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Abstract

Background: Electronic health records store large amounts of patient clinical data. Despite efforts to structure patient data,
clinical notes containing rich patient information remain stored as free text, greatly limiting its exploitation. This includes family
history, which is highly relevant for applications such as diagnosis and prognosis.

Objective: This study aims to develop automatic strategies for annotating family history information in clinical notes, focusing
not only on the extraction of relevant entities such as family members and disease mentions but also on the extraction of relations
between the identified entities.

Methods: This study extends a previous contribution for the 2019 track on family history extraction from national natural
language processing clinical challenges by improving a previously developed rule-based engine, using deep learning (DL)
approaches for the extraction of entities from clinical notes, and combining both approaches in a hybrid end-to-end system capable
of successfully extracting family member and observation entities and the relations between those entities. Furthermore, this
study analyzes the impact of factors such as the use of external resources and different types of embeddings in the performance
of DL models.

Results: The approaches developed were evaluated in a first task regarding entity extraction and in a second task concerning
relation extraction. The proposed DL approach improved observation extraction, obtaining F1 scores of 0.8688 and 0.7907 in the
training and test sets, respectively. However, DL approaches have limitations in the extraction of family members. The rule-based
engine was adjusted to have higher generalizing capability and achieved family member extraction F1 scores of 0.8823 and 0.8092
in the training and test sets, respectively. The resulting hybrid system obtained F1 scores of 0.8743 and 0.7979 in the training and
test sets, respectively. For the second task, the original evaluator was adjusted to perform a more exact evaluation than the original
one, and the hybrid system obtained F1 scores of 0.6480 and 0.5082 in the training and test sets, respectively.

Conclusions: We evaluated the impact of several factors on the performance of DL models, and we present an end-to-end
system for extracting family history information from clinical notes, which can help in the structuring and reuse of this type of
information. The final hybrid solution is provided in a publicly available code repository.
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Introduction

Background
For many years, the rapid progress in technology has continually
pushed the field of medicine forward, striving for the
improvement of health care quality. Novel tools provide new
possibilities, such as access to new types of information (eg,
medical imaging and genome sequencing) and larger amounts
of data, along with associated challenges such as how to store
and organize the resulting vast amounts of multimodal medical
information. The electronic health record (EHR) solves this by
providing an electronic infrastructure for storing structured and
unstructured information generated throughout time [1], thus
maintaining the patient trajectories by maintaining a longitudinal
view over the medical history of patients. Such data can then
be explored for applications such as cohort selection [2] or to
provide medical entities with clinical decision support [3-5].

Despite being harder to explore, unstructured data can contain
relevant information that is not obtainable elsewhere [6], which
is particularly evident in clinical notes, where medical narratives
allow for more accurate and complete descriptions of medical
situations [7]. As there is significant interest in exploring and
reusing information from clinical notes, a possible approach is
to process free text and extract relevant information that can be
stored as structured data [7]. This process has historically been
manual, consisting of having clinical experts review clinical
notes in search for relevant information. However, heavy
reliance on a manual component greatly limits the potential and
usability of this process as it cannot scale with the increasing
volumes of information [5].

Another possible solution for these cost and scalability issues
is the development of automatic systems capable of annotating
and extracting relevant content from clinical notes, which has
led to greater research efforts in the field of clinical natural
language processing (NLP) in the past years. These efforts have
led to the creation of international challenges that provide
appropriate data sets and enable performance benchmarking of
new methods and solutions. The importance of these challenges
is widely acknowledged because of the current lack of adequate
resources [8], which impedes the development of more advanced
solutions [5]. As such, despite the acknowledged interest and
value of automated solutions, their development is very complex
as it must cope with the challenging nature of working with
clinical free text and with the lack of publicly available
resources.

Owing to the flexible nature of clinical notes, developed
solutions can target the extraction of different types of
information from clinical narratives. This process of extracting
information is usually split in named entity recognition (NER),
named entity normalization (NEN), and relation extraction (RE).
NER has the objective of detecting entities of interest in the
text, such as diseases or family relatives, whereas NEN is
responsible for mapping these entities to normalized concepts
in coding standards, such as systematized nomenclature of
medicine clinical terms [9] or RxNorm [10] in the case of
medical text. RE is focused on detecting relationships between
the entities (eg, detecting connections between drugs and adverse

drug events) and is very important as it allows the leap from
concept extraction to concept understanding [5].

This study focuses on the extraction of the family history
component from clinical notes, which can provide insight into
disease susceptibility and is important for the prevention,
diagnosis, and treatment of specific diseases [11,12]. A
demonstration example is the work by Wang et al [13] in which
they used a text corpus containing 3 million clinical notes to
analyze the patient family history, focusing on family members,
medical problems, and their associations, and discovered (1)
considerable compliance between positive and negative medical
issues mentioned in the reports considering the diagnosis and
family history and (2) the existence of medical problems a
decade before the diagnosis dates of the determined problem.
This study extends a previous contribution [14] by exploring
deep learning (DL) approaches for the detection of family
history entities in clinical notes and integrating this component
in an improved version of the previously developed solution,
creating a hybrid system for extracting entities and relations
from family history information. The final hybrid solution is
provided in a publicly available code repository [15].

The main contributions of this study are as follows:

• This study proposes a strategy to automatically annotate
large amounts of EHRs, allowing quick detection of
comorbidities with family relations.

