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Abstract

Background: Sudden unexpected death in epilepsy (SUDEP) is second only to stroke in neurological events resulting in years
of potential life lost. Postictal generalized electroencephalogram (EEG) suppression (PGES) is a period of suppressed brain
activity often occurring after generalized tonic-clonic seizure, a most significant risk factor for SUDEP. Therefore, PGES has
been considered as a potential biomarker for SUDEP risk. Automatic PGES detection tools can address the limitations of
labor-intensive, and sometimes inconsistent, visual analysis. A successful approach to automatic PGES detection must overcome
computational challenges involved in the detection of subtle amplitude changes in EEG recordings, which may contain physiological
and acquisition artifacts.

Objective: This study aimed to present a random forest approach for automatic PGES detection using multichannel human
EEG recordings acquired in epilepsy monitoring units.

Methods: We used a combination of temporal, frequency, wavelet, and interchannel correlation features derived from EEG
signals to train a random forest classifier. We also constructed and applied confidence-based correction rules based on PGES
state changes. Motivated by practical utility, we introduced a new, time distance–based evaluation method for assessing the
performance of PGES detection algorithms.

Results: The time distance–based evaluation showed that our approach achieved a 5-second tolerance-based positive prediction
rate of 0.95 for artifact-free signals. For signals with different artifact levels, our prediction rates varied from 0.68 to 0.81.

Conclusions: We introduced a feature-based, random forest approach for automatic PGES detection using multichannel EEG
recordings. Our approach achieved increasingly better time distance–based performance with reduced signal artifact levels. Further
study is needed for PGES detection algorithms to perform well irrespective of the levels of signal artifacts.

(JMIR Med Inform 2020;8(2):e17061) doi: 10.2196/17061
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Introduction

Background
Epilepsy is one of the most common neurological disorders,
and it affects an estimated 65 million people worldwide [1]. An

epileptic seizure (hereafter referred to as seizure) is a brief
episode, usually with signs or symptoms because of transient,
undesired, excessive, and synchronous electrical discharge,
involving large numbers of neurons in the brain [2]. When
seizure occurs, altered movement, expression, and levels of
consciousness are often observed in the affected person. Seizure
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may produce temporary confusion, uncontrollable jerking
movements of the arms and legs, inability to speak, or loss of
consciousness or awareness [3].

In a worst-case scenario, frequent seizures may predispose a
person to sudden unexpected death in epilepsy (SUDEP) [4].
Among neurological events and conditions, SUDEP is second
only to stroke in years of potential life lost, highlighting the
importance and significance of this condition for public health
[5]. SUDEP is a catastrophic and fatal complication of epilepsy.
The definition of SUDEP is “sudden, unexpected, witnessed or
unwitnessed, non-traumatic and non-drowning death, occurring
in benign circumstances, in an individual with epilepsy, with
or without evidence for a seizure and excluding documented
status epilepticus, in which postmortem examination does not
reveal a cause of death” [6], that is, no other cause of death can
be found [7]. However, the mechanisms underlying SUDEP are
not completely understood.

Electrophysiological signals such as electroencephalogram
(EEG), electrocardiogram, and electromyography, collected
together in the epilepsy monitoring unit (EMU), are traditionally
used for understanding epileptic seizures [8]. Noninvasive scalp
EEG and invasive intracranial EEG are the most commonly
used methods for locating seizures and monitoring the interphase
activity between seizures [9]. Invasive intracranial EEG is one
of the techniques used in localizing the seizure onset zone in
preparation for surgery [8]. EEG is a key source of information
for the diagnosis of epilepsy, including whether epilepsy is focal
or generalized, idiopathic or symptomatic, or part of a specific
epilepsy syndrome [10]. Therefore, EEG has also been widely
used to identify biomarkers that can help prevent the
development of epilepsy, identify focal brain regions that
produce epilepsy, and ultimately cure epilepsy through surgical
means [11].

