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Abstract

Background: Diabetes affects more than 30 million patients across the United States. With such a large disease burden, even
a small error in classification can be significant. Currently billing codes, assigned at the time of a medical encounter, are the “gold
standard” reflecting the actual diseases present in an individual, and thus in aggregate reflect disease prevalence in the population.
These codes are generated by highly trained coders and by health care providers but are not always accurate.

Objective: This work provides a scalable deep learning methodology to more accurately classify individuals with diabetes
across multiple health care systems.

Methods: We leveraged a long short-term memory-dense neural network (LSTM-DNN) model to identify patients with or
without diabetes using data from 5 acute care facilities with 187,187 patients and 275,407 encounters, incorporating data elements
including laboratory test results, diagnostic/procedure codes, medications, demographic data, and admission information.
Furthermore, a blinded physician panel reviewed discordant cases, providing an estimate of the total impact on the population.

Results: When predicting the documented diagnosis of diabetes, our model achieved an 84% F1 score, 96% area under the
curve–receiver operating characteristic curve, and 91% average precision on a heterogeneous data set from 5 distinct health
facilities. However, in 81% of cases where the model disagreed with the documented phenotype, a blinded physician panel agreed
with the model. Taken together, this suggests that 4.3% of our studied population have either missing or improper diabetes
diagnosis.

Conclusions: This study demonstrates that deep learning methods can improve clinical phenotyping even when patient data
are noisy, sparse, and heterogeneous.

(JMIR Med Inform 2020;8(12):e22649) doi: 10.2196/22649
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Introduction

The widespread adoption of an electronic health record (EHR)
has generated large amounts of data, providing an opportunity
for clinical phenotyping to identify patients with characteristics
of interest [1,2]. Analyzing these rich EHR data has many
potential uses such as predicting mortality, defining cohorts,
evaluating health care policy, and driving health care finance
that affect patient care, revenue, and performance evaluation.
The ability to use large amounts of clinical data to discover or
validate information is of particular interest for research studies
as well as clinical practice [3]. Over the years, disease
phenotyping methods from EHR data have evolved from
traditional manually developed rule-based analysis for concept
curation such as eMERGE and PheKB [4-6] to statistical and
traditional machine learning techniques [7-9], and more recently,
deep learning techniques which offer better performance while
reducing the need for data preprocessing and feature engineering
[10-12]. However, EHR data are often incomplete, inaccurate,
fragmented, and heterogeneously structured, reflecting the
challenges of real-world information gathering, extraction, and
interpretation [1,4,13].

Being able to accurately predict diseases in a population could
lead to targeted clinical interventions [14], while applying
predictive models retrospectively may identify patients with
incorrect or missing diagnoses, documentation, or billing codes.
We chose diabetes mellitus for such phenotyping applications
because it is a highly prevalent disease with heterogeneous
presentations and objective diagnostic criteria. In the United
States, more than 34 million people have diabetes, and 1 out of
4 people are undiagnosed. Diabetes is associated with many
serious medical comorbidities such as heart disease and stroke,
as well as high costs of medical care [15]. Previous efforts
assessing errors in diagnosis, classification, and disease coding
in patients with diabetes using clinical trial data and primary
care data have shown that significant errors from misdiagnosis,
misclassification, and miscoded patient data are associated with
worse therapeutic outcomes [16-21].

In this study, we aim to characterize clinical phenotype for
diabetes using data available at the time of discharge by using
a generalizable sequential-based deep learning method. We
employ all laboratory results, medications, demographic data,
and other admission data such as days from prior admission or
duration of current visit for each patient. We also include
diagnostic codes and procedure codes from all encounters except
the most recent one, which is the target to predict. The goal of
this work is to train a model that can identify diseases—diabetes
in this study—for each patient based on all available
information. This model has the potential to merge into hospital
real-time monitoring systems for flagging patients, potentially
improving patient care and EHR documentation quality, among
countless other downstream benefits.

In recent years, there are many interesting studies applying deep
learning methods on EHR data. Using dense neural networks
(DNNs) for finding patients at high risk of mortality [22],
discovering characteristic patterns of physiology [23],
representing patient data for machine learning purposes [14],
improving coding accuracy in EHR data [24,25], taking
advantage of recurrent neural networks (RNNs) for predicting
future diagnosis codes and clinical events [26-30], forecasting
kidney transplant success [31], early detection of heart failure
[32], using bidirectional RNNs for medical event detection [33],
and combining convolutional neural networks and RNNs for
improving patient representation [34] are just a few of these
inspiring projects. There are extensive survey papers exploring
and categorizing recent projects based on methods and their
goal [35,36]. However, in most of them limited EHR data
elements are used, patients have extensive background
information, and the goal is to predict what is recorded in a
future visit for a patient. The real-world disease classification
problem in a health system is different and requires a more
general and scalable model that can make robust predictions
using all data elements.

