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Abstract

Background: More than 20% of patients admitted to the intensive care unit (ICU) develop an adverse event (AE). No previous
study has leveraged patients’ data to extract the temporal features using their structural temporal patterns, that is, trends.

Objective: This study aimed to improve AE prediction methods by using structural temporal pattern detection that captures
global and local temporal trends and to demonstrate these improvements in the detection of acute kidney injury (AKI).

Methods: Using the Medical Information Mart for Intensive Care dataset, containing 22,542 patients, we extracted both global
and local trends using structural pattern detection methods to predict AKI (ie, binary prediction). Classifiers were built on 17
input features consisting of vital signs and laboratory test results using state-of-the-art models; the optimal classifier was selected
for comparisons with previous approaches. The classifier with structural pattern detection features was compared with two baseline
classifiers that used different temporal feature extraction approaches commonly used in the literature: (1) symbolic temporal
pattern detection, which is the most common approach for multivariate time series classification; and (2) the last recorded value
before the prediction point, which is the most common approach to extract temporal data in the AKI prediction literature. Moreover,
we assessed the individual contribution of global and local trends. Classifier performance was measured in terms of accuracy
(primary outcome), area under the curve, and F-measure. For all experiments, we employed 20-fold cross-validation.

Results: Random forest was the best classifier using structural temporal pattern detection. The accuracy of the classifier with
local and global trend features was significantly higher than that while using symbolic temporal pattern detection and the last
recorded value (81.3% vs 70.6% vs 58.1%; P<.001). Excluding local or global features reduced the accuracy to 74.4% or 78.1%,
respectively (P<.001).

Conclusions: Classifiers using features obtained from structural temporal pattern detection significantly improved the prediction
of AKI onset in ICU patients over two baselines based on common previous approaches. The proposed method is a generalizable
approach to predict AEs in critical care that may be used to help clinicians intervene in a timely manner to prevent or mitigate
AEs.
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Introduction

Adverse Events Prediction
An adverse event (AE) refers to a patient’s injury or
complication caused by medical care [1]. Previous studies have
shown that AEs are responsible for 44,000 to 98,000 deaths per
year, an average of 31 days increase in hospital length and about
US $3900 increase in the patient’s hospital cost [2,3]. In
intensive care unit (ICU) settings, the risk for AEs is even higher
because of the complexity of care, the large number of
interventions, and the patients’ fragile medical status [4].
However, more than 50% of AEs in the ICU are preventable
through timely medical interventions [2]. Therefore, it is
important to predict the onset of AEs in ICU patients as early
as possible [5].

Patient data are collected over time at varying time intervals to
monitor the patient’s status, provide situation awareness, and
support medical decisions, leading to a wide variety of time
series data (eg, vital signs, lab results) stored in electronic health
record (EHR) systems. The most common approach to use time
series data for AE prediction is to use static transformations
(STs) to produce a representative value for each time series (eg,
mean, first value, and last value in the series) [6]. Although the
ST approach facilitates the prediction process by reducing
dimensionality, it also results in information loss by ignoring
the temporal trends in the time series, which could affect the
accuracy of AE prediction [7]. An alternative approach, dynamic
transformations (DTs), is to segment a time series into a
sequence of fixed-sized, nonoverlapping, consecutive windows
(or intervals) [8] and then identify the temporal pattern(s) of
data values within and across windows. As a result, temporal
pattern detection approaches reduce information loss by
benefiting from hidden information embedded over different
periods of the time series. The most common method to
implement this is symbolic (categorical) temporal pattern
detection, where each time interval is represented by the state
of its values (eg, high, moderate, low blood pressure) and
eventually patterns are extracted from the symbolic time
intervals. Although this method can be effective when expert
domain knowledge to discretize the values is available, it may
lose accuracy from temporal discretization. An alternative
method is using structural (numerical) temporal pattern detection
where each time interval is represented by a set of numerical
values capturing its pattern. This method overcomes the
limitations of previous methods by benefiting from original data
without any arbitrary discretization. To the best of our
knowledge, there is no study in the literature investigating
structural temporal pattern detection for the prediction of AEs
in critical care.

