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Abstract

Background: The overcrowding of hospital outpatient and emergency departments (OEDs) due to chronic respiratory diseases
in certain weather or under certain environmental pollution conditions results in the degradation in quality of medical care, and
even limits its availability.

Objective: To help OED managers to schedule medical resource allocation during times of excessive health care demands after
short-term fluctuations in air pollution and weather, we employed machine learning (ML) methods to predict the peak OED
arrivals of patients with chronic respiratory diseases.

Methods: In this paper, we first identified 13,218 visits from patients with chronic respiratory diseases to OEDs in hospitals
from January 1, 2016, to December 31, 2017. Then, we divided the data into three datasets: weather-based visits, air quality-based
visits, and weather air quality-based visits. Finally, we developed ML methods to predict the peak event (peak demand days) of
patients with chronic respiratory diseases (eg, asthma, respiratory infection, and chronic obstructive pulmonary disease) visiting
OEDs on the three weather data and environmental pollution datasets in Guangzhou, China.

Results: The adaptive boosting-based neural networks, tree bag, and random forest achieved the biggest receiver operating
characteristic area under the curve, 0.698, 0.714, and 0.809, on the air quality dataset, the weather dataset, and weather air quality
dataset, respectively. Overall, random forests reached the best classification prediction performance.

Conclusions: The proposed ML methods may act as a useful tool to adapt medical services in advance by predicting the peak
of OED arrivals. Further, the developed ML methods are generic enough to cope with similar medical scenarios, provided that
the data is available.

(JMIR Med Inform 2020;8(3):e13075) doi: 10.2196/13075
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Introduction

Worldwide, one of the fundamental issues in hospital
management is the sudden inflow of outpatient and emergency

department (OED) patients [1]. Influenza season (epidemic
period) is one of the causes for OED overcrowding and
generates a large flow of patients [2]. In particular, weather and
air quality are important factors that affect the health status of
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individuals and populations with chronic respiratory diseases
[3]. Chronic respiratory diseases such as asthma and chronic
obstructive pulmonary disease (COPD) often require regular
OED medication as the condition changes, which can cause
further OED overcrowding [4]. Nevertheless, the crowding
could be alleviated and mitigated considerably by forecasting
levels of demand for OED care and giving health care staff an
opportunity to prepare for this demand [5]. Efficient patient
flow has been proven to potentially increase the capacity of the
existing system, minimize patient care delays, and improve
overall quality of health care [6-10].

There have been many attempts to predict daily patient volumes
visiting emergency departments (EDs) using machine learning
(ML) and deep learning models based on weather and air quality
[11,12].

Bibi et al [13] created a computer-based model called an
artificial neural network (ANN) using a backpropagation to
predict volumes of ED visits of patients with asthma, COPD,
or acute or chronic bronchitis 7 days in advance. The study
included a dataset (1020 days of ED activity) extracted from an
ED admittance database at the Barzilai Medical Center
(Ashkelon, Israel). The mode integrated 5 indicators (ie,
temperature, relative humidity, barometric pressure, sulfur
dioxide, and nitrogen oxide) and achieved the prediction
accuracy with an average error of 12%. However, indicators
and data collections are relatively inadequate.

Moustris et al [14] developed three different ANN models to
forecast the childhood asthma admissions 7 days in advance for
the subgroups of 0 to 4 years of age and 5 to 14 years of age,
as well as for the whole study population. The study used 6
indicators, that is ozone, carbon monoxide, PM10 (particulate
matter of 10 μm in diameter or smaller), PM25 (particulate
matter less than 2.5 μm in diameter), and sulfur dioxide, from
Athens, Greece to train the ANN model. The evaluation of the
three ANN models’ forecasting abilities on the root mean square
error (mean bias error) were 6.8 (1.4), 3.2 (1.3), and 5.2 (0.3)
for 0 to 4 years of age, 5 to 14 years of age, and the whole study
population, respectively. However, the study only took into
account air quality indicators and ignored weather factors.

Soyiri [15] explored the base and reduced predictive quantile
regression models (QRMs) to detect peak numbers of daily
asthma admissions in London with sensitivity levels of 76%
and 62%; as well as specificities of 66% and 76%, respectively.
The research used 10 indicators (ie, air temperature, vapor
pressure, humidity, ozone, carbon monoxide, nitrogen dioxide,
nitrogen oxide, PM10, and formaldehyde) to build the QRMs.
The findings also reaffirmed the known associations between
asthma and temperature, and ozone and carbon monoxide levels.
Nevertheless, the accuracy of the model is not very high.