Postictal generalized EEG suppression (PGES) is a potential
EEG biomarker of SUDEP risk [12-14]. PGES is a period of
brain inactivity after seizure. It most often occurs after
generalized tonic-clonic seizures (GTCS), particularly in those
arising from sleep, and is related to the symmetric tonic phase,
postictal immobility, lack of early oxygen administration,

duration of oxygen desaturation, and lower peripheral capillary
oxygen saturation nadir values [15-17]. GTCS are the most
significant risk factor for SUDEP [13]. PGES is defined as a
diffused EEG background attenuation (<10 μV) in the postictal
period [18]. Prolonged PGES (>50 seconds) has been reported
in refractory epilepsy patients who are at risk of SUDEP [14].
For every prolonged second in the duration of PGES, the odds
of SUDEP is increased by a factor of 1.7% (P<.005) [14].

Clinically, the determination of the duration of PGES is
manually performed by human experts through visual inspection
of EEG signals. According to definition, the identification of
PGES appears to be straightforward by identifying a period of
low-amplitude EEG signals after the seizure, as shown in Figure
1. However, real-world data recorded in EMUs may contain
high-amplitude signals caused by physiological artifacts (eg,
breathing, muscle, and movement artifacts), as shown in Figure
2. Therefore, clinical experts usually leverage additional video
recordings along with signals to identify high-amplitude artifacts
that are not real EEG activities [19]. Automated PGES detection
tools are highly desirable to assist clinical personnel in reviewing
and annotating PGES in EEG recordings. Automated techniques
have been extensively studied for epilepsy-related EEG signal
analysis [20], including a random forest classifier with empirical
wavelet transform for seizure identification [21], a data-driven
approach for classifying seizure and nonseizure EEG signals
using the multivariate empirical mode decomposition algorithm
[22], a whole-brain seizure detection approach using the
K-nearest neighbors classifier [23], and extreme epileptic events
detection and prediction using neural networks with
time-frequency features [24,25]. However, there has been only
one study [19] using logistic regression to perform automated
PGES detection based on frequency-domain features of EEG
signals. The following challenges remain in developing a fully
automatic PGES detection tool:

• The presence of artifacts remains the main challenge that
makes PGES detection more complex than applying a fixed
amplitude threshold.

• There is no sensitive and standardized criterion dedicated
to measuring and evaluating the performance of PGES
detection algorithms.

Figure 1. An example of postictal generalized electroencephalogram suppression and intermittent slow wave activity signals after generalized tonic-clonic
seizures. GTCS: generalized tonic-clonic seizures; ISW: intermittent slow wave; PGES: postictal generalized electroencephalogram suppression.
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Figure 2. An example of postictal generalized electroencephalogram suppression and intermittent slow wave activity signals (with artifacts) after
generalized tonic-clonic seizures. GTCS: generalized tonic-clonic seizures; ISW: intermittent slow wave; PGES: postictal generalized electroencephalogram
suppression.

In this paper, we introduce a random forest–based classifier for
PGES detection by leveraging a variety of EEG signal features
such as time-domain features, frequency-domain features,
wavelet-based features, and interchannel correlations. We
incorporate confidence-based correction rules to remove
suspicious sudden changes of EEG activities. This study focused
on identifying the first slow wave brain activity, that is, the
onset of the first intermittent slow wave (ISW) activity (see
Figure 1 and Figure 2), which indicates that the brain activity
will gradually recover [12,14]. Therefore, the output of our
PGES detection method for each signal recording is the onset
of the first ISW. Accordingly, traditional segment-based
performance evaluation methods are not well suited for PGES
detection. Instead, we introduced a new, recording-by-recoding
evaluation method dedicated to PGES detection with direct
practical relevance.

The Center for Sudden Unexpected Death in Epilepsy
Research
The Center for SUDEP Research (CSR) is a National Institute
of Neurological Disorders and Stroke–funded Center Without
Walls initiative for collaborative research on epilepsy. It
comprises researchers from 14 institutions across the United
States and Europe, bringing together extensive and diverse
expertise to understand SUDEP [4,26]. The goal of CSR is to
better understand cortical, subcortical, and brainstem
mechanisms responsible for SUDEP and to use a data-driven,
systems biology approach to elucidate the role of cortical
influences in SUDEP. To advance SUDEP research, CSR
created an infrastructure to fully, effectively, and efficiently
utilize a range of prospectively collected data from different
domains, including clinical, electrophysiological, biochemical,
genetic, and neuropathological fields. CSR provides a
comprehensive, curated repository of prospectively collected
multimodal data, including electrophysiological signals in
European data format. These data are linked to risk factor and
outcomes data of over 2500 epilepsy patients (a broad spectrum
of ages as well as social, racial, and ethnic groups) with
thousands of 24-hour recordings.