The goal of this study was to leverage temporal data to predict
AEs for ICU patients by using temporal pattern detection. As
a case study, we focused on the prediction of acute kidney injury
(AKI), one of the most common AEs in ICU settings [9]. More
than 50% of all ICU patients develop acute kidney injury, which

increases the risk of death in the hospital or shortly after their
discharge [10]. Delays in the detection of AKI impair
physicians’ ability to intervene in a timely manner to prevent
AKI and its complications. A study on patients who died in the
hospital with a primary diagnosis of AKI showed an
unacceptable delay in the detection of AKI in 43% and
preventable death in at least 20% of the patients [11]. Over the
past decade, AKI prediction methods have been proposed to
detect high-risk patients that are candidates for early
management [12]. However, the performance of these methods
is suboptimal, partially because they use the last value in the
input time series for the prediction task, thus missing the rich
information contained within the time series.

In this study, we investigated approaches to predict AEs in ICU
settings using structural temporal pattern detection methods for
both local (ie, within each time window) and global (ie, across
time windows) trends. Specifically, using a factorial design, we
compared the accuracy of the last recorded value method
(mentioned earlier) versus local, global, and both temporal
pattern detection methods in the prediction of AKI.

Multivariate Time Series Representation
EHRs contain a rich resource of multivariate time series data
providing an important opportunity to discover new knowledge
using various data mining methods. However, the classifications
of these multivariate time series, especially discrete time series
(eg, blood pressure, calcium, magnesium), are challenging
[13-15] because data points in EHR time series are often
sampled at different and sometimes irregular time intervals.
Also, it is very common to have large amounts of missing data
points due to intentional (ie, due to medical reason) or
unintentional (ie, human mistake or operational constraints)
reasons [16].

The most common approach to overcome the aforementioned
issues is to transform raw multivariate time series data into a
different form where the time series values are uniformly
represented [17]. This can be performed by two types of
transformations: static and dynamic [16]. In STs, each time
series is represented by a predefined set of features and their
values (eg, most recent platelet measurement, maximum
hemoglobin measurement). In DTs, each time series is
transformed to a high-level qualitative (categorical) or
quantitative (numerical) form [17]. The most common method
for qualitative transformation is temporal abstraction. Using
this method, each time series (eg, series of white blood cell
counts) is transformed into a set of intervals using temporal
discretization where an alphabet represents the qualitative
measure of the values in that interval [18]. Temporal
discretization can be done using domain knowledge or an
automated method, such as aggregate approximation (SAX) [8]
or equal-width discretization (EWD) [19]. Previous research
has found that while SAX is the most effective automated
method, it is not as effective as knowledge-based methods
[18,20]. In quantitative transformations, each time series is
segmented into fixed-size, nonoverlapping windows, and each
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window is summarized by one or more numeric aggregation
measures (eg, average).

After transforming the original time series (unevenly sampled)
to a time series of high-level qualitative or quantitative
measures, various standard classification methods can be applied
to classify or predict the expected outcome. This is usually done
by finding patterns that distinguish different classes of the
outcome [17]. Depending on the qualitative or quantitative
representation, the patterns can be qualitative or quantitative,
as described in the next section.

Pattern Detection Methods
Pattern detection methods have been widely used for tasks such
as image recognition, speech analysis, traffic analysis, smog
detection, and health care predictive analytics [21]. The aim of
pattern detection is to identify an object (eg, patient) as
belonging to a particular class (eg, patients who develop AKI)
by extracting patterns and regularities that are specific to the
instances of that class [22]. The underlying idea is that the
objects associated with a particular group share more common
attributes (ie, patterns) than the objects in other groups [23]. A
pattern detection procedure can be divided into 2 basic tasks:
description and classification [24]. The description task extracts
the features from each object using feature extraction techniques.
The classification task assigns a group label to the object based
on the extracted attributes using a classification method [25].
Two main types of feature extraction for the description task of
pattern detection are described in the following sections:
symbolic and structural pattern detection.