Our study offers the following key contributions: (1) A
minimally curated, real-world data set for model training is
employed, where about 76% of patients had only 1 encounter,
reflecting the incomplete and fragmented nature of EHR data.
(2) Data from 5 different health care facilities in the United
States are combined to show the generalizability of the model,
avoiding overfitting on a single facility, and demonstrating the
capability of neural networks to learn from data with diverse
and complex structures. (3) Precise measurements are provided
to show improvements and performance of this model. (4) A
thorough validation with a panel of clinicians is conducted to
adjudicate the clinical phenotype from longitudinal data in cases
where the model disagreed with the documented disease coding.
(5) The total impact on the population for patients is calculated
with both improper and missed diagnosis codes in their EHR
data.

Methods

Data Set Description
We obtained data from the CERNER Health Facts database, a
large multi-institutional deidentified database derived from EHR
data and administrative systems. The database has 599 facilities.
For this study, we extracted inpatient encounter data from the
5 acute care facilities with the most inpatient discharges from
January 1, 2016, to December 31, 2017. The extracted
encounters all have ICD-10 (International Classification of
Diseases, 10th edition) diagnosis codes and at least one
laboratory test. Table 1 summarizes general information
including statistics on the reported cases of diabetes in each
facility and the mean number of medications and unique
laboratory tests. Population demographic information is
summarized in Multimedia Appendix 1.
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Table 1. General and diabetes-related inpatient statistics in facilities studied.

1157898384143131Facility ID

52,08055,44445,390a60,17562,318Number of encounters

36,33638,95331,387a38,65741,854Number of patients

10.2213.773.61a19.0713.74Mean number of ICDb codes

25.9123.349.93a27.8234.55Percentage of encounters with diabetes

8.791.71a16.4312.5821.56Mean number of medications

0.280.08a1.530.763.06Percentage with metformin

61.748.7326.89a49.9456.72Mean number of unique laboratories

19.4724.160.00a13.2028.91Percentage with hemoglobin A1c (HbA1c)

aICD: International Classification of Diseases.
bThe lowest value in each row.

EHRs from different facilities usually have various formats,
structures, and may not be directly interoperable. For this reason,
demographic information, laboratory results, diagnosis codes,
procedure codes, and medications were mapped to the
Observational Health Data Sciences and Informatics (OHDSI)
Common Data Model (version 5.3; vocabulary release on
October 2, 2018), a standard data model for observational health
studies [37-39]. Clinical notes are not available in the database
and were not included in this study.

Laboratory Tests
There are 2 major challenges for representing laboratory values.
First, laboratory tests may be performed multiple times in a
single encounter. Second, there are a large number of test types,
which form a huge sparse matrix with many missing values.
We proposed 2 approaches to represent laboratory tests: (1) We
used statistical summaries including median, max, min, total
count, and the values of the first and last instance of a laboratory
test for each single encounter. A laboratory test is ordered by a
physician if there are concerns that it may not be normal.
Therefore, when it is unavailable the value is either expected
to be normal or its result is reflected in other available features
clearly. For these laboratory tests we used median imputation
for filling missing values. It is worth mentioning that we
explored more complicated imputation methods as well,
including MICE [40], Soft-Impute [41], and SVD-Impute [42].
However, these methods did not provide distinct improvement
and took much more computation power. (2) We counted the
number of laboratory values that were classified as “high,”
“low,” “within the range,” or “normal,” “abnormal,” and
“unspecified” according to standards provided by each facility.
In a case that a laboratory value is not recorded, these values
are exactly 0, thus imputation is not needed. However, ranges
for some features are undefined in the EHR system that makes
it necessary to have numerical values as well.

Diagnosis and Procedure Codes
Because the model is designed to use all information available
at the time of discharge, codes from past encounters are
included. However, the codes for the current encounter are the
target to be predicted and not included in the input feature

matrix. Codes are represented as binary values for each ICD
code in the data set.

Medications
Medications were mapped from National Drug Codes to
RxNorm’s Concept Unique Identifiers using mappings
associated with the OHDSI-controlled vocabularies. Total counts
of drug exposure and per inpatient visit were added to the feature
matrix.

Demographic/Personal Information
We also included age, weight, height, race, ethnicity, and gender
from the data set. For categorical features (race, ethnicity, and
gender), we added them to the feature matrix through one-hot
encoding.

Derived Features
We further derived calculated features, such as the number of
days from the latest previous encounter, days hospitalized, and
the facility IDs represented with a one-hot encoding scheme.

