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Abstract

Background: Patients’ family history (FH) is a critical risk factor associated with numerous diseases. However, FH information
is not well captured in the structured database but often documented in clinical narratives. Natural language processing (NLP) is
the key technology to extract patients’FH from clinical narratives. In 2019, the National NLP Clinical Challenge (n2c2) organized
shared tasks to solicit NLP methods for FH information extraction.

Objective: This study presents our end-to-end FH extraction system developed during the 2019 n2c2 open shared task as well
as the new transformer-based models that we developed after the challenge. We seek to develop a machine learning–based solution
for FH information extraction without task-specific rules created by hand.

Methods: We developed deep learning–based systems for FH concept extraction and relation identification. We explored deep
learning models including long short-term memory-conditional random fields and bidirectional encoder representations from
transformers (BERT) as well as developed ensemble models using a majority voting strategy. To further optimize performance,
we systematically compared 3 different strategies to use BERT output representations for relation identification.

Results: Our system was among the top-ranked systems (3 out of 21) in the challenge. Our best system achieved micro-averaged
F1 scores of 0.7944 and 0.6544 for concept extraction and relation identification, respectively. After challenge, we further explored
new transformer-based models and improved the performances of both subtasks to 0.8249 and 0.6775, respectively. For relation
identification, our system achieved a performance comparable to the best system (0.6810) reported in the challenge.

Conclusions: This study demonstrated the feasibility of utilizing deep learning methods to extract FH information from clinical
narratives.

(JMIR Med Inform 2020;8(12):e22982) doi: 10.2196/22982
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Introduction

Patients’ family history (FH) is a critical risk factor associated
with numerous diseases [1-3] such as diabetes [4], coronary
heart disease [5], and multiple types of cancers [6-9]. For
example, a previous study showed that if a female patient has
both her mother and sister having breast cancer, her relative
risk [10] of having breast cancer increased 3.6 times compared

with people without such FH [11]. Knowing the FH of patients
can greatly help the prevention, diagnosis, and treatment of
various diseases. However, FH is not well structured in current
electronic health record databases but often documented as free
text in clinical notes. Manually extracting patients’ FH
information is a labor-intensive and time-consuming procedure
that cannot be scaled up. Natural language processing (NLP) is
the key technology to build automated computational models
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to extract patients’FH from clinical narratives in their electronic
health records.

In the past 2 decades, researchers have invested a significant
amount of effort into developing various methods and tools to
extract patients’ information from clinical narratives [12-14].
The clinical NLP community has organized a series of shared
tasks for retrieving various patients’ information from clinical
narratives including diseases or disorders [15-17], adverse drug
events [18,19], and medical temporal relations [20]. Both
rule-based and machine learning–based methods have been
examined, and clinical NLP systems such as MetaMap [21],
cTAKES [22], and CLAMP [23] have been developed. More
recently, deep learning–based approaches have demonstrated
superior performances in many NLP tasks [24]. For example,
the long short-term memory-conditional random fields
(LSTM-CRFs) architecture [25], which is a modified
implementation of the recurrent neural network, has been widely
adopted for named entity recognition (NER) tasks in both
general and clinical domains. Later, a newly emerged
bidirectional encoder representations from transformers (BERT)
model achieved state-of-the-art performances in 20 NLP
benchmarks in the general English domain [26] and
demonstrated promising results in several clinical NLP tasks
[27-29]. However, there are only a handful of studies focused
on extracting FH of patients [30-32], which is more complicated
than merely extracting information of the patients as it relates
to various family members of the patient. FH often contains
information from different aspects of the patients, including
family members, their living status, and their diseases or
disorders. Furthermore, patient’s family members need to be
characterized by family role (eg, mother) and family side (eg,
maternal). Besides, there are limited clinical corpora annotated
for FH. The 2018 BioCreative/OHNLP Challenge [33,34] is
the first shared task focusing on FH extraction. During that
challenge, Shi et al [35] explored a joint deep learning approach
and achieved the best performance among all participated teams.

In 2019, the National NLP Clinical Challenge (n2c2) organized
shared tasks to solicit advanced NLP methods for extracting
FH information from clinical text. The 2019 n2c2 open shared
task consisted of 2 subtasks: (1) NER for family members and
observations (ie, diseases or disorders); and (2) identifying
relations between family members, observations, and living
status. Participants were required to identify mentions of FH
and present a family member as a combination of family role
(eg, mother) and family side (eg, maternal) and living status as
a score derived from the healthy and alive state.