Symbolic Pattern Detection
Symbolic (also known as categorical or qualitative) patterns are
extracted from multivariate time series represented by interval
alphabets extracted through temporal abstraction. These patterns
are mostly referred to as time interval–related patterns (TIRPs)
[26-28]. The most common approach to extract TIRPs is using
Allen’s temporal relations [29]. These are seven different
relations capturing the state of two alphabetic time intervals

against each other (eg, overlap, equals, and meets). Several
studies attempted to use these all or part of these relations for
pattern extraction [16,30-32]. Moskovitch and Shahar [15]
proposed KarmaLego, a fast time interval–mining method, to
exploit temporal relations [15]. KarmaLego includes two main
steps: Karma and Lego. In the Karma step, all frequent two-sized
TIRPs are discovered using a breadth-first-search approach. In
the Lego step, the frequent two-sized TIRPs are extended into
a tree of longer frequent TIRPs. Recently, the same authors
proposed a set of three abstract temporal relations as disjunctions
of Allen’s relations (ie, before, overlap, and contain) and showed
that it is more effective than using the full set of Allen’s relations
[20]. They called their general framework for classification of
multivariate time series analysis as KarmaLegoSification (KLS).
In this study, we used KLS with the three temporal relations to
implement symbolic pattern detection as a baseline for
comparison with our proposed structural pattern detection
method.

Although symbolic pattern detection methods are promising,
their performance is highly dependent on temporal discretization
[33]. Domain knowledge is not always available for
knowledge-based methods and automated methods are often
not so effective, as automation may result in information loss
[15]. For example, SAX labels time intervals by producing
equal-sized areas under a Gaussian curve of normalized time
series. Once time series are transformed to alphabetic time
intervals (eg, low (L), medium (M), and high (H)) the original
data are lost, which may mislead the classification process. For
instance, Table 1 shows the breakpoint cutoffs of SAX applied
to our dataset compared with physicians’ domain knowledge
according to [20] for hemoglobin A1c. The SAX values might
be different in other datasets.

Therefore, numerical patterns can be more effective than
categorical patterns, at least in the lack of knowledge-based
methods, as they benefit from the original data without any data
manipulation or arbitrary discretization. More details on
different discretization methods can be found elsewhere [34].

Table 1. Hemoglobin A1c breakpoint cutoffs of aggregate approximation (SAX) in our dataset compared with the physician’s domain knowledge.
Automatic discretization cannot make proper categorical distinctions between very close values of a continuous variable.

SAX value rangeExpert value rangeState

<5<71

5-87-92

8-99-10.53

>9>10.54

Structural Pattern Detection
Structural pattern detection was intuited by human perception
for object recognition [35]. Humans involve mental
representations of structure-oriented characteristics of objects
to detect them [36]. In a study by Biederman et al [37], the
human object recognition process was explained by the
following steps: (1) the object (eg, patients’ time series) is
segmented into separate regions (eg, time windows); (2) each
segmented region is approximated by a simple geometric shape;

(3) these shapes are combined to build a geometric composition;
and (4) the similarity between the geometric composition and
a set of predefined object groups in the human mind recognizes
the object.

Following a process similar to the human mind, structural
pattern detection methods split the data into smaller partitions,
each with different subpatterns. Then, each subpattern is
represented by one or more features to generate a feature vector.
For temporal data, structural patterns can detect the local trends
at different parts of a time series (eg, heart rate, temperature,
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and serum glucose) and represent each part with a different
structural pattern (model). More specifically, the time series is
segmented into a sequence of fixed-sized, nonoverlapping,
consecutive windows (or intervals) [8]. Then, each window is
represented with a specific set of features extracted to show the
structural patterns of all data values within the window.

Although structural pattern detection has been widely used to
capture the local trends in the data, they can be also applied to
the windowed data to capture global trends [38]. To do so, each
window is represented by a single aggregation measure. The
most common method to implement this approach is piecewise
aggregation approximation, which extracts the average of the
data values in each time window [8]. Then, structural pattern
detection is applied on the aggregated time series. The output
is a set of quantitative features organized into a feature vector
where each feature has its own position (eg, mean at the first
position, SD at the second position).

The most frequently used structural patterns include (a) constant,
(b) linear, (c) exponential, (d) sinusoidal, (e) triangular, and (f)
rectangular [24]. These patterns can model most types of trends
within time series data. In this study, we employed structural
pattern detection for both local and global trend detection (see
the Methods section).