• We evaluate the impact of using different DL architectures
and embeddings in clinical information extraction.

• We improved the family history information extraction
pipeline by combining automatic concept annotations with
DL and rule-based architectures to discover entities and
relations in the clinical notes.

Related Work
This study is focused on performing NER on clinical notes to
extract family history information, namely, family members
and observations such as disease mentions, and on detecting
associations between detected entities. Correctly detecting
family relatives in clinical notes is far from a straightforward
task as the following situations must be considered: (1) notes
frequently have cascaded information regarding family relatives
(eg, “The patient’s grandmother had cancer in her late 60s [she
had a cousin who died from cancer] but his grandfather has no
history of cancer.”); (2) notes can mention family members with
no blood relations, such as the partners of the patients and their
relatives; or (3) the relationship of the family member may not
be directly expressed. The existence of such situations where
the relationship is complex to understand because of the
numerous kinship degrees can eventually lead computational
systems to lose context, failing to correctly determine the
relationship between the detected entity and the patient. In
contrast, disease observations can also be troublesome to detect,
as, for instance, they can be mentioned as a sequence of several
complex terms or even by disjoint mentions.

Existing solutions typically follow rule-based or machine
learning-based approaches; however, it is also possible to
combine both approaches in hybrid systems. Furthermore, owing
to the reckoned potential of DL approaches in the medical field
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[16], recent years have shown the emergence of DL-based
solutions [5].

For many years, rule-based models were the preferred
architecture when developing solutions for extracting family
history information, supported by the rationale that, in theory,
a good set of rules can manage good concept coverage, thus
producing excellent results. Goryachev et al [17] proposed a
rule-based algorithm and demonstrated the success of this kind
of architecture, whereas Friedlin et al [18] used a rule-based
model to extract and code clinical data from clinical reports.

With the growing interest in the development of NLP solutions,
generic frameworks such as unstructured information
management application [19] and general architecture for text
engineering [20] were created to provide support in the
development of information extraction systems, from which
popular solutions such as clinical text analysis and knowledge
extraction system were derived [21]. Despite aiming to offer
modular flexible processing workflows that can be reused, these
frameworks have the drawback of requiring a deep
understanding of the tools given their high-level abstractions.

In contrast with the previous frameworks, toolkits were
developed with the goal of providing a set of stand-alone tools
that can be easily combined in a processing pipeline. Examples
of popular toolkits are the Natural Language Toolkit (NLTK)
[22], Apache OpenNLP [23], Stanford CoreNLP [24], and
Clinical Language Annotation, Modelling and Processing [25].
Despite the interest in these toolkits, they were developed
considering general text instead of biomedical or clinical text,
which commonly require specialized tools. Neji was developed
to tackle this limitation, providing a modular architecture that
integrates specialized modules for biomedical NLP. Thus, it
combines the benefits of general frameworks and toolkits with
those of specialized tools [26]. These modules can apply
different methodologies, such as rule-based models, dictionary
matching, and machine learning models. Moreover, Neji
provides configurable web services that enable easy integration
of its annotation capabilities in external tools [27].

More recently, with the success of DL approaches in text
processing problems, DL is being adopted in solutions designed
for biomedical and clinical text. One of the key areas where DL
has impacted is representation learning, for instance, with the
creation of dense representations such as word embeddings.
These can be fine-tuned to specific domains and can be easily
integrated in other learning algorithms, helping them achieve
improved performances in NLP tasks [28]. BioWordVec is an
example of publicly available biomedical and clinical word
embeddings [29]. However, these embeddings still have the
limitation of not considering context, which results in the same
word having the same representation when used in completely
different contexts (eg, suits in your offer suits our needs and he
always wears suits). This was addressed by the development
of contextual embeddings such as Embeddings from Language
Models [30] and bidirectional encoder representations from
transformers (BERT) [31]. These embeddings can also be

fine-tuned to specific domains, resulting in the creation of
variations such as BioBERT [32] and clinicalBERT [33].

Embeddings are widely used in DL solutions because the
resulting dense representations can be easily explored by various
DL model architectures. One particular architecture that achieves
state-of-the-art results in biomedical and clinical text problems
such as NER is the bidirectional long short-term memory
(BiLSTM) network coupled with conditional random fields
(CRF). Dai et al [34] compared the use of word embeddings
(word2vec) and BERT for NER in clinical notes, with a
BiLSTM-CRF model, and demonstrated better performance
when using BERT to represent clinical text. Li et al [35] used
character embeddings, medical dictionaries, and part-of-speech
features in a BiLSTM-Att-CRF model, which consists of a
BiLSTM with an attention layer bridging the BiLSTM and CRF.
This architecture was used to perform clinical NER in EHR
notes, and it obtained interesting results, demonstrating the
potential of attention mechanisms [35]. More recently, Shi et
al [36] used a deep joint learning architecture based on
BiLSTMs with word and part-of-speech embeddings for
extracting family history information, such as entities and
relations from clinical text. Although the demonstrated success
of DL approaches at extracting entities and relations from
clinical notes, particularly when using BiLSTM-CRF derived
architectures, has led to a rapid growth in such solutions, these
frequently fail to provide system implementations that hinder
their adoption and reproducibility.