This paper presents our end-to-end FH extraction system
developed during the 2019 n2c2 open shared task as well as
new transformer models we developed after the challenge.
During this challenge, we adopted an LSTM-CRF model for
NER and a BERT-based model for relation identification. Our
best submission was ranked fifth in subtask 1 and third in
subtask 2. After the challenge, we further explored a
BERT-based model for NER and demonstrated better
performances in both subtasks.

Methods

Data
This study used the data set developed by the 2019 n2c2 open
shared task organizers consisting of 216 clinical notes extracted
from the Mayo Clinic data warehouse. The organizers split the
corpus into a training set of 99 notes and a test set of 117 notes.
Three types of concepts were annotated, including family
members, observations (ie, diseases and disorders), and living
status. There are also 2 types of relations annotated among
family members, observations, and living status. The organizers
provided annotations at (1) entity level (ie, the words and
phrases about FH), and (2) document level, where the multiple
mentions of the same FH were aggregated. Table 1 shows the
descriptive statistics of the corpus.

Table 1. Descriptive statistics of the challenge data set.

2019 n2c2 family history challenge corpusCorpus information, annotation type, and annotation category

Test setTraining set

11799Number of notes

Entity-level annotation

Concept

N/A803Family members

N/A978Observations

N/A415Living status

Document-level annotation

Concept

638667Family members

983930Observations

Relation

755740Family members—observations

349376Family members—living status
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The Family History Extraction System
Figure 1 shows the system architecture for our end-to-end FH
extraction system. Our system has 5 modules including
preprocessing, NER, classification, relation identification, and
postprocessing. The preprocessing module contains standard
NLP procedures including tokenization, sentence boundary

detection, and data format transformation. In the NER module,
we explored state-of-the-art NLP models, including
LSTM-CRFs and BERT to identify FH concepts. The relation
identification module applied deep learning models to determine
the relations among FH concepts. The postprocessing module
aggregated the entity-level results to the document level for
both concept extraction and relation identification subtasks.

Figure 1. Overview of our family history extraction system.

Extracting Family History Concepts
The concept extraction subtask focused on detecting the
mentions of family members and observations. We approached
this subtask as a typical NER problem and applied deep
learning–based models. Following the standard machine
learning–based NER procedure, we converted the annotations
using the beginning-inside-outside (BIO) tagging scheme
[36,37], where “B” indicates the first token of a concept, “I”
indicates tokens inside of a concept, and “O” indicates tokens
that do not belong to any concepts. Thus, we converted
information extraction problem into a sequence labeling task
to assign each word with one of the predefined NER labels (“B,”
“I,” or “O”). We explored 2 deep learning–based models
including LSTM-CRFs and BERT.

Previous studies [38-41] have shown that adopting an ensemble
method could further improve the clinical NER performances.

Thus, we adopted the majority voting strategy to integrate the
different NER models as shown in Figure 2. More specifically,
we randomly (based on a random seed) split the training data
into a short training data and a validation data at a 9:1 ratio. We
trained deep learning models using the short training data and
selected the best checkpoints based on the model performance
on the validation data. By repeating the procedure 5 times with
different random seeds, we obtained 5 different models. In each
training procedure, we used different short training data and
validate data but the same hyperparameters (ie, the optimized
hyperparameters used for training the single BERT NER model).
Then, the majority voting strategy was used to vote among the
5 models. Here, we use a suffix “-EN” to indicate the ensemble
method. For example, we used “LSTM-CRFs-EN” to denote
the ensemble model of LSTM-CRFs, and “BERT-EN” to denote
the ensemble model of using BERT.
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Figure 2. The majority voting strategy to ensemble NER models. BERT: bidirectional encoder representations from transformers; NER: named entity
recognition.

Determining Family Role and Family Side
This task is to determine the family role and family side for the
mentions of FH. There are a total number of 15 types of family
roles defined in this challenge, including father, mother, sister,
parent, brother, grandmother, grandfather, grandparent, daughter,
son, child, cousin, sibling, aunt, and uncle. There are 3
predefined family sides including maternal, paternal, and not
applicable. We approached the 2 tasks as classification
problems. Previous studies [35,42] approached the 2 tasks using
rule-based methods; here, we applied deep learning–based
classification methods as machine learning–based methods have
shown a better generalizability.