Acute Kidney Injury Prediction
Although there is a rich literature on different prediction tasks
in the context of AKI [39], this section is focused on those that
primarily attempted to predict the occurrence of AKI. As a
result, studies such as those predicting the progression of various
stages of AKI [40] or prediction of AKI mortality [10] were
excluded. We found three different categories of studies. The
first category included approaches to predict AKI after surgical
procedures using patients’ data before the procedure. Wong et
al [41] predicted AKI after cardiac surgery. To achieve this,
different predictors were collected until the morning of the
procedure, such as preoperative intra-aortic balloon pump,
ejection fraction, the type of surgery, previous cardiac surgery,
cardiopulmonary bypass time, clamp time, pump time, and the
number of bypass grafts. A multivariate logistic regression [42]
combined with a stepwise selection method achieved an area
under the curve (AUC) of 0.78. Park et al [13] predicted AKI
after living-donor liver transplantation (LDLT) surgery using
predictors such as alcoholic liver disease, liver disease score,
and Child-Turcotte-Pugh estimated graft to recipient body
weight ratio. Similar to the previous study, they gathered the
information before the procedure to predict AKI. A multivariate
logistic regression analysis resulted in AUC=0.85. In both
previous studies, most of the predictors were specific to the
procedure and therefore not generalizable to other procedures.

The second category is AKI prediction in critical care settings.
Kane-Gill et al [43] attempted to predict AKI for older adults
with critical illness. The input to the model included
susceptibilities and exposures consisting of age, sex, race, body
mass, comorbid conditions, severity of illness, baseline kidney
function, sepsis, and shock collected from the first 24 hours of
patients’ ICU admission. AKI was defined according to the
Kidney Disease: Improving Global Outcomes [44] criteria and
predicted by multivariable logistic regression. The approach

obtained good performance with AUC=0.744. Schneider et al
[45] predicted AKI in critically ill-burn patients in ICU settings.
The authors defined AKI according to the risk, injury, failure,
loss, and end-stage kidney criteria [46] to predict AKI using a
classification and regression tree (CART) model [47]. The
decision tree used the first 48 hours of admission data to predict
which subset of patients would develop AKI. The proposed
method reached an overall accuracy of 73%. This was one of
the first studies in AKI prediction to use a machine learning
method rather than regression models. Both studies focused on
specific types of patients and also used specific,
nongeneralizable features. To our knowledge, there is no study
in this category that attempted to predict AKI in all ICU patients.

The third AKI prediction category includes AKI prediction in
hospitalized patients, regardless of unit. Kate et al [9] applied
a variety of machine learning models to predict AKI in
hospitalized older adults including logistic regression, Naïve
Bayes [48], C4.5 decision tree [49], support vector machine
[50], and an ensemble of all these methods. Laboratory results,
demographics, medications, and comorbidities recorded in the
first 24 hours were used as input. The logistic regression model
outperformed other models with AUC=0.743. In a more recent
study by Cheng et al [6], the authors attempted to early predict
AKI 1, 2, and 3 days before its occurrence. They applied a
variety of machine learning methods on all hospitalized patients
using laboratory results, vital signs, demographics, medications,
and comorbidities. The Random Forest classifier had the highest
AUC for 1, 2, and 3 days (0.765, 0.733, and 0.709, respectively)
before the AKI occurrence. Compared with studies in the
categories mentioned earlier, the datasets used in this category
had very imbalanced datasets (ie, <15% positive cases), as the
incidence of AKI in the general hospital population is lower
than the incidence in ICU settings.

In summary, there are three main limitations in prior AKI
prediction methods. First, previous studies used only the last
recorded value before the prediction point to represent temporal
data. This approach can compromise the prediction performance
by missing potentially useful data trends in the time series.
Second, most of the studies have used predictors that are specific
to certain types of patients (eg, burn) or procedures (eg, cardiac
surgery, LDLT) and do not generalize to other prediction
problems. Third, previous studies aimed to predict AKI in
specific types of patients. To our knowledge, no previous
attempt has been made to predict AKI in all patients admitted
to the ICU using the entire time series data available in this
setting, which is important given the high incidence of this AE
in critical care settings.