Methods

Data Set
This work was originally developed under the scope of the 2019
national NLP clinical challenges (n2c2)/open health NLP track
on family history extraction, which had the objective of
extracting family history information from EHR clinical notes
[37]. This challenge track was split into 2 subtasks: the first one
being oriented to named entities and the second one focusing
on extracting relations between those entities. More detailed
descriptions of each subtask are provided in this section. The
second subtask directly depended on the first one, as the
challenge had the objective of evaluating developed systems as
end-to-end family history summarization solutions.

Training and test data sets were provided by challenge
organizers. The training data set consisted of 99 unannotated
clinical notes, manual annotations of entities and relations for
each clinical note, and a gold standard file with eligible entities
and relations for the full training set; the test data set consisted
of 117 unannotated clinical notes (a gold standard file with
eligible entities and relations for the full test set was only
provided after the challenge terminated). Both gold standard
files contained the annotations for each document without
providing any additional information (eg, annotation span or
respective line in document). More detailed statistics of data
sets are provided in Table 1.
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Table 1. Detailed data set statistics.

TotalTestTrainingType

216 (100)117 (54.2)99 (45.8)Clinical notes, n (%)

Annotated entities, n (%)

1250 (100)583 (46.6)667 (53.4)Family member

1836 (100)906 (49.4)930 (50.7)Observation

Annotated relations, n (%)

725 (100)349 (48.1)376 (51.9)Family member: living status

1495 (100)755 (50.50)740 (49.50)Family member: observation

The first subtask had the objective of identifying family member
entities and disease mentions in the clinical notes. When
extracting family member entities, it was required to extract
both the family relationship (eg, son, father, or uncle) and the
family side (eg, maternal). The list of relationships considered
was provided by organizers and comprised the following: father,
mother, parent, brother, sister, son, daughter, child, grandfather,
grandmother, grandparent, cousin, sibling, uncle, and aunt. Any
relationship outside the provided list (eg, nephew or great
grandparent) should be considered invalid. Moreover, clinical
notes could contain family member mentions related to the
patient and to the patient’s partner. As the challenge was focused
on the patient, all partner-associated family relationships should
be discarded.

The second subtask focused on extracting relations between the
previously extracted entities and considered 2 types of relations.
The first type involved detecting living status mentions, which

should be used to assign a living status score to the respective
family member entity. This living status score was computed
by multiplying the properties of being alive and healthy, where
each property could have a value from 0 to 2 (0: no, 1: not
applicable, and 2: yes). The second type of relations involved
assigning relations between detected disease mentions and the
corresponding family members, taking into consideration if the
observation was negated or not (eg, nonnegated: the patient has
diabetes and negated: there are no reports of cancer).

Shortest Dependency Path and Coreference Resolution
The first approach, which was originally used in the challenge
submission, combined handcrafted rules and dictionary matching
with dependency parsing and coreference resolution. First, a
preprocessing step based on Stanford CoreNLP dependency
parsing and coreference resolution annotators was applied to
all documents. Figure 1 illustrates the result of applying these
annotators to an example text fragment.

Figure 1. Illustrative example of dependency parsing and coreference resolution from Stanford CoreNLP. amod: adjectival modifier; cop: copula;
coref: coreference; det: determiner; DT: determiner; JJ: adjective; nmod: nominal modifier; NN: noun; nsubj: nominal subject, obj: object; PRP$:
possessive pronoun; VBZ: verb third person singular present.

For the first subtask, the process of entity extraction was divided
into 2 subproblems targeting family members and disease
mention extraction separately. To extract family member
entities, a lexicon was compiled that included all family
relationships considered for the challenge, expanded with lexical
variants and plural forms, along with others identified by
examining an extended family tree, such as partner, great
grandmother, nephew, and half-uncle. Although the latter family
members should not be considered in the final evaluation, their
inclusion was necessary at this stage to avoid erroneous
associations with other family members during the following
step.

The next step consisted of coreference resolution, for which a
coreference graph was created to add the corresponding family
member annotations to coreferencing pronouns. Considering
the example presented in Figure 1, the family member
annotation assigned to the mention wife is carried over to the

pronoun her based on the coreference relation. In the example,
this also means that the maternal aunt mention gets associated
to the wife family member. In addition, a process of family
relationship resolution was performed by applying a set of rules
to map extracted mentions to the corresponding family link,
with the resulting family link inheriting the family side if it had
been extracted. In the same example sentence, the aunt’s son is
mapped to cousin, and this carries over the family side mention,
leading to the final annotation of (wife’s) maternal cousin.
Finally, the resulting list of extracted family members was
filtered to remove family links other than those targeted in the
challenge.

The process of extracting disease mentions consisted of a
simpler pipeline, in which a dictionary was first compiled from
the unified medical language system Metathesaurus [38]. This
dictionary consisted of a filtered version of the Metathesaurus,
containing entries only from the Anatomy and Disorders
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semantic groups, and was used to configure a Neji annotation
service. Once the service was set up, all documents were
annotated through the web service and a list of extracted
mentions per document was created. As this annotation
mechanism could introduce many irrelevant entries (false
positives) resulting in a lower precision, a false positive list was
created by automatically annotating the corpus provided in the
SemEval task on Analysis of Clinical Text [39] and identifying
false positives against the gold standard annotation. The
resulting false positive list was then used to filter the disease
mentions extracted in the n2c2 subtask.