Relation Identification
Typically, relation identification consists of 2 steps: (1)
determine whether there is a relation between 2 entities; and (2)
classify the correct relation type. In this study, we formulated
the relation identification as a binary classification problem.
We presented each relation as a pair of 2 entities and used
contextual information around the entities to classify these pairs
into categories as “in-relation” or “nonrelation” (no relation
between entities). Then, we further categorized the “in-relation”

entity pairs into either “family member—living status” group
or “family member—observation” group based on the entity
types: if 1 of the entities in an entity pair is observation, we
classify it as “family member—observation”; if one of the
entities in an entity pair is living status, we classify it as “family
member—living status.”

Candidate Concept Pairs Generation
Theoretically, there might be relations between any pair of FH
concepts. Thus, a naïve way is to generate candidate pairs from
all combinations of clinical concepts in document level.
However, a previous study [43] has reported that this method
often generates too many negative samples (ie, nonrelation),
causing an extremely imbalanced positive-to-negative sample
ratio. To alleviate this issue, we applied the following heuristic
rule to reduce the combinations: only keep the concept pairs
composed of a family member entity as the first element and a
nonfamily member entity as the second element. We also looked
into the cross-distance of pairs—defined as the number of
sentence boundaries between the 2 entities (eg, 0 for
single-sentence relations, and 1 for relations across 2 sentences).
In the training set, the cross-distance ranges from 0 to 10 and
we found that 96% of the annotated relations have
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cross-distances less than 3. Therefore, we only consider
candidate pairs with cross-distances less than 3. Previous studies
[44,45] developed individual classifiers to handle relations with
different cross-distance; here, we developed a unified
BERT-based classifier to handle all candidate pairs with various
cross-distances as the BERT model is able to learn both token-
and sentence-level representations.

Handling Negations
In this study, we approached negation detection as a binary
classification problem—classify the observation entity into 2
predefined categories including “negated” and “non-negated.”
We developed a BERT-based classifier for negation detection.
In our system, we performed the negation detection for each
observation entity and then integrated the results into relations.
We only used the negation annotations from the challenge data
set and did not use any external resources.

Assessing the Living Status Scores
For the relations between “family member—living status,” the
participants were required to assess the living status using scores
of 0, 2, or 4, where 0 indicates not alive, 2 indicates alive but
not healthy, and 4 indicates alive and healthy. We approached
this task as a classification task—to categorize a living status
entity into one of 3 score categories (ie, 0, 2, and 4). We
developed a BERT-based classifier to classify each living status
entity into a category according to its context.

Deep Learning Models

LSTM-CRFs
In this study, we adopted an LSTM-CRFs architecture proposed
by Lample et al [25]. The model has 2 bidirectional LSTM
layers: one for learning representations at the character level
and the other for learning those at the word level. The model
utilizes a CRFs layer to decode the LSTM hidden states to BIO
tags. We screened 4 different word embeddings following a
similar procedure reported in our previous study [46] and found
that the Common Crawl embeddings—released by Facebook
and trained using the fastText on the Common Crawl data set
[47]—achieved better performance compared to other
embeddings on a validation data set. Thus, we used the Common
Crawl embeddings for all LSTM-CRFs models.

BERT
The BERT model is a multilayer transformer encoder model
implemented using the self-attention mechanism [48], which is
pretrained by combining the masked language modeling method
and the next sentence prediction task. BERT has 2 versions

featuring different model sizes, including a BASE version with
12 transformer layers and 110 million parameters, and a LARGE
version with 24 transformer layers and 340 million parameters
[26]. There are 2 steps to apply BERT for various downstream
NLP, including (1) pretraining a BERT model using large
unlabeled corpora and (2) fine-tuning the pretrained model using
task-specific annotated corpora. In this study, we adopted the
general pretrained BERT-LARGE model and fine-tuned it
individually for each subtask (ie, concept extraction and relation
identification) using the annotated data set developed in this
challenge. We denoted the BERT-based NER model as
BERT-ner, and the BERT-based family member attributes (ie,
family role, side of family, negation, living status) classification
module as BERT-cls and relation extraction module as
BERT-rel.