Feature Extraction From Electroencephalogram
Signals
For EEG signal feature extraction, the following 4 categories
of features are considered in this work: (1) time-domain features,
(2) frequency-domain features, (3) wavelet-based features, and
(4) interchannel correlations.

1. Time-domain features: Time-domain features include
statistical measures and Hjorth parameters. Statistical
measures include nth percentile of the signal, average,
range, standard deviation, skewness, and kurtosis [27].
Here, the mean measures the central tendency, skewness
measures the asymmetry, and kurtosis measures the
tailedness of a probability distribution. Hjorth parameters
are commonly used for feature extraction to perform EEG
signal analysis [28], including mobility and complexity
[29-31]. The mobility represents the mean frequency or the
proportion of the standard deviation of the power spectrum.
The complexity indicates the signal’s similarity to a pure
sine wave [31].

2. Frequency-domain features: An EEG wave (captured by
an electrode) comprises many other waves with different
amplitudes and frequencies. Therefore, an EEG signal has
different bands, defined by the frequency of the waves,
such as slow oscillations (0.5 Hz-1 Hz), delta bands (1 Hz-4
Hz), theta bands (4 Hz-8 Hz), alpha bands (8 Hz-12 Hz),
beta bands (14 Hz-30 Hz), and gamma bands (30 Hz-80
Hz). The spectral power in a specific frequency band, for
instance, the 0.5 Hz to 1 Hz band, can be regarded as a
feature.

3. Wavelet-based features: Wavelets are a relatively recent
approach for signal processing, and the main advantage is
that wavelets allow multiresolution analysis in time and
frequency simultaneously [32,33].

4. Interchannel correlations: Many studies have attempted to
find movement-related information of connectivity between
different brain regions [34-38]. Correlation analysis
represents the degree of relatedness and synchrony between
2 time series. It indicates similar information as a
cross-coherence analysis of different EEG channels [39].

Random Forest
Random forest is an ensemble learning method used for
classification and regression problems. This method has been
used for automated sleep stage classification based on EEG
signals [40,41]. Random forest involves a group of decision
trees during training and outputs the mode of the classes
predicted by individual trees. The overall output is determined
by applying the input to each tree and choosing the class that
gets the most weighted vote. The weight of each tree is adjusted
using misclassification and out-of-bag measures.

As it is different from other traditional classifiers (eg, K-nearest
neighbor, support vector machine, and artificial neural network),
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we select random forest as the approach for our study because
of the following advantages: (1) adaptable, as it estimates the
importance of variables and provides a way for tuning with
additional training data by assigning different weights for each
decision tree; (2) scalable, as it can handle thousands of input
variables and work efficiently on large datasets; and (3) robust,
as it can balance errors in datasets with unbalanced class
population [41].

Methods

Overview
The dataset used for this study comprises 116 EEG signal
recordings from 84 patients with GTCS in the CSR data

repository, with PGES annotated by domain experts. We
extracted the 5-min postictal EEG signals for PGES detection.
A total of 8 EEG channels are utilized: Fp1-F7, F7-T7, T7-P7,
Fp2-F8, F8-T8, T8-P8, Fz-Cz, and Cz-Pz.

The overall workflow of our PGES detection method is shown
in Figure 3. The process started with the preprocessing of the
EEG signals (step 1), followed by feature extraction (step 2).
Then a random forest classifier was trained and tested based on
the extracted features (step 3). We applied correction rules,
which are constructed based on the continuity of brain activities,
to the prediction of the random forest (step 4) and provided the
final detected label for each signal segment (step 5).