Khatri et al [16] employed an ANN–based classifier using
multilayered perceptions with a backpropagation algorithm that
predicts peak events, that is days of peak demand, for patients
with respiratory diseases. The study used 8 predictors (ie,
outdoor temperature, relative humidity, wind speed, carbon
monoxide, ozone, sulphur dioxide, nitrogen dioxide, and PM25)
to construct the model. The proposed ANN model achieved a
good forecasting performance with the overall accuracy of the

system at 81.0%. Even so, the study population only included
visits for respiratory diseases data in EDs. Further, the research
did not consider dividing data into weather and air pollution
separately.

Yucesan et al [17] developed a multi-method patient arrival
forecasting outline for EDs using a private hospital ED case in
Turkey. The methods followed within this study include the
single methods linear regression (LR), autoregressive integrated
moving average (ARIMA), ANN, exponential smoothing, and
the hybrid methods ARIMA-ANN and ARIMA-LR. The
ARIMA-ANN hybrid model is shown to outperform in terms
of forecasting accuracy. This study explored a novel attempt of
applying these methods to model ED patient arrivals and making
an overall assessment among them.

Muhammet et al [18] analyzed variations in annual, monthly,
and daily ED arrivals based on regression and neural network
models with the aid of collected data from a public hospital ED
in Istanbul. Both of the methods have been proven to be useful
and readily available tools for forecasting ED patient arrivals.
The results show that ANN–based models have higher model
accuracy values and lower values of absolute error in terms of
forecasting ED patient arrivals over the long- and medium-term.
The value of the standard error of regression for the ANN
modeling, which is 30.022306, refers to the difference between
the real ED patient arrivals and the forecasted ED patient arrivals
per day covering the total of the three patient groups.

Although ED forecasting has attracted many researchers, we
found few studies designed to predict OED visits of patients
with chronic respiratory diseases using multiple ML methods.
In a real medical scene, patients with chronic respiratory
diseases often go to outpatient clinics. Therefore, it would be
of great significance to forecast the peak OED visits for chronic
respiratory diseases.

In this paper, we employed bagging [19], adaptive boosting
[20] and random forest [21] algorithms to predict the peak
arrival of chronic respiratory disease OED visits based on the
weather and air quality data. Meanwhile, we compared the
ensemble models with the general linear model (GLM) [22]
and the polynomial nuclear support vector machine (SVM) [23].
The results show that ensemble models outperform the GLMs
and SVM. Further, we found that the predictive performance
of ML algorithms gradually improves with the increase of input
features. By the ML approaches, the OED managers can plan
resources to meet the excessive demand of patients with
respiratory diseases after short-term fluctuations in air pollution
or weather.

Methods

Data Acquisition
Figure 1 shows the flowchart of participants in our research.
We identified 13,208 OED visits to the Second Affiliated
Hospital of Guangzhou Medical University that had a major
diagnosis of a chronic respiratory disease defined by the
International Classification of Diseases, Tenth Revision, Clinical
Modification code (J45.900, J44.001, J44.101, J44.803, and
J98.801). The duration of the collected data lasted from January
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1, 2016, to December 31, 2017, which is 731 days of continuous
data. For statistical purposes, the days where the daily volume
was less than 24 were labeled as nonpeak events, and the rest
were labeled as peak events.

Table 1 describes the Pearson correlation coefficient between
OED visit numbers and input indicators. We found that OED

visit numbers showed positive correlations with wind speed,
atmospheric pressure, carbon monoxide, sulphur dioxide,
nitrogen dioxide, and PM25. However, OED visit numbers
showed negative correlations with outdoor temperature, relative
humidity, and ozone. The weather and air quality data
distribution of patients with acute exacerbations of COPD from
peak and nonpeak groups was shown in Table 2.

Figure 1. Flowchart of participants. ICD-10-CM: International Classification of Diseases, 10th revision, Clinical Modification.

Table 1. The Pearson correlation coefficients between outpatient and emergency department visit numbers and input indicators.