Figure 3 illustrates the fine-tuning procedure for BERT. For
token Toki, its input embedding and contextual representation
are denoted as Embi and Ti. The [CLS] and [SEP] are 2 special
symbols designed to format the input sequences. In this study,
we also introduced a pair of entity marker including [S] and [E]
to differentiate the target entity from other entities in the same
sentence, where [S] indicates the start position and [E] indicates
the end position. For NER (Figure 3A), the input for BERT
model is a sequence of tokens, and the output is a sequence of
distributed representation. Then, we used a linear layer to
calculate a score for each BIO tag. Based on the entities, we
developed classifiers to determine related attributes (Figure 3B).
To distinguish between the target entity and other entities in the
same sentence, we inserted entity markers (ie, [S] and [E]) in
front of and after the target entity. For example, the input
sequenced in Figure 3B contains the target entity (ie, Tok1 and
Tok2) surrounded by the entity markers and other entities (eg,
Tokn). Then, we concatenated the representations corresponding
to the [CLS] and [S] tokens and calculated a score for each
predefined class label using a linear layer. For relation
identification (Figure 3C), we determined the relation type based
on the contextual information of 2 concepts in a relation.
Therefore, the input consisted of 2 sentences linked by the
special token [SEP], where each sentence contains 1 of the 2
entities in the relation. We used 2 sets of entity markers (ie,
[S1], [E1], and [S2], [E2]) to label the entities. If the 2 entities
of a relation are in the same sentence, then the 2 model-input
sentences are the same but with different entity markers. To
determine the relation category, we concatenated the
representations from [CLS] and 2 start position entity makers
([S1] and [S2]) and used a linear layer to calculate a score for
each predefined relation type.
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Figure 3. Illustration of BERT models for (A) NER, (B) family member attributes (including side and role of family members, negation of observations,
and living scores) classification, and (C) relation extraction. BERT: bidirectional encoder representations from transformers; NER: named entity
recognition.

Experiments and Evaluations
In this study, we reused the LSTM-CRFs model developed in
our previous study [49] and implemented the BERT-based
models on top of the Transformers library [50] implemented in
PyTorch [51]. We used the following parameters to initialize
the LSTM-CRFs: the character embedding dimension was 25,
the word embedding dimension was 100, the character-level

bidirectional LSTM layer dimension was 25, the word-level
bidirectional LSTM layer was 100 with a dropout probability
of 0.5, the learning rate was fixed at 0.005, and the stochastic
gradient descending applied a gradient clapping at [–5.0, 5.0].
The character embeddings were randomly initialized and the
word embeddings were initiated using embeddings from fastText
[47] (ie, containing 2 million word vectors trained on Common
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Crawl). We initialized all BERT-based models using the
BERT-LARGE pretrained on the general English corpus and
fine-tuned them with the default model parameter settings. To
train NER models, we randomly (using random seeds for
reproducibility) split the original training set (99 notes) into a
short training set of 89 notes and a development set of 10 notes.
The best NER models were selected according to the
performance on the development set. We optimized 2

hyperparameters, including the number of epochs and batch
size, via fivefold cross-validation. Table 2 summarizes the
optimized hyperparameters. We conducted all experiments using
2 NVIDIA P6000 graphics processing units (GPUs). We used
the official evaluation script provided by the 2019 n2c2 open
shared task organizers to calculate the evaluation scores on the
test set. Evaluation metrics as micro-averaged precision, recall,
and F1 score were used for both subtask 1 and subtask 2.

Table 2. The optimized hyperparameters of BERT-based models for various tasks.

Learning rateBatch sizeNumber of epochsPretrained modelTask

1.00 × 10–05430BERTb-LARGENERa

1.00 × 10–0585BERT-LARGENegation classification

1.00 × 10–05410BERT-LARGESide of family classification

1.00 × 10–0585BERT-LARGERole of family classification

1.00 × 10–0586BERT-LARGELiving status classification

2.00 × 10–051612BERT-LARGERelation identification

aNER: named entity recognition.
bBERT: bidirectional encoder representations from transformers.

Results

Table 3 compares our 4 systems for conception extraction and
relation identification. Our best submission during the original
challenge (LSTM-CRFs-EN + BERT-cls +BERT-rel) achieved
F1 scores of 0.7944 and 0.6544 for subtask 1 and subtask 2,
respectively, which is the third best system of this challenge
among 17 participants. After the challenge, we further explored
the BERT model for NER and the combination of

BERT-ner-EN, BERT-cls, and BERT-rel achieved better F1
scores of 0.8249 and 0.6775 for the 2 subtasks, respectively.
Compared to our best system developed during the challenge
(LSTM-CRFs-EN + BERT-cls + BERT-rel), the new system
(BERT-ner-EN + BERT-cls + BERT-rel) improved the F1
scores by 0.0305 and 0.0235 for the 2 subtasks, respectively.
Our best relation identification performance was comparable
to the best result reported in this challenge (0.6775 from us
versus 0.6810 reported in this challenge).