Figure 3. The overall workflow of our automated postictal generalized electroencephalogram suppression detection approach. EEG: electroencephalogram;
PGES: postictal generalized electroencephalogram suppression.

Preprocessing
Each postictal EEG signal record is split into signal segments
with a length of 1 second (ie, 1-second epoch) from the
beginning to the end without overlapping. The common
electrophysiological artifacts present in the EEG signal
recordings include muscle artifacts, breathing, and body and
bed movements [42]. The main frequency of ISW is less than
5 Hz. To minimize the presence of residual artifacts, the signals
are filtered with a band-pass filter with cutoff frequencies at 0.5
Hz and 5 Hz.

Feature Extraction
For each signal segment of the 8 EEG channels, we extracted
76 features including time-domain features, frequency-domain
features, and wavelet-based features as follows:

• The following 16 time-domain features were extracted: (1)
11 statistic features, including mean, median, maximum,
minimum, range, standard deviation, nth percentile of the

signal (n=5, 25, 75, and 95), and the root mean square, and
(2) 5 time-domain properties of kurtosis, skewness,
mobility, complexity, and amplitude energy (AE) of the
signal. The time-domain properties for a time series X={x1,
x2, ..., xn} are defined in Figure 4 [27-30], where N is the

number of data points, is the mean of X, and di=xi−xi−1

and i=1, ..., n.
• A total of 4 frequency-domain features were extracted. As

the PGES and ISW are typically low-frequency brain
activities (0.5 Hz-5 Hz), we extracted the spectral power
of 4 low-frequency bands consisting of 0.5 Hz to 1 Hz, 1
Hz to 2 Hz, 2 Hz to 4 Hz, and 4 Hz to 5 Hz.

• A total of 56 wavelet-based features were extracted. EEG
signals were subjected to three-level decomposition using
the Daubechies 4 wavelet. From the decomposition process,
a total of 4 coefficient sets were generated, and we
calculated 14 measurements (except range and AE) used
in time-domain features for each coefficient set as
wavelet-based features [32,33].
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Figure 4. The definitions of the time-domain properties. AE: amplitude energy.

To capture cross-coherence of EEG channels, we further
investigated the interchannel correlations using the linear
correlation coefficient between selected channels. The
correlation coefficient for 2 time series, X={x1, x2, ..., xn} and
Y={y1, y2, ..., yn} is defined in Figure 5 [39], where N is the

number of data points and is the mean. For each signal
segment, we calculated 4 interchannel correlations:
corr(Fp1−F7, Fp2−F8), corr(Fp2−F8, Fz−Cz), corr(Fp1−F7,
Fz−Cz), and corr(Fz−Cz, Cz−Pz).

Figure 5. The definitions of the linear correlation coefficient between two time series (X and Y).

Random Forest Classifier
There are 5 steps to build the random forest classifier with the
bootstrap aggregating (bagging) technique [43], which is an
ensemble method to reduce the variance without increasing the
bias for decision tree algorithms. Given a training set X={x1, x2

,..., xn} and Y={y1, y2, ..., yn}, the 5 steps are as follows:

1. Generate a subtraining set S={Xs, Ys} by selecting a random
number of observations and features from the whole input
training dataset.

2. Build and train each decision tree Ti (eg, regression tree,
random tree, and C4.5) with the generated subtraining set
S. In the construction of each decision tree, nodes and leaves
are built by selecting a random number of features. This
process will minimize the correlation among the features
and decrease the sensitivity to noise [40].

3. Estimate out-of-bag errors. In the training process of each
tree, about two-thirds of S are used for tree construction,
and the remaining one-third is used to test the classification
performance of the tree. Therefore, it gets an unbiased
estimate of the test set error internally in a random forest,
and there is no need to use further cross-validation [43].

4. Repeat the above steps (step 1, step 2, and step 3) N times
to build N decision trees T={T1, T2, ..., TN}.

5. Compute the classifier output. After training, the output y'
for an unknown sample x' can be made by averaging the
output from all the individual decision trees on x':

This classifier can obtain strongly correlated trees by training
all trees with the same training set, and bagging is a way to
decorrelate the trees. The prediction results of a single decision
tree may be highly sensitive to noises in its particular training
set, especially with overfitting. However, in a random forest,
the average of all trees is less sensitive to noises as the trees are
more decorrelated. In this work, we used a random forest with
N=1000 trees.