For the second subtask, the objective was to extract 2 types of
relations for the previously obtained entities. First, a small
lexicon regarding living status was extracted from the training
corpus, resulting in the following list: alive, alive and well,
dead, deceased, died, doing well, generally healthy, good
general health, good health, healthy, living, living and well,
otherwise healthy, passed away, stillborn, well, and without
problems. This lexicon was used to extract living status mentions
from the documents, which were then mapped into an integer
value using the scale previously described in the data set
subsection. Finally, the dependency graph created in the first
subtask was used to extract the shortest dependency path that
associated each disease mention/living status with a family
member. This approach disregarded the negation component in
observations; therefore, all disease-family member relations
were considered nonnegated.

Rule-Based Engine
The second approach used in the official submissions for the
n2c2 challenge track followed a different strategy and consisted
of a rule-based engine. This solution involved the creation of
rules for family member recognition and dictionaries for
observation extraction and processed both subtasks as an
end-to-end system outputting the required submission files for
both subtasks. After the challenge contribution, this approach
was adapted and improved as described further in this section.

The engine processed each sentence in a document sequentially,
aiming to link sentences when one of the system processing
flows did not detect family members in a sentence. Therefore,
using this approach, we created a system that tried to answer
the following 3 questions:

1. Who is the subject of the sentence?
2. Which observations are in the sentence?
3. Is the subject alive?

Although answering these 3 questions does not entirely solve
the proposed problem, managing to correctly answer them
simplifies the process of establishing relations between extracted
concepts. The first step in the processing flow splits the
document into sentences and removes a considerable set of
words. This set was composed of the most common English
verbs and the most common conjugations, several adjectives,
and names. This procedure preserved relevant words and
reduced the distance between words that allowed the correct
identification of family members and their respective family
side. For instance, for a rule-based system, it is easier to find
the family member cousin in the cleaned sentence patient’s

uncle son than in the original sentence the patients’ uncle has
one son. In this example, this could be erroneously processed
as a sentence where the primary subject is the patient’s uncle,
instead of the cousin.

After cleaning the sentences, the system applied rules that enable
the identification of the subject in the most trivial cases, using
exact matching. When no subject was identified, the system
processed this using another component, with more complex
rules. In this case, rules have more properties such as a set of
words that should exist before and after the detected family
member, and if this should be discarded or not. These properties
enable the generation of very precise rules, which, if used, can
increase the potential of the system for the specifications of the
challenge at the cost of reducing its reuse in other scenarios (ie,
trade-off specificity-generalizing capability).

When no family member was detected with the previous rules,
the system executed another component that tried to identify if
the sentence currently being processed was related to the
previous sentence. If the sentence being processed was the first
sentence in the document, the system considered by default that
it was related to the patient. Finally, the system ran a last
component, which was always executed, to discover whether
the sentence was related to the patient or the patient’s partner.
If the sentence was associated with the partner, the system
discarded the family member entity as required by the challenge
guidelines.

Observation extraction consisted of a simpler process than that
of family member detection. However, it followed the same
principles and used the initial preprocessing for cleaning a set
of words. For the challenge, we created a vocabulary based on
the observations annotated in the training set and used it in the
test set. Simultaneously, the system applied rules to map the
detected observation to the identified subject in the sentence.
When it was not possible to identify a relation in a sentence,
the system did not discard the extracted observations as they
were still important for the first subtask.

Living status identification was performed using 2 sets of rules:
one targeting deceased subjects and the other targeting healthy
and alive subjects. Owing to time constraints, we did not try to
identify cases where subjects were alive but not healthy because
based on a statistical analysis, mentions for this group of entries
represented only 12.2% (46/376) of the living status entries in
the gold standard of the training set.

The rule-based engine pipeline processes documents individually
and sentence by sentence following a sequential flow. In this
pipeline, the detected words have different levels of importance.
For instance, terms like partner and patient coexisting in the
same sentences are weighted differently. These weights were
considered by the complementary rules during subject
identification in a sentence. Disambiguation was performed
using a set of verbs and specific words in situations where it
was not clear whether the sentence was related to the patient,
the patient's relatives, the patient’s partner, or the partner's
relatives. Figure 2 shows an excerpt of a clinical note that
illustrates clearly how the system processes original sentences
and what is the result of this processing.

JMIR Med Inform 2020 | vol. 8 | iss. 12 | e22898 | p. 5http://medinform.jmir.org/2020/12/e22898/
(page number not for citation purposes)

Silva et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 2. The 3 left concepts represent the main points that the system tries to identify in the text on the right. Highlighted on the right are relevant
words for the system to be able to make decisions. Auxiliary words that help identify the subject are represented in green. The words used to identify
if the relatives are related to the patient or the partner are highlighted in purple. Blue represents annotated family members, and yellow is used for
diseases. Red is used to highlight words concerning subject living status.

This engine managed good results in the annotation of the family
members of the patient. However, the methodology used to
extract observations was not the best, regardless of possible
improvements to produce more accurate results. Therefore, in
a postchallenge contribution, we removed the components for
detecting observations and improved components responsible
for extracting the family members of the patient and their living
status. The living status component was reused with small
adjustments to be more generic and compatible with different
data sets, yet maintaining the same philosophy of trying only
to identify whether the patient is healthy and alive or dead.

The family members annotator was rebuilt following the initial
principles but without specific sets of rules that were generated
from the training set of the challenge (ie, to reduce overfitting).
The system pipeline is presented in a scheme (Figure 3)
representing the system pipeline and how components are
interconnected. This flow starts by trying to identify if the
subject in the sentence is the patient. If not identified, the
previously described complex rules are executed. The third
component performs exact matching over a clean sentence for
trivial annotations, and the output of these components is filtered
to disambiguate relations between family members and to
remove any relations that should be discarded (eg, to adhere to
challenge evaluation guidelines).