Leveraging Time Series Data for Patient Status
Predictions
As discussed earlier, there is a great need to develop and
demonstrate methods that can take advantage of all temporal
data existing in the EHR to predict as early as possible the onset
of critical adverse events. To this end, in this paper, we report
our work in using both local and global temporal pattern
detection and classification techniques to better the prediction
of AE using available time series data. We demonstrate our
methods by leveraging patients’ ICU temporal data for AKI
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prediction by extracting structural temporal pattern features.
We used general predictors such as a set of laboratory results
and vital signs, which are widely available as time-series values
for any patient in ICU settings. We considered a cohort of all
ICU patients without any exclusion to ensure generalizability
of the approach. To the best of our knowledge, there is no paper
on AKI prediction choosing this cohort of patients.

Methods

Study Design
The study method consisted of the following steps: (1) dataset
and data preparation; (2) implementation of local and global
structural pattern detection; (3) AKI prediction; and (4)
evaluation. Each of these steps is explained in detail in the
following sections (see Figure 1).

Figure 1. An overview of the proposed method and evaluation. AKI: acute kidney injury; ICU: intensive care unit.

Dataset and Data Preparation
The Medical Information Mart for Intensive Care (MIMIC) III
[51] dataset was used for this study. MIMIC III contains
comprehensive clinical deidentified data of 38,597 patients
admitted to the ICU. As in previous studies [6,43], we used data
from the first 48 hours of ICU admission to predict if patients
developed AKI before hospital discharge as the main study
analysis (binary prediction). As secondary analyses, we also
assessed the performance of our proposed model for different
data collection periods (see Multimedia Appendix 1, Table S1).

Patients who died within the first 48 hours or developed AKI
within the first 48 hours were excluded. Moreover, as in
previous studies [6,10], patients with end-stage renal disease
on admission (identified based on diagnosis codes and admission
serum creatinine>4 mg/dL) were excluded. The resulting dataset
contained 22,542 patients. On the basis of findings from
previous studies [52,53] on AKI prediction, the 17 time series
features listed in Table 2 were chosen as input. We focused on
features that are not specific to any condition or procedure to
maximize generalizability to other AEs.

Table 2. Input features.

FeatureCategory and subcategory

Heart rate, temperature, systolic blood pressure, and diastolic blood pressureVital signs

Lab test

White blood cells, hemoglobin, and plateletsHematology

Sodium, anion gap, blood urea nitrogen , potassium, prothrombin, calcium, magnesium, chloride, bicarbonate,
and phosphate

Biochemistry
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Finally, following Mandelbaum et al [10], the onset of AKI was
defined according to the AKIN [53] criteria as follows:

• Increase in serum creatinine by ≥0.3 mg/dL within 48 hours
OR

• Increase in serum creatinine by ≥1.5 times the baseline
within the previous 7 days,

where the lowest serum creatinine measurement during the ICU
stay was used as the baseline level. All serum creatinine
measurements, from patient admission to discharge, were used
only as output parameters to determine the class label, that is,
occurrence of AKI.

To prepare the input data, time series features (see Table 2)
were transformed to uniform time intervals using a DT, where
each time series was segmented into a sequence of fixed-sized

nonoverlapping consecutive windows (or intervals) [8]. As
suggested in previous research [20,33], we tried different
window sizes with lengths of 1, 2, 4, 6, and 8 hours, which led
to 48, 24, 12, 8, and 6 windows, respectively. The length of
2 hours (ie, 24 windows) had the best performance compared
with others (P<.05 for all comparisons). Therefore, all
subsequent experiments used this window size. Table S2 in the
Multimedia Appendix 1 contains the experimental results of all
window sizes.

We used 30% of the data as a development dataset for selecting
the best classifiers after tuning their parameters. The remaining
70% was used to build and evaluate the models using 20-fold
cross validation. The splitting process was random and stratified
to keep the same ratio of the positive to the negative AKI classes
(Table 3).

Table 3. Dataset description.

No AKI, n (%)With AKIa, n (%)Patients, NData

9694 (43.00)12,848 (57.00)22,542Full dataset

6785 (43.00)8994 (57.00)15,779Model building and evaluation

2908 (43.00)3855 (57.00)6763Development

aAKI: acute kidney injury.

Implementation of Local and Global Trend Detection
Approaches
To implement structural pattern detection to detect local and
global trends, we followed four steps. First, we divided the time
series of each input measurement (eg, heart rate, temperature)
into fixed sized windows. Second, for local trend detection,
structural pattern detection methods were applied on each
window to find the structure that best fits that window, including

constant, linear, exponential, sinusoidal, triangular (see Figure
2). Third, for global trend detection, the average value of each
window was extracted building a time series of the average
values. Then, the same structural pattern detection methods
were applied to the time series of averages to find the best fitting
structure. Finally, the local and global trend detection outputs
were used as features to build a classification model for
prediction.