Number of visits, rO3_8hi, rNO2
h, rCOg, rSO2

f, rPM25e, rRHd, rAPc, rTPb, rWSa, rVariable

0.15–0.24–0.42–0.26–0.33–0.34–0.40.27–0.321WS

–0.380.39–0.25–0.240.03–0.230.35–0.881–0.32TP

0.39–0.180.290.210.090.31–0.51–0.880.27AP

–0.2–0.280.030.2–0.27–0.181–0.50.35–0.4RH

0.290.290.810.650.731–0.180.31–0.23–0.34PM25

0.220.430.660.3510.73–0.270.090.03–0.33SO2

0.35–0.070.6810.350.650.210.21–0.24–0.26CO

0.350.1310.680.660.810.030.29–0.25–0.42NO2

–0.1410.13–0.070.430.29–0.28–0.180.39–0.24O3_8h

1–0.140.350.350.220.29–0.20.39–0.380.15Number of visits

aWS: wind speed.
bTP: outside temperature.
cAP: atmospheric pressure.
dRH: relative humidity.
ePM25: particulate matter less than 2.5 μm in diameter.
fSO2: sulphur dioxide.
gCO: carbon monoxide.
hNO2: nitrogen dioxide.
iO3_8h: 8-hour average ozone slip in a day.

JMIR Med Inform 2020 | vol. 8 | iss. 3 | e13075 | p. 3http://medinform.jmir.org/2020/3/e13075/
(page number not for citation purposes)

Peng et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 2. Weather and air quality data distribution of peak and nonpeak groups visiting outpatient and emergency departments.

Nonpeak group, mean (SD)Peak group, mean (SD)Variables

2.15 (0.91)2.49 (1.10)Wind speed (m/sec)

23.11 (5.81)17.81 (5.59)Outside temperature (°C)

1003.73 (6.57)1009.99 (5.26)Atmosphere pressure (mb)

82.15 (9.65)77 (12.51)Relative humidity (%)

32.83 (16.49)43.74 (23.69)Particulate matter less than 2.5 μm in diameter

11.45 (3.73)13.16 (4.65)Sulphur dioxide

0.92 (0.17)1.06 (0.25)Carbon monoxide

46.43 (17.67)60.05 (26.09)Nitrogen dioxide

90.24 (52.46)74.28 (54.90)8-hour average ozone slip in a day

Data Analysis
Since the effect of weather and air quality on respiratory
conditions in humans was not instantaneous, representative lags
were applied to variables based on the work done previously in
this area [3,24-26]. To simplify the delayed impact of respiratory
conditions, we considered a 3-day lag for all variables.

We removed records with less than 10 people on weekends to
eliminate weekend effects, bringing the total number of samples
collected to 559. To create a meaningful feature vector for
training and cross-validation, the date field was removed to
obtain a (X, y), where X was a matrix with the dimensions (m
× n = 559 × 9) representing values of variables, and y was a
vector of length (m=559) representing the output class of the
examples (ie, events). Analysis of the data suggested that the
output class was highly imbalanced with 413 examples of
nonpeak and 146 examples of peak events.

Machine Learning Approaches
In this section the ML algorithms are presented and discussed;
details of the updating and classification processes are described
in the following algorithms.

Generalized Linear Models
1. Construct the common linear model from the original

training set: f = wT x + b, where w is the weight vector
and b is the bias, both of which are only determined by the
training samples

2. Identify the contact function f -1

3.
Build the GLMs: = f -1 (wT x + b)

4. Calculate the classification on the test set

Support Vector Machine
1. Convert the sample space into linearly separable space with

polynomial core functions K (xi, yi)
2. Calculate the support vectors with the following formula:

3. Then identify the hyperplane. The regular parameter C is
a penalty factor, which can balance the model complexity

and empirical risk. In addition, εi indicates the positive
parameters called slack variables, which represent the
distance between the misclassified sample and the optimal
hyperplane.

4. Forecast the classification of the test dataset using
hyperplane and support vectors

Bagging
1. Generate a new training set by sampling from the original

training set
2. Repeat step 1 N times to get the N new training sets, and

train N trees in N different training sets
3. Calculate the classification results by averaging the

predicted value of each tree or use the majority
4. Out-of-bag error estimation: The data not sampled in step

1 is used as the test set of the corresponding generated tree
to evaluate the predicted results

Random Forest
1. Create a new training set from a sample of a training set
2. Repeat step 1 N times to get N new training sets, and train

N trees on the training sets
3. Identify the optimal candidate node as the prediction space

from the randomly selected m feature set when building
the tree model

Boosting
1. Initialize the weight vector of the training data
2. Construct m weak classifiers
3. Calculate the classification error rate of the m weak

classifiers
4. If one sample is misclassified, its weight will be increased,

and the next weak classifier pays more attention to this
sample; otherwise, its weight will be decreased.

5. After all the weak classifiers finish the training, the stronger
classifier is constructed.

Results

Metrics
Precision, recall, and F measure are the metrics that are used to
evaluate our proposed ML methods. Based on the classification
of true positives (TP), false positives (FP), true negatives (TN),
and false negatives (FN), we have the following formulas.
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We then define the F measure, a metric that balances precision
and recall.