Table 3. The micro-average performances for concept extraction and relation identification.a

Subtask 2 (relation identification)Subtask 1 (concept extraction)Models

F1 scoreRecallPrecisionF1 scoreRecallPrecision

0.62660.54650.73430.79200.80870.7760LSTMa-CRFsb + BERTc-cls + BERT-rel

0.65440.61840.69950.79440.79200.7969LSTM-CRFs-EN + BERT-cls + BERT-reld

0.66670.6252e0.71400.80830.81050.8060BERT-ner + BERT-cls + BERT-rel

0.6775e0.62330.7421e0.8249e0.8198e0.8301eBERT-ner-EN + BERT-cls + BERT-rel

aLSTM: long short-term memory.
bCRFs: conditional random fields.
cBERT: bidirectional encoder representations from transformers.
dOur best system developed during the challenge.
eThe best performances.

Table 4 compares the detailed performance of LSTM-CRFs and
BERT-ner for FH extraction. Compared with LSTM-CRFs, the
BERT-ner model achieved a remarkably higher F1 score for
the observation concepts (0.8094 for BERT-ner versus 0.7833
for LSTM-CRFs), but marginally lower performance for the
family member concepts (0.8066 for BERT-ner versus 0.8069

for LSTM-CRFs). Table 4 also demonstrated that our ensemble
strategy improved the performance of FH extraction. For
example, the BERT-ner-EN, which was ensembled from 5
different BERT-ner models, outperformed the single BERT-ner
model by about 2% for family members and about 1.5% for
observations.
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Table 4. A comparison of LSTM-CRFs and BERT for subtask 1 (concept extraction).

F1 scoreRecallPrecisionModel and concept

LSTM-CRFsa,b

0.80690.76860.8480Family member

0.78330.83420.7382Observation

LSTM-CRFs-EN

0.81490.78680.8451Family member

0.78170.79530.7685Observation

BERTc-ner

0.80660.80720.8059Family member

0.80940.81270.8061Observation

BERT-ner-EN

0.82610.82290.8294Family member

0.82410.81780.8306Observation

aLSTM: long short-term memory.
bCRFs: conditional random fields.
cBERT: bidirectional encoder representations from transformers.

Table 5 compares the performance of relation identification for
each relation category. Similar to the concept extraction results,
the BERT-ner-EN + BERT-cls + BERT-rel system achieved
the best F1 scores of 0.6821 and 0.6760 for the “family

member—living status” and “family member—observation”
relations, respectively. Compared to the LSTM-CRFs, the
BERT-ner–based systems achieved better recalls.

Table 5. The category-level performances for subtask 2 (relation identification).

F1RecallPrecisionModel and relation

LSTM-CRFsa,b + BERTc-cls + BERT-rel

0.65540.61320.7039Family member—living status

0.61740.52690.7452Family member—observation

LSTM-CRFs-EN + BERT-cls + BERT-rel

0.67240.66760.6773Family member—living status

0.64870.59930.7071Family member—observation

BERT-ner + BERT-cls + BERT-rel

0.66570.67340.6583Family member—living status

0.66700.61110.7341Family member—observation

BERT-ner-EN + BERT-cls + BERT-rel

0.68210.67340.6912Family member—living status

0.67600.60860.7603Family member—observation

aLSTM: long short-term memory.
bCRFs: conditional random fields.
cBERT: bidirectional encoder representations from transformers.

Discussion

Overview
Patients’ FH is a critical risk factor associated with numerous
diseases. Clinical NLP systems that automatically extract FH
from clinical narrative are needed for many clinical studies and
applications. The 2019 n2c2 organized shared tasks to assess

current NLP methods for FH information extraction from
clinical narratives. We participated in both subtasks and our
system (LSTM-CRFs-EN + BERT-cls + BERT-rel) achieved
the third best performance (F1 of 0.6544) among all the 21
submitted systems from 17 teams that participated in subtask
2. After the challenge, we further explored the BERT models
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for the concept extraction and improved our system in both
concept extraction and relation identification.