Figure 3. Overview of the processing workflow responsible for family members detection, for the rule-based engine.

In the complex rules component, rules follow a 6-part structure
where it is defined the keyword that triggers the rule (eg, father
or grandparent), and a list of terms that must appear before or
after this keyword are defined. Next, this structure contains a
flag that indicates whether the annotated relative must be
considered or discarded and indicates which is the detected
relative. As an example, if the keyword grandparents is detected
in the clean text, a rule can identify it as a paternal grandparent
if there exists the set of words patients and paternal, in this
order, preceding the keyword.

Regarding the disambiguation component, the system contains
a set of rules composed of 4 elements. These rules have 2
relatives and a mapping to the real relation of this subject to the
patient. As an example, if the component annotates and
processes the relatives father and brother, the system will map
them to paternal uncle and return the corrected annotation.
Besides the above-mentioned examples, the rule-based system
contains a more extensive list of rules that were used for the
processes of partial and exact match search.

JMIR Med Inform 2020 | vol. 8 | iss. 12 | e22898 | p. 6http://medinform.jmir.org/2020/12/e22898/
(page number not for citation purposes)

Silva et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


DL for Entity Extraction
Owing to the acknowledged potential and success of recent DL
solutions in clinical text problems, we extended the original
contribution with a novel approach based on DL. The
implementation of this solution considered several aspects,
namely:

• Following the trend in state-of-the-art solutions, we
explored the widely used attention-based BiLSTM-CRF
with the attention mechanism placed between the BiLSTM
and CRF layers [35] and compared it with a simple linear
classifier (with softmax) to evaluate the impact of model
architecture in downstream tasks.

• Similar to the approach presented by Yang et al [40], an
additional task regarding named entity discovery was

integrated with the objective of improving model perception
of unknown entities. This downstream task was set as
optional; thus, it is possible to train models for NER and
for NER and discovery.

• Different types of embeddings were explored for clinical
text representation to assess their impact on model
performance. BioWordVec word embeddings and
clinicalBERT contextual embeddings were used.

• To evaluate the impact of using external resources in model
development, Neji annotations were integrated into the
input to the model.

A schematized view of the model architecture used in this study
(attention-based BiLSTM-CRF) is presented in Figure 4.

Figure 4. Schematic diagram of the general deep learning model architecture used in this study, showing the 2 possible downstream tasks. The entity
recognition task is always executed, whereas the entity discovery task was added as optional to enable model development with and without it. BiLSTM:
bidirectional long short term memory; B-Obs: beginning observation; B-PFM: beginning patient family member; CRF: conditional random field; I-Obs:
inside observation; n: number of tokens in tokenized sentence; O: outside.

The named entity discovery downstream task consists of a binary
classification problem where the system classifies whether an
input token is part of an entity or not, disregarding the respective
class (ie, if it is an observation or family member mention).
This optional task was integrated with the objective of making
the model consider the trade-off between discovering more
entities and correctly identifying them. When enabled, it is
reflected in model training during backpropagation, with the

total loss resulting from a linear combination between the losses
of both downstream tasks.

Before training any model, it was necessary to preprocess the
data set. Text preprocessing began by splitting each document
in sentences using the sentence splitter from NLTK, followed
by tokenization. However, 2 different tokenization methods had
to be used because word and contextual embeddings take
different tokenizing approaches: the NLTK word tokenizer was

JMIR Med Inform 2020 | vol. 8 | iss. 12 | e22898 | p. 7http://medinform.jmir.org/2020/12/e22898/
(page number not for citation purposes)

Silva et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


used for word embeddings, and the BERT tokenizer was used
for contextual embeddings. The resulting tokenized sentences
were tagged using the BIO (beginning, inside, and outside)
tagging scheme. Finally, to assess the impact of using external
resources, all documents were annotated using Neji, which uses
standard vocabularies to detect entity mentions in the input text.
Neji annotations, consisting of text spans and entity classes,
were then mapped to the tokens in the corresponding sentence,
with each token being assigned an integer value similar to the
BIO scheme: 0 for tokens not annotated by Neji, 1 for the first

token in an annotation, and 2 for the following tokens. The
resulting lists of classes were normalized and concatenated to
the embedding representations and then forwarded through the
BiLSTM layer.

Model training and evaluation were performed using 5-fold
cross validation. The Adam optimizer was used, and models
were trained with early stopping (the patience parameter can
be adjusted). Each training epoch consisted of 100 iterations,
during which the training partition was randomly sampled. A
detailed list of hyperparameters is provided in Table 2.

Table 2. List of hyperparameters used for deep learning model training.

ValueHyperparameters

200Dimension of BioWordVec embeddings

768Dimension of clinicalBERTa embeddings

256BiLSTMb hidden size

2Number of attention heads

100Epochs

5Patience

100Iterations per epoch

0.5Dropout rate

0.001Learning rate

32Batch size

2Epochs for training BioWordVec embeddings

aclinicalBERT: clinical bidirectional encoder representations from transformers.
bBiLSTM: bidirectional long short-term memory.