Figure 2. Structure detectors’ shapes and formulas.

The process of structural pattern detection was the same for
both local and global trend detection. That is, a time series was
provided as the input and a new time series was generated as
the output containing a set of values that describe the identified
structure. This process is explained below.

The input of structural pattern detection was a time series of
ordered data points, Y(t). The structural pattern detection task
was to apply different structures and find the one that best fits
Y(t). Each individual structure was a function that approximates
Y(t) with a specific pattern [54]. This approximation function
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is defined as: f(Y(t)) = Ŷ(t). Then, to find the structure with the
best fit, an error function, E, evaluates how closely Ŷ(t)
approximates Yt for each structure. The following error function
was used in this study:

The formulas of the structures (ie, approximation functions)
used in this study are shown in Figure 2 [24].

These functions are the most commonly used in the literature
[55]. Using more sophisticated functions would require a much
higher number of data points in each window than what was
available in the study dataset. Figure 3 shows an example of
data points for a 24 data series of Hemoglobin. The best fit
pattern for these values is the linear model with a=0.128 and
b=7.133.

To find the optimal parameters (ie, a, b, and c) of a time series’
structural pattern, standard linear regression equations were
used for Constant and Linear structure detectors. For the
remaining structure detectors, we needed to search for the best
parameter values that minimized the error function. To achieve
this, we used Simplex search [56], which is a direct search
method guided by evaluating the error function with various

combinations of values for the three parameters (ie, a, b, and
c).

Finally, after finding the best approximation function, the
structure pattern detection generates 4 values as the final output
including the three parameters a, b, and c and the index of the
best fitted structure detector ranging from 1 to 5 (eg, Triangular
structure is 5). Therefore, the output of structure pattern
detection for global trend detection is in the form of Ga, Gb, Gc,
and Gindex, where Ga, Gb, and Gc are a, b, and c parameters of
the best fitted structure and Gindex is the index of that structure.
If there is a time series with just 1 data point the Constant
detector was used to represent the time series. Similarly, the
output of structure pattern detection for local trend detection
over m windows is in the form of

Here, are the a, b, and c parameters of the best fitted

structure on window i and is the index of that structure.
Combining both local and global trend detection outputs, the
final time series looked like the following:

Figure 3. An example of extracted linear structure from a Hemoglobin time series.

Acute Kidney Injury Prediction
For the classification task, several state-of-art machine learning
algorithms were applied to predict AKI. To achieve this, each
algorithm was tuned to find its best performance [57]. These
algorithms include Random Forest [58], Extreme Gradient
Boosting Tree [59], Kernel-based Bayesian Network [60],
Support Vector Machine (SVM) [61], Logistic Regression [42],
Naïve Bayes [62], K-Nearest Neighbor [63], and Artificial
Neural Network (ANN) [64]. Algorithms were evaluated with
the following parameter tuning settings: maximum depth,
number of bins, and learning rate were varied for the extreme
gradient boosting tree, kernel type and number of kernels were
varied for the Kernel-based Bayesian Network; number of
hidden layers, number of nodes in each layer, and learning rate
were varied for the Neural Network; Kernel type along with the
corresponding parameters of each kernel type were varied for
the SVM; the value of k and the weighted voting method were
changed for the K-Nearest Neighbor algorithm; and the number

of trees was varied for Random Forest. Similar to previous
research on AKI prediction [6], a Random Forest classifier
achieved the best performance. This is an ensemble learning
algorithm that fits several decision trees on different subsamples
of the data. The mode value of the decision tree outcomes
determines the final predicted label of the algorithm [58].
Therefore, this classifier was used in all experiments described
below. The performance results comparison of all classifiers
can be found in Table S3 of the Multimedia Appendix 1.

Evaluation
In the evaluation step, we tested four hypotheses that were
defined a priori. The hypotheses were tested according to a 2×2
factorial study design [65] with local structural pattern and
global structural pattern as dimensions. The factorial design
allowed us to compare the performance of all possible
combinations from a baseline to an approach with both local
and global structural patterns.
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• Hypothesis 1: A baseline symbolic temporal pattern
detection method has higher accuracy than a nontemporal
pattern detection method (ie, last recorded value before the
prediction point) in the prediction of AKI in ICU patients.