Principal Findings
We observed that the BERT-ner model achieved both better
precision (0.8060 versus 0.7760) and recall (0.8105 versus
0.8087) for clinical concept extraction compared to the
LSTM-CRFs, which is consistent with a recent study by Si et
al [52]. We also noticed that the single BERT-ner mode even
achieved a higher F1 score of 0.8083 than the ensembled
LSTM-CRFs model (LSTM-CRFs-EN with F1 score of 0.7944).
Ensemble is an effective strategy to further improve the
performance of NER. For example, the ensembled BERT model
(ie, BERT-ner-EN, which was ensembled from 5 individual
BERT-ner models) improved the concept extraction
performance to 0.8249, compared to the single BERT model
(F1 score of 0.8083). The performance improvement of the
ensembled model was mainly in precision, suggesting that the
ensembled models may reduce the classification errors in NER.
However, further studies should examine whether our
observation is related to the size of training corpus (relatively
small, only 99 notes).

Most of the previous studies applied rule-based solutions to
determine the family roles and family sides [34]. In this study,
we adopted a pure machine learning–based solution. The
experimental results showed that the BERT-based classifiers
were feasible to determine the family roles, family sides,
negation of observations, and living status scores. Another
advantage of our method is that machine learning–based models
generally have a better generalizability than rule-based systems
and are easy to scale up. FH information has many variations
from one patient to another, which makes the development of
rules time-consuming and expensive.

In our system, we only used the sentences containing the
concepts to classify the family member attributes. We also
examined a strategy to include both the proceeding and
following sentences. However, the experimental results based
on the fivefold cross-validation on the training set showed that
adding the context information did not improve the performance.
One potential reason may be that most of the key information
for classifying the family member attributes is located in the
same sentence where the concepts (ie, family member or
observation) are located. Besides, there might be potential noises
brought in when including the context sentences.

A previous study [53] examined various input encoding and
output representation of using BERT for relation extraction,

and concluded that using representations aggregated from the
start position entity markers (eg, [S1] and [S2] in Figure 3C)
was the best practice. In this study, we re-evaluated 3 types of
BERT output representations, including (1) the representation
of the [CLS] only, (2) the representations aggregated from the
start position entity markers, and (3) the representations
aggregated from the [CLS] and the start position entity markers.
Our results showed that option (3) led to a remarkably higher
averaged F1 score (0.8975) compared to the other 2
representations (0.8851 and 0.8904). A possible reason is that
the representations captured in the special token [CLS] and the
representations of the start position markers contain contextual
information that is complement to each other. Further studies
are needed to continue examining more efficient methods for
encodings and representations.

This study has limitations. First, there are limited clinical
corpora for FH-related information extraction as annotating
clinical notes is expensive and time-consuming. A potential
solution is to use data augmentation techniques such as
generative adversarial networks, which have been applied for
medical imaging data [54,55]. There are preliminary research
works demonstrating that generative adversarial networks could
be utilized to synthesize clinical text [56]. Second, our system
is a 2-stage pipeline where the errors generated in the NER will
be propagated to relation extraction. We will explore potential
solutions such as joint learning algorithms to alleviate this issue
in our future work.

Error Analysis
Table 6 shows the confusion matrix generated for the concept
extraction (subtask 1) based on our best NER model (ie,
BERT-ner-EN). The confusion matrix showed that our system
could efficiently identify family member entities. However, it
is challenging for our system to differentiate the nonconcept
terms for both family members and observations. For concept
extraction, our system had relatively lower performances for
“parent,” “grandparent,” “child,” and “siblings.” One possible
reason is that the training set contains limited annotations of
these entities. For example, the “parent” entity only appeared
once and the “grandparent” entities appeared 6 times in the
training data set. We also found that our system identified some
observations not annotated in the test set. For example, in the
sentence “The father also had a history of vascular surgery, a
long history of smoking, and has had hip replacement,” our
system extracted observations of “vascular surgery,” “smoking,”
and “hip replacement,” which were annotated in the challenge
corpus.
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Table 6. The confusion matrix table for the NER (subtask 1).a

Model predictionEntity type

NCdOBcFMb

1130525FM

1787990OB

N/Ae163108NC

aFM, OB, and NC are considered gold standard.
bFM: family members.
cOB: observations.
dNC: not a concept.
eN/A: not applicable.

Conclusions
Extracting patients’ FH information from clinical narratives is
a challenging NLP task. This study demonstrated the efficiency
of deep learning–based NLP models for extraction of FH. Our

system and pretrained models can be accessed at [57]. We
believe our system could help other researchers to extract and
leverage patient’s FH documented in clinical narratives in their
studies.
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