Correction Rules for Continuous Detection
According to the knowledge of the domain experts, longtime
EEG suppression does not often occur after the first ISW
happens in practical scenarios. This indicates that sudden
changes of PGES/ISW states are unlikely to happen. For
example, for a sequence of predicted labels with 10 consecutive
1-second segments (PGES, PGES, PGES, ISW, PGES, PGES,
PGES, PGES, PGES, and PGES), the sudden changes from
PGES to ISW (from the third segment to the fourth segment)
and from ISW back to PGES (from the fourth segment to the
fifth segment) are unlikely, that is, the predicted label for the
fourth segment is most likely a misclassification and should be
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corrected and replaced with PGES. Therefore, we considered
the temporal contextual information of segments to perform
correction.

We constructed confidence-based correction rules based on the
probability output of the random forest classifier. For each
segment Segi, we built a confidence index, conf(Segi) based on
the average probability from the current segment to the next M
segments; the definition is as follows:

where prob(Segj) is the random forest probability output of the
segment Segj.

In this work, we chose M=5. On the basis of the probability and
confidence index of each segment, we applied the following 3
rules to correct suspicious sudden changes of PGES/ISW states
in the detected label sequence:

1. If prob(Segi) had a high value but the probabilities of Segi’s
surrounding segments (eg, prob(Segi-1) and prob(Segi+1)
had low values, then we corrected the detected label of Segi
as PGES.

2. If conf(Segi) had a high value but the confidence indexes
of Segi’s surrounding segments (eg, conf(Segi-1) and
conf(Segi+1)) had low values, then we corrected the detected
label of Segi as PGES.

3. If prob(Segi) had a high value but conf(Segi) had a low
value, then we corrected the detected label of Segi as PGES.

Performance Evaluation
For traditional EEG signal classification tasks such as sleep
stage classification [40,44,45], the performance evaluations are
segment-based (ie, the predictions for each segment determine
the performance metrics such as accuracy, precision, and recall).
However, for the PGES detection setting, the prediction result
of the onset of the first ISW in a given signal recording (ie,

recording-based) is more important as it indicates the end of
PGES. In other words, the prediction results of segments after
the first ISW become less important for the evaluation. Figure
6 shows an example of the signal that is split into 30 segments
of 1-second each, and each segment is annotated with a label 0
for PGES or 1 for ISW (see the annotated labels). The predicted
labels are generated by the automatic detection method; the
predicted label highlighted in bold means that the label is
wrongly predicted, whereas other labels are correctly predicted.
In this example, only one label is wrongly predicted, indicating
that the PGES detection method achieves a high accuracy of
97% (29/30) for the segment-based evaluation. However, the
actual first ISW of the signal is 15 seconds away from the
predicted first ISW, a 15-second time difference that may not
be acceptable in clinical scenarios.

Therefore, for the first time, we proposed time distance–based
metrics to evaluate an automated PGES detection method. For
a given signal recording r, we defined the predicted time
distance TDr as the time difference between the predicted end
time of PGES (or the predicted time of the first ISW) by the
detection method and the actual end time of PGES (or the actual
time of the first ISW) according to the expert annotations. A
lower value of the time distance indicates a better performance
of the PGES detection method.

On the basis of the predicted time distance, we further
introduced the 5-second tolerance-based positive prediction rate
(PPR5s) as another evaluation metric, as a 5-second time distance
is acceptable according to clinical experts. Given a collection
R of signal recordings for evaluation, we define PPR5s as
follows:

that is, the number of signal recordings whose predicted time
distances are within 5 seconds divided by the total number of
the signal recordings.

Figure 6. An example of automatic postictal generalized electroencephalogram suppression detection evaluation. Annotated labels are the expert-annotated

labels, and predicted labels are generated using the automatic detection algorithm. aAL: annotated label; bPL: predicted label.