• Hypothesis 2: Global structural pattern detection has higher
accuracy than symbolic pattern detection in the prediction
of AKI in ICU patients.

• Hypothesis 3: Local structural pattern detection has higher
accuracy than global structural pattern detection in the
prediction of AKI in ICU patients.

• Hypothesis 4: Global and local structural pattern combined
has higher accuracy than global and local structural pattern
detection separately in the prediction of AKI in ICU
patients.

As the baseline, we implemented the symbolic pattern detection
according to the KLS framework by Moskovitch and Shahar
(the most common approach for multivariate time series
classification) [20]. This framework includes four main
components: temporal abstraction, time-interval mining,
TIRP-based feature representation, and classifier selection,
where each component has its own settings. Aligned with the
authors suggestion after trying different settings in several
evaluations [20], we used the following parameter settings: SAX
was used for temporal discretization with four bins; KarmaLego
with epsilon value of 0 and minimal vertical threshold of 60%
was used for three time-intervals mining; the three abstract
relations (ie, before, overlaps, and contains) proposed by the
authors were used for temporal relations; mean duration was

used to represent TIRPs (without any feature selection); and
Random Forest was used as the classifier. We also tried EWD
as the second-best method for temporal discretization suggested
by Moskovitch and Shahar [20], but it is was outperformed by
SAX (accuracy of 0.706 vs 0.667; P<.001).

To test the significance of the differences between the classifiers,
we used ANOVA (analysis of variance) repeated measures test
[66], with classification accuracy as the primary outcome. This
approach allowed us to test for a potential interaction (ie,
dependency) between parameters of structure detectors for local
and global trends (see Section 3.1). We used the baseline (ie,
symbolic) as the control group and the local and global trends
as the two treatment factors, with the 20 folds as the
observations. In other words, for each fold, we have results for
the baseline (ie, control group), local structural pattern (ie,
factor), global local structural pattern (ie, factor) and the
combination of local and global local structural patterns (ie,
interaction). This experimental design is similar to previous
studies on AKI prediction [13,41].

Results

Hypothesis 1: Symbolic Pattern Detection Versus Last
Recorded Value
The accuracy of symbolic pattern detection in predicting AKI
was significantly higher than the last recorded value method
(0.706 vs 0.581; P<.001). Similar significant differences were
found in terms of F-measure and AUC (Figure 4).

Figure 4. Accuracy, F-measure, and AUC of the latest recorded value method versus symbolic pattern detection for AKI prediction. AUC: area under
the curve; AKI: acute kidney injury.

Hypothesis 2: Global Structural Pattern Detection
Versus Symbolic Pattern Detection
The accuracy of global structural pattern detection in predicting
AKI was significantly higher than symbolic pattern detection

(0.744 vs 0.706; P<.001). Similar significant differences were
found in terms of F-measure and AUC (Figure 5).
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Figure 5. Accuracy, F-measure, and AUC of the global structural pattern detection versus symbolic pattern detection for AKI prediction. AUC: area
under the curve; AKI: acute kidney injury.

Hypothesis 3: Local Versus Global Structural Pattern
Detection
The accuracy of local structural pattern detection in predicting
AKI was significantly higher than global structural pattern

detection (0.781 vs 0.744; P<.001). Similar significant
differences were found in terms of F-measure and AUC (Figure
6).

Figure 6. Accuracy, F-measure, and AUC of the local versus global structural pattern detection method for AKI prediction. AUC: area under the curve;
AKI: acute kidney injury.

Hypothesis 4: Global and Local Structural Pattern
Detection Combined Versus Global and Local
Structural Pattern Detection Separately
The accuracy of combined global and local structural pattern
detection in predicting AKI was significantly higher than global

and local structural pattern detection separately (0.813 vs 0.744
and 0.781; P<.001). Similar significant differences were found
in terms of F-measure and AUC (Figure 7). Also, Table 4 shows
the distribution of extracted patterns for local and global
structure detectors.