In addition, because contextual embeddings provide additional
information when compared with word embeddings, we enabled
the training of word embeddings for a number of epochs at the
beginning of model training, after which the embedding layer
was frozen. Finally, as contextual embeddings can partition
words in various smaller tokens (eg, carcinoma is split in
car,##cin, and ##oma), the model could classify only parts of
a word as entities (eg, ##cin and ##oma classified as entities
and car as nonentity), resulting in incomplete entities and poor
results. Therefore, we added a reconstruction mechanism where
the full word is considered when only a part of it is classified
as an entity.

The DL approach obtained interesting results in observation
extraction but poor performance in family member detection,
which goes in contrast with the rule-based approach. As such,

we created a final hybrid solution that integrates the DL
approach as an observation extraction module in the rule-based
engine.

Results

The original contribution consisted of the development of 2
different approaches for entity and RE: one using shortest
dependency paths combined with coreference resolution and
another using a rule-based engine. These approaches were
validated in the n2c2 challenge on family history extraction.
Results obtained in the test data set (Table 3) showed that
overall, the first approach performed better in the entity
extraction subtask, whereas the rule-based approach performed
better in the RE subtask.
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Table 3. Original overall test results for the 2 national natural language processing clinical challenges subtasks; approach 1: shortest dependency path
and coreference resolution and approach 2: rule-based engine.

F1 scoreRecallPrecisionSubtasks and approach

Subtask 1

0.75100.88920.6501Approach 1

0.71800.62110.8507Approach 2

Subtask 2

0.51980.50050.5406Approach 1

0.62210.59920.6468Approach 2

As the results obtained during the challenge had margins for
improvement, and DL-based approaches dominated system
submissions in the challenge, we opted to experiment with DL
to improve the previous contribution. For the sake of simplicity,
tables presenting DL-related results only contain F1 score values.
However, more detailed results (including precision and recall
metrics) are presented in Multimedia Appendix 1.

For the DL-based approach, we started by testing a simple model
configuration composed of a linear layer and a softmax function,
using contextual embeddings for clinical text representation
(Table 4). This simple model served as a reference point to
assess the potential of using contextual embeddings to represent
clinical text.

Table 4. Cross validation results on the training data set (5-fold cross validation) for subtask 1 using a deep learning model composed of clinical
bidirectional encoder representations from transformers embeddings, a linear layer, and softmax function, with and without token reconstruction. For
simplicity purposes, only F1 scores are presented.

OverallObservationsFamily memberReconstruction approach and model configuration

No reconstruction

0.56470.66200.3071Baseline

0.52040.63970.1764Baseline+EDa

0.59240.70190.3088Baseline+Neji

0.55230.68410.1840Baseline+ED+Neji

Reconstruction

0.62410.74440.3071Baseline

0.57530.71420.1764Baseline+ED

0.64180.77120.3088Baseline+Neji

0.60700.75930.1840Baseline+ED+Neji

aED: entity discovery.

After testing with a simple architecture and evaluating the
impact of adding an entity discovery downstream task and
external resources to the model, we proceeded to the more
complex architecture of the attention-based BiLSTM-CRF,
which has been widely explored in the state of the art. This
architecture was first tested using contextual embeddings for
text representation to assess the impact of model capacity on
the resulting model performance (Table 5). After observing the

improvements resulting from the change in model architecture,
we then evaluated the influence of the embeddings used in the
final system results by training the same architecture with word
embeddings (Table 5). As word embeddings capture less
information than their contextual counterpart, we integrated the
possibility of fine-tuning word embeddings for a number of
epochs at the beginning of the training process, freezing the
embeddings after that point.
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Table 5. Cross validation results on the training data set (5-fold cross validation) for subtask 1 using the attention-based bidirectional long short-term
memory network coupled with conditional random fields with different types of embeddings. When using word embeddings, some configurations
enabled embedding fine-tuning for 2 epochs. For simplicity purposes, only F1 scores are presented.

OverallObservationsFamily memberEmbeddings type and model configuration

clinicalBERTa

0.71940.85960.4103Baseline

0.70230.84810.3788Baseline+EDb

0.69080.84780.3545Baseline+Neji

0.70810.86880.3485Baseline+ED+Neji

BioWordVec

0.73170.81400.5921Baseline

0.76270.82760.6553Baseline+ED

0.75130.82850.6166Baseline+ETc

0.75790.83670.6219Baseline+ED+ET

0.80360.85290.7222Baseline+ED+Neji

0.80920.85870.7266Baseline+ED+ET+Neji

aclinicalBERT: clinical bidirectional encoder representations from transformers.
bED: entity discovery.
cET: embeddings training.

Although the use of a more complex model architecture provided
promising results, there was a common trend among all used
models, which was the fact that these approaches performed
much better at extracting observations than family members.

Considering the fact that the rule-based engine struggled in
observation extraction while obtaining good performance in

family member extraction [14] and that it performed better in
the RE subtask than the shortest dependency path approach, we
created a hybrid system that complements the rule-based engine
by adding a DL module responsible for extracting disease
mentions. Table 6 presents the results obtained with the hybrid
solution in the test data set.

Table 6. Test results for both subtasks using the final hybrid solution: rule-based engine combined with deep learning module for observation extraction.