Results

Artifact Level
To evaluate the performance of our PGES detection method on
EEG signals with different levels of artifacts, we categorized
EEG signals into 4 levels: artifact-free, mild artifact, moderate

artifact, and severe artifact. The domain expert manually
reviewed the EEG signals and classified them into 4 levels
according to the following criteria:

1. Artifact-free: No waveforms in any channels or abrupt
waveforms of less than a second duration.
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2. Mild: Abrupt waveforms in channels other than midline
channels (Fz-Cz and Cz-Pz) that do not affect the midline
channels or midline channels involved with abrupt
waveforms of less than 1-second duration.

3. Moderate: One of the midline channels is involved, or both
midline channels are involved with waveforms of less than
1-second duration.

4. Severe: Both midline channels have abrupt waveforms of
more than 1-second duration. An expert may need to
analyze all EEG chains, which include 19 EEG channels,
or use video recordings to differentiate the artifacts from
the brain-generated waveforms.

Among the 116 signal recordings in our dataset, 27 are
artifact-free, 31 are with mild artifacts, 25 are with moderate
artifacts, and 33 are with severe artifacts. We applied our PGES
detection method to 4 groups of signal recordings with different
levels of artifacts: only artifact-free (group A); artifact-free and
mild artifact (group B); artifact-free, mild artifact, and moderate
artifact (group C); and all signal recordings (group D).

Cross-Validation
Cross-validation has been generally used for evaluating a
model’s performance with low bias and variance. We applied
10-fold cross-validation 10 times to the 4 groups with varying
artifact levels to evaluate our PGES detection method. For each
group, we randomly separated the signal recordings into two
parts each time, training set and testing set, and then calculated
the evaluation metrics. Note that there was no overlap between
the training set and testing set. For instance, in group D, which
included all 116 signal recordings, 11 recordings were used as
the testing data and the remaining 105 recordings were used as
the training data in each fold. We repeated this procedure 10
times and used the average as the final evaluation result.

For the training set, we selected balanced numbers of PGES
and ISW segments for each signal recording. Although every
EEG recording was annotated by domain experts with the start
of the first ISW, there existed EEG recordings missing the
annotations of the end of the first ISW (as the onset of the first
ISW is the most important). Therefore, for ISW signal segments,
we selected up to 30-second signal (ie, 30 segments) after the

onset of the first ISW as follows: if the duration of PGES (say
t seconds) is less than 30 seconds, then we used t segments after
the first onset of ISW; otherwise, we used 30 segments after
the first onset of ISW. For the testing set, we used the entire 5
min of each signal recording to detect the first onset of ISW.

The average predicted time distance is 2.4 seconds for
artifact-free signal recordings (group A) and 4.34 seconds for
the group containing both artifact-free and mild artifact signal
recordings (group B). As the artifact level increases, the average
predicted time distance increases as well. The average predicted
time distance is 7.54 seconds for the group containing
artifact-free, mild artifact, and moderate artifact signal
recordings (group C) and 7.84 seconds for all signal recordings
(group D).

The PPR5s of our PGES detection method for each artifact group
of signal recordings is as follows: PPR5s is 0.95 for artifact-free
signal recordings (group A); 0.81 for the group containing both
artifact-free and mild artifact signal recordings (group B); 0.73
for the group containing artifact-free, mild artifact, and moderate
artifact signal recordings (group C); and 0.68 for all signal
recordings (group D). It can be seen that PPR5s decreases as the
level of artifacts increases.

As a comparison, we also calculated the segment-based
evaluation metrics to evaluate the performance of our PGES
detection method for classifying individual signal segments,
including accuracy, recall (RPGES), precision (PPGES), and
F1-score (F1PGES), as defined in Figure 7, where TPPGES is the
number of segments detected as PGES and labeled as PGES by
experts, TPPGES is the number of segments detected as ISW and
labeled as ISW by experts, NumPGES_expert is the total number
of segments labeled as PGES by experts, NumPGES_detect is the
total number of segments labeled as PGES by our detection
method, and Numtotal is the total number of segments.

