudden
cardiac death.
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