F1 scoreRecallPrecisionSubtask and annotation type

Subtask 1

0.80920.83070.7887Family members

0.79070.83320.7523Observations

0.79790.83220.7662Overall

Subtask 2

0.62480.64620.5964Living status

0.44990.43710.4635Observations

0.50820.50630.5100Overall

Discussion

Principal Findings

DL for Entity Extraction
Word embeddings have been the go-to method for text
representation in the past years. However, contextual
embeddings have made a big impact in recent years as they
consider positional information and context in the resulting
representation, which provides them with higher disambiguation
capability than that of word embeddings. As such, our initial

tests were performed using publicly available contextual
embeddings fine-tuned on biomedical and clinical corpora.

First, we analyzed the impact of reconstructing annotated tokens
on the resulting performance. Tests with a simple model (Table
4) showed improved performance in every model configuration
when using token reconstruction. However, it is noticeable that
only observation extraction benefited from this process, with
family member extraction maintaining its F1 scores. This is
explained by the fact that disease mentions can be very specific
and more complex when compared with family members, for
instance, the word mother is tokenized by the contextual
embedding tokenizers as mother, whereas carcinoma is
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tokenized as car, ##cin, and ##oma. Owing to this different
word decomposition, the DL model can classify only parts of
the word as an entity, resulting in incomplete entities. The
reconstruction procedure solved this issue by adding the missing
parts to these entities. Tests with the simple model also
demonstrated that the use of external resources such as Neji
annotations can help improve entity extraction, whereas adding
an additional downstream task regarding entity discovery led
to worse results with this model. Finally, it was clear that the
model managed to extract disease mentions from clinical notes
but failed in the detection of family members, leading to lower
overall F1 scores.

After performing the initial tests with a simple model and
verifying the importance of token reconstruction when using
contextual embeddings, we moved to the more complex
architecture of the attention-based BiLSTM-CRF (Table 5). To
be able to compare it with the previous model, we began by
testing the new model with contextual embeddings. Starting
with baseline models, it is possible to see that changing to the
higher capacity model increased F1 scores by approximately
0.1 across all categories. Next, it is possible to observe that
complementing the baseline model with the entity discovery
task and Neji resources resulted in worse overall F1 scores;
nonetheless, their combination led to an increase in the F1 score
for observation extraction (0.8596 to 0.8688).

Finally, to evaluate the influence of using different types of
embeddings to represent clinical text, we tested the same model
architecture with publicly available word embeddings fine-tuned
on biomedical and clinical corpora. Comparing baseline models,
word embeddings led to a higher overall performance (0.7317
vs 0.7194), lowering the observation extraction F1 score but
improving that of family member extraction. Adding extra
mechanisms such as external annotations and entity discovery
progressively increased model performance, with the final model
showing a much higher overall F1 score compared with the best
contextual embedding configuration (0.8092 vs 0.7194). This
higher overall performance was caused by a significant increase
in the family member F1 score (0.4103 to 0.7266), although
observation extraction decreased from 0.8688 to 0.8587 F1

score.

The previous results demonstrated that despite the increasing
focus on contextual embeddings, word embeddings can obtain
good results when using state-of-the-art model architectures. In
spite of its much better performance in family member
extraction, the word embedding model still obtained subpar
performance when compared with the rule-based engine in the
same task (0.7266 vs 0.8823). As the objective was to integrate
the best approach for observation extraction in the rule-based
engine, and contextual embeddings obtained the upper hand in
that aspect (0.8688 to 0.8587), we integrated the attention-based
BiLSTM-CRF with clinicalBERT embeddings in the hybrid
system.

Hybrid System
The original rule-based system was developed focusing on the
n2c2 challenge and contained sets of rules that were adjusted
to the training set. These rules were removed after the challenge,

whereas other existing rules were carefully adjusted to create a
better system that retained its generalizing capabilities.

With the objective of exploring the best developed approaches
for each component of the subtasks, we based the final system
on the improved rule-based engine and substituted its weaker
component (observation extraction) by a DL-based module.
The result was a hybrid system capable of extracting family
members and observations along with their respective relations.

As experienced in the original contribution, the results obtained
in the test set showed a decrease in performance (Table 6),
presenting an overall F1 score of 0.7979 in subtask 1 and an
overall F1 score of 0.5082 in subtask 2. For the first subtask,
the hybrid system showed an improvement from the previous
best result of 0.7510 overall F1 to 0.7979 (a 4.69 percentage
point increase). Regarding the RE subtask, although the overall
F1 score decreased from 0.6221 to 0.5082, there are 2 aspects
that should be considered. The first aspect is that adjustments
were made to the rule-based engine, which reduced the
specificity of its rules and impacted the challenge performance.
The second one is that results presented for subtask 2 were
obtained using a modified version of the evaluator. The adjusted
evaluator performs a more exact analysis of the system output,
resulting in lower performance values compared with the
original counterpart. A more detailed explanation of this last
aspect is provided in the following subsection of Evaluation
and Error Analysis.

Evaluation and Error Analysis
The annotations resulting from the approaches described were
evaluated using precision, recall, and F1 score metrics. The
items considered in subtask 1 evaluation were the patient family
members combined with their family side and the observations
in each document. Regarding family members, if the system
does not properly extract relatives’ family side, the results are
considered a false positive and a false negative. However, in
the case of observations, the evaluator was more flexible. More
specifically, if observations were partially annotated (eg, for
the observation diabetes type 2, the system extracted only
diabetes), the evaluator considered a true positive. This evaluator
was provided by the n2c2 organizers, and we maintained its
principles.