Table 1 shows the segment-based evaluation results of our
method. The accuracy of each artifact group is over 0.92. On
the other hand, the recall, precision, and F1-score for each group
are over 0.95, 0.96, and 0.95, respectively.

Figure 7. The definitions of segment-based evaluation metrics.
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Table 1. The traditional evaluation of postictal generalized electroencephalogram suppression (PGES) detection on each testing group.

Group DdGroup CcGroup BbGroup AaEvaluation metric

0.920.940.940.94Accuracy

0.950.970.960.95Recall (RPGES)

0.960.970.980.98Precision (PPGES)

0.950.970.960.97F1-score (F1PGES)

aOnly artifact-free signal recordings.
bArtifact-free and mild artifact signal recordings.
cArtifact-free, mild artifact, and moderate artifact signal recordings.
dAll signal recordings.

Discussion

Principal Findings
We developed an automated PGES detection method based on
EEG signals, which combined a random forest classifier and 3
correction rules. The main idea of our method was to leverage
both signal features and the state transitions of brain activities.
We evaluated the performance of our method using different
artifact groups of signal recordings.

We reported both the segment-based evaluation results and the
recording-based evaluation results. According to the
segment-based evaluation results, our method achieved over
0.92 accuracy, 0.95 recall, 0.96 precision, and 0.95 F1-score
for each artifact group. The results were consistent for each
group, which indicates that our method performed well for
classifying individual PGES signal segments (even for the group
containing signal recording with severe artifacts).

However, as illustrated in Figure 6, the segment-based
evaluation may not be able to demonstrate the actual PGES
detection performance. In practical settings, the segment that
was incorrectly detected as ISW would cause the wrong
annotation of the PGES end time and result in an incorrect,
significantly different PGES duration, which may mislead the
risk assessment of SUDEP. Therefore, we introduced a way
with direct practical relevance to evaluate automated PGES
methods based on time distance, which is the time difference
between the detected PGES period and the expert-annotated
one.

On the basis of our recording and time distance–based
evaluation, our PGES detection method achieved an average
predicted time distance of 2.4 seconds and a PPR5s of 0.95 for
artifact-free EEG signals. For signals with artifacts, the
performance of this method varies according to the level of
artifacts. For signals with mild artifacts, our method achieved
a PPR5s of 0.81. However, as the number of signals with higher
artifact levels (moderate) increased, the PPR5s dropped to 0.73;
for signals with all artifact levels (artifact-free to severe), it

dropped to 0.68, and the average predicted time distance was
7.84 seconds. The artifact is the main challenge for PGES
detection. To identify high-amplitude artifacts (severe level)
that are not real brain activities, clinicians usually have to use
different EEG patterns or even video recordings. In future work,
we will focus on developing an approach for handling signals
with high artifact levels (moderate and above). In particular,
we plan to try dedicated artifact removal methods such as
independent component analysis [46,47], regression analysis
[48], and empirical method [49,50] to study whether such
methods would help improving the performance of PGES
detection.

Compared with the previous work [19], we used three additional
types of features (time-domain features, wavelet-based features,
and interchannel correlations) in the feature extraction step. For
the classifier, we used random forest instead of boosting
algorithms with logistic regression. We also introduced a new
metric (predicted time distance) to evaluate an automated PGES
detection method, and we reported evaluation results for both
the segment-based method and our new metrics (no such
evaluations were performed in the study by Theeranaew et al
[19]).

Conclusions
We presented an automated method that combines the benefits
of random forest classifier and correction rules for PGES
detection using multichannel EEG recordings. Features from
temporal, frequency, wavelet, and cross-coherence analyses
provided valuable information to characterize PGES and ISW.
Confidence-based rules were leveraged to correct sudden
changes of PGES states. We introduced a new evaluation
method for assessing PGES detection performance with more
practical relevance. The evaluation results indicated that our
method achieved a PPR5s of 0.95 for artifact-free EEG
recordings. For EEG recordings with different artifact levels,
the PPR5s varied from 0.68 to 0.81. This study demonstrates
that our combined random forest and rule-based approach can
perform well in realistic settings for good quality EEG
recordings.
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