Figure 7. Accuracy, F-measure, and AUC of the global and local structural pattern detection combined versus global and local structural pattern
detection separately for AKI prediction. AUC: area under the curve; AKI: acute kidney injury.
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Table 4. Distribution (%) of different structure detectors for local and global patterns.

SinusoidalTriangularExponentialStraightConstantFeatures size

1.163.035.2634.7355.82Local

3.4427.187.5337.6724.18Global

Discussion

Principal Findings
We investigated methods for extracting temporal patterns from
patients’ data to predict AEs in critical care settings. Overall,
we found that local and global structural pattern detection
methods outperformed the accuracy of symbolic pattern
detection in AKI prediction (78.1% vs 74.4% vs 70.6%), with
local and global structural patterns combined yielding the
highest accuracy of all methods investigated (81.3%). Such
finds are clinically important, as early prediction of AEs may
warn clinicians to implement interventions or closer monitoring
strategies to help prevent AEs in a timely manner. In fact,
compared with symbolic pattern detection, the combined local
and global approach resulted in 1076 out of 9392 additional
AKI patients correctly identified. This is a remarkable
improvement that, if integrated with routine clinical care, has
the potential to reduce hospital morbidity and mortality.

We conducted four experiments to test four hypotheses. The
first experiment demonstrated the value of temporal data using
symbolic pattern detection, which significantly outperformed
the last recorded value (70.6% vs 58.1%), which is the most
common approach in the literature. As the incidence of AKI in
the dataset was very high (57%), the accuracy of the classifier
based on last recorded values was similar to always predicting
cases as positive. Thus, this finding highlights the importance
of using all information in time series data rather than using a
single value.

The second and third experiments showed that detecting local
and global trends using structural pattern detection improves
the accuracy of the baseline symbolic pattern detection method
(78.1% vs 74.4% vs 70.6%). This suggests that information loss
caused by temporal discretization has significant negative effect
on the performance of symbolic pattern detection. Also, local
trends provided a significantly contribution to the increase in
accuracy compared to global trends. Most important, the fourth
experiment found that combining local and global trends
achieved the best accuracy of all methods in this study. This
finding highlights the importance of detecting trends at different
data segments rather than one trend over the whole time series.

Shedding more light on the local and global trends detected by
the structural pattern detection methods, Table 4 shows the
distribution of different types of structure detectors. As seen,

more than 90 percent of the fitted structure detectors for local
trends are either constant or straight line. One reason for the
small percentage of other structure detectors could be because
there is a small number of data values on each window, which
is not suitable for sophisticated models (eg, sinusoidal).
Similarly, Constant, Straight and Triangular are the most
common patterns in global trends. The implication is that
patients’ health status at local and global time windows may
not need complicated structure detectors.

Our study had some limitations. First, we focused on the
prediction of AKI as a case study and did not test the
generalizability to other AEs. Nevertheless, to maximize
generalizability, we used a set of input features that are widely
used in critical care settings and are not specific to any condition
or procedure. Future studies are needed to assess generalizability
to other AEs and datasets. Second, as we did not have access
to serum creatinine data before ICU admission, as in previous
studies, the lowest serum creatinine level after ICU admission
was used as the baseline. Third, as the focus of our study was
on testing different temporal pattern detection methods, we
limited our dataset to numeric variables that change frequently
overtime, which is not the case of variables such as age, gender,
and comorbidities. As AKI is a frequent comorbidity, expanding
the model input to include medical conditions—for example,
sepsis, heart failure, and age would likely improve model
accuracy but might not significantly change the relative
performance levels of different structural patterns. Fourth, as
we applied structural pattern detection on granular time series
data, clinical interpretation of the patterns associated with AKI
prediction was very difficult. There is always a trade-off
between accuracy and explainability, and in this study, we
focused on accuracy. Tackling the explainability limitation is
a subject for future studies. Currently, we are investigating the
use of deep learning approaches, especially recurrent neural
networks, with a larger number of predictors, along with the
proposed local and global pattern detection method.

Conclusions
We investigated the effect of temporal pattern detection methods
on AE prediction, using AKI as a case study. Capturing patterns
in local and global trends with structural pattern detection
significantly improved the accuracy of AKI prediction in ICU
settings. Besides the technical contributions, accurate prediction
of patients with a high risk for AEs has the potential to decrease
hospital morbidity and mortality.
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