The evaluation process for the RE subtask considered (1) the
attribution of living status to family members, with correct
family side, and (2) the association of observations to family
members, including the indication of whether the observation
was negated or not. The original evaluator considers each family
member, observation, and negation status triple correctly
identified by a system. However, the evaluator considers it as
a true positive if only the observation or only the negation status
were correctly extracted for a given relative. This formulation
produces additional true positives, even for annotations that are
not completely correct. Therefore, we changed the behavior of
this evaluator to consider as true positive only when the system
correctly extracted the family member, the respective family
side, the (possibly partial) observation, and the observation
logical status, as we believe that the extraction is more useful
if it is completely correct. As an effect of this change, the F1
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scores of our challenge submission reduced approximately 10
percentage points when compared with the official results. For
instance, when using the new evaluator, approach 1 reduced its
F1 score from 0.5198 to 0.4431, whereas approach 2 decreased
its F1 score from 0.6221 to 0.4818.

To understand what affects our results, we randomly selected
some false positives and performed a manual analysis on the
training set. This analysis led to the detection of inconsistencies
in the gold standard annotations, which adversely affected the
performance of our system. For instance, in the same clinical
notes, 2 identical sentences regarding different family members
were annotated with different living statuses. Another example
was that at least 14 relatives without living status were annotated
when this was present in the gold standard raw data. This raw
data consists of the XML files supplied along with the clinical
notes in the training set, which were the base of the submission

gold standard file. In some of the clinical notes, we detected
observations that were present in the text but not annotated in
the gold standard and observations that were detected and
present in subtask 1 gold standard but not attributed to any
subject (despite having the family member also annotated in
the gold standard). Although we were not able to perform an
in-depth analysis and assess how much this affected our scores,
the identified inconsistencies had some impact on performance.

Limitations and Future Work
The resulting system was built to be more generic than the
previous version, which was used in the n2c2 challenge. Despite
the improvements made to the system, there are still some
limitations. Textbox 1 presents some sentences extracted from
the clinical notes that are representative examples of the system
limitations.

Textbox 1. Analyses of some of the false positives and false negatives classified by the proposed system. Family member annotations are emphasized
in the sentence using italics.

Child not applicable (N/A)

“Mr. Smith’s father suffers from cancer. He has several children through several other women...”

Daughter N/A

“The maternal/paternal great-aunt that has diabetes had several children. One of these individuals had a cancer of an unknown type and is deceased.
The second daughter is the individual with diabetes type 2...”

Parent N/A

“John’s parents are both reportedly healthy at age 63, but they have not seen a physician in approximately 30 years. John’s mother had one second
trimester miscarriage...”

Sibling N/A

“Saul’s father is a 39-year-old man who is a college graduate and who has a total of 5 siblings...”

Grandparents N/A

“While living in Texas, they lived with extended family, including Peter’s grandparents...”

The first example of these limitations concerns the establishment
of incorrect sentence connections in certain situations.
Depending on the scenario, in the first sentence in Textbox 1,
it could be annotated child or sibling, as it is influenced by the
order in which rules are applied during family members
detection. However, in this example, the pronoun he refers to
the patient’s father. Thus, the mentioned children are patient’s
half-siblings, a relative that should not be considered according
to the guidelines.

The problem in the second example is also related to sentence
linking. The system detects a daughter because it loses the
sentence context. In addition, the existence of maternal/paternal
before a relative led to inconsistencies in the detection because
there are no rules for these situations. Despite all those problems,
the relative annotated as daughter is in fact a third-degree cousin,
a relationship that should not be considered. The third and fourth
examples show other cases where there was an incorrect family
member annotation because of the system losing context within
the sentences.

The final example is a special case because the annotation was
correctly performed but was not considered in the gold standard
annotations, as the clinical notes did not provide any clinical

information about the relative. Moreover, the clinical
information regarded as necessary for annotating a relative
mention is not exclusively composed of observations and may
comprehend other types of information such as medication
intake or medical procedures, which invalidates the possibility
of filtering such situations based on observation associations
alone.

Although these might not be the only problems, the limitations
presented were those that stood out the most. This led us to
analyze possible future work for this contribution, which we
could split in different topics. First, we need to test this system
in another data set, with a more solid gold standard. This will
help us understand the performance of the system as well as its
versatility in detail. Another task is the extension of the clinical
information extracted. The current version has models designed
to extract observations. However, we intend to build other
models to extract drugs and procedures, among other medical
categories that were not required in the challenge. This extension
would lead to a reformulation of the detection of patient’s
relatives and allow filtering mentions with no medical
information, such as the last example in Textbox 1). Finally,
there is also the possibility of exploring machine learning and
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DL for the process of establishing relations between extracted
entities.

Conclusions
We present an extension to a previous work that focused on
extracting family history information from clinical notes.
Specifically, we developed a more generic system and improved
the previous F1 score in the entity extraction subtask by
approximately 5 percentage points by combining different
approaches. Although the rule-based engine succeeded in
extracting patient relatives because of the range of possibilities
in the text, this approach failed in the detection of observations.

However, the use of DL models helped rectify this gap, with
the hybrid system taking advantage of the best characteristics
of these 2 methodologies. The hybrid solution is provided in a
publicly available code repository.

This study promotes new strategies to easily annotate large
amounts of clinical reports currently available in EHR systems.
If these reports were annotated and indexed, it would be simpler
for a clinician to search for reports mentioning specific concepts.
In addition, with data in a structured format, this information
can be reused in other scenarios, such as predicting the patient’s
susceptibility or predisposition to diseases.
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