Evaluation
We calculate the overall accuracy, precision, recall, and F
measure for nonpeak events and peak events, respectively.
Evaluation of the ML approaches on the weather and air quality
data are shown in Table 3. It showed that the developed random
forest gave the best predictive performance. This was mainly
due to the data collection fitting better with the random forest.

Table 3. Evaluation of machine learning approaches on weather and air quality.

Accuracy, % (n/N)F1 measureMachine learning approaches

85.6 (479/559)Generalized linear model

0.667Peak

0.908Nonpeak

80.2 (448/559)Support vector machine

0.289Peak

0.882Nonpeak

84.7 (473/559)Adaptive boosting neural networks

0.667Peak

0.900Nonpeak

83.8 (468/559)Tree bag

0.640Peak

0.895Nonpeak

88.3 (494/559)Random forest

0.745Peak

0.924Nonpeak

In addition, we used the receiver operating characteristic (ROC)
curve to evaluate the multiple ML approaches on the same
dataset (Table 4). We found that adaptive boosting neural
networks achieved the biggest ROC area under the curve on the

air quality data, tree bag on the climate data, and random forest
on weather and air quality data. In general, we discovered that
the predictive performance of the ML approaches improves as
data variables increase.

Table 4. Evaluation of machine learning approaches using receiver operating characteristic.

Weather and air quality, AUCAir quality, AUCWeather, AUCaMachine learning approaches

0.7580.6820.538Generalized linear model

0.6210.4940.500Support vector machine

0.7340.6980.611Adaptive boosting neural network

0.7800.6800.714Tree bag

0.8090.6920.669Random forest

aAUC: area under the curve.

Discussion

Clinical Significance
Recent studies have shown that weather and air pollution have
been a major problem leading to an increase in daily deaths and
hospital admissions for chronic respiratory illnesses [3-5,27,28].

We focused the distribution of daily patient visits for 2 years
(ie, 2016 and 2017) (Figure 2). It is worth noting that peak days
are more dominant from October to March, which indicates that
the haze is a strong predictor, as these months are mostly colder
in Guangzhou. Thus, it is important to recognize the peak OED
visits for respiratory conditions.
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Figure 2. Histogram of patients visiting outpatient and emergency rooms.

Previous studies mainly focused on the peak event forecasting
ED visits for patients with one or more diseases. We expanded
the study population to include outpatient visits for patients
with chronic respiratory diseases. In fact, many patients with
chronic respiratory diseases also seek treatment from outpatient
departments. Thus, predicting the OED peak visits for chronic
respiratory disease plays an important role in clinical
management.

We developed a variety of learning methods to forecast the OED
peak visits, from simple models to complex ensemble learning
ones. In particular, the ensemble learning models achieved good
prediction results. In terms of indicators, most of the previous
studies used air pollution indicators to predict the peak events
of ED visits; however, we used weather and air quality indicators
to build a more complete set of features.

Limitations
There are a few limitations to this study. In this study, we used
nine variables, namely, wind speed, atmospheric pressure,
outdoor temperature, relative humidity, carbon monoxide, ozone,
sulphur dioxide, nitrogen dioxide, and PM25, as these variables
have been associated with exacerbation of respiratory diseases.
However, there are some other variables that also contribute to
the exacerbation of these diseases, such as formaldehyde and
nitrogen oxide [29]. The Environmental Protection Agency of
Guangzhou does not disclose the daily data for variables such
as formaldehyde. Other pollutants are either not measured or

had too many missing values. Therefore, we were not able to
include these variables in our study.

In terms of weather, Guangzhou as a coastal city in southern
China has a higher air humidity than other northern cities. In
terms of air pollution, some studies have shown that patients
with lower levels of economics and education are more
susceptible to air pollution [30]. Guangzhou has a significantly
higher economic and educational level than the national average.
However, the pollution of haze and the harmful emissions of
Guangzhou are also serious [31]. In particular, the lighter
particulate matter is higher than other northern cities due to
automobile exhaust and industrial emissions. Therefore, the
prediction result of this study may not be directly applicable to
other regions due to the regional differences in climate and air
pollution.

Conclusion
In this paper, we investigated ML methods to forecast the peak
events of patients with chronic respiratory diseases visiting
OEDs combined with nine weather and air quality predictors.
Overall, random forest outperforms the other methods in the
accuracy, F measure, and ROC on the validation dataset.
Compared with similar studies before, we used more indicators
and ML methods to study the subject and achieved good results.
The ML methods may act as a useful tool to adapt medical
services in advance by predicting the peak number of OED
arrivals.
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