Target
The ICD-10-CM codes that defined clinical diabetes were
derived from the Clinical Classification Software (CCS) [43]
categories 49, 50, and 186. We excluded conditions that do not
clearly fit the clinical definition of diabetes as a chronic disease,
such as “unspecified hyperglycemia,” “prediabetes,” and
“gestational diabetes.” All ICD codes under the mentioned CCS
codes were included except conditions specified in Multimedia
Appendix 2.

In order to reduce the sparsity of the feature matrix and remove
features that are not available or relevant to the target disease,
we only kept features with a nonzero value and appearing in at
least 5% of positive cases in the training set.

Data Vectorization
As previously mentioned, diagnosis and procedure codes from
the final encounter are the prediction goal and are not included
in the input to the model. We combined the target diagnosis
codes using CCS categorization to create a binary value for the
presence of disease. For each encounter i, we created a vector
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vi by concatenating laboratories, medications, demographics
from the ith encounter, and the accumulated ICD code presence
value from prior encounters: “0” for no presence and “1” for at
least one instance as shown in Figure 1. The idea behind this

“or” operation is to represent the history data as physicians
would review them, that is, focusing on the presence or absence
of diseases in the patient history. Thus, in mimicking our stated
goal, these vectors hold the information that would be available
at the time of discharge when the codes must be determined.

Figure 1. Feature matrix construction from patient encounters. All information from the ith encounter, except ICD codes, was combined with ICD
codes from prior encounters to build a slice in the sequence. Dx: diagnosis code; ICD: International Classification of Diseases.

Machine Learning/Deep Learning–Based Predictive
Models
We employed both nonsequential and sequential models in this
study. In nonsequential models, the order of input features does
not matter and does not distinguish features based on their
temporal occurrence. On the contrary, sequential models care
about which features happened when and they are designed to
capture temporal information.

Nonsequential Models
We took 2 traditional machine learning approaches, random
forest and logistic regression, as baselines for comparison.
Furthermore, we took advantage of DNNs which are powerful
classifiers and have been widely used in previous studies
[22-25]. The main advantage of DNNs over other machine
learning methods is the capability to learn patterns more
effectively from large data sets with numerous features without
the need for feature selection.

Sequential Models
Because of the inherently sequential nature of a patient’s medical
history, we expect that sequential models should outperform
those that do not consider the order of inputs. RNNs are among
the most powerful tools for prediction and classification when
there is a sequence of data leading to the result. Standard or
vanilla RNNs face vanishing and exploding gradients in
back-propagation during the training phase as the longer the
sequence of inputs grows, the longer and more unstable the

chain of gradients becomes to calculate. Because of these
problems, we leveraged long short-term memory (LSTM) [44]
and gated recurrent unit (GRU) [45] which use “forget” and
“update” elements to selectively turn off portions of the model,
effectively reducing the parameter space during each training
step. Furthermore, we added additional dense layers after the
output of recurrent layers [46,47]. We call these models
LSTM-DNN and GRU-DNN, respectively.

Model Training
As is the case in almost any phenotyping study, the data set is
imbalanced, with only 21.59% of cases positive for diabetes.
In this subsection, we briefly go through techniques and
parameters used to increase prediction power and avoid
overfitting. These parameters also make it possible to replicate
experiments. Data set is normalized (mean = 0, variance = 1)
before training to improve performance and stability. The data
set (combination data of 5 acute care facilities that were
mentioned earlier) was split using stratified random sampling
to 80% for the training set and 20% for the test set. The training
and test sets were the same for training and evaluation of all
models.

Traditional Machine Learning Methods
For the logistic regression model, we used L2 regularization
(1.0) and in the random forest model we limited the tree
maximum depth to 30. The class weights for both models were
adjusted inversely proportional to class frequencies to give more
weight to the minor class (positive cases).
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Neural Networks
For the DNN model both L2 regularization (0.0002) and dropout
(with rate 0.45) [48] were used. We applied weight balancing
with log proportion as the prevalence ratio (2.22) to calculate
loss in each epoch. We employed mini batches (2048) which
are more computationally efficient, use less memory, and are
generally more robust as they avoid local minima in optimization
steps [49]. After hyper-tuning using 12.5% of training data for
cross validation, the best model was trained with mean squared
error loss, Adam optimizer [50], Xavier uniform initializer [51],
tanh activation functions in hidden layers, and a sigmoid
activation function in the output layer. The dense network
consists of 4 hidden layers (512, 512, 512, 512) and the recurrent
networks have 2 recurrent layers (512, 512) (LSTM/GRU) and
2 dense layers (512, 512). All have a single neuron output.
Adding additional embedding layers did not improve models’
performances.

As the search space is enormous, we had 2 steps for finding the
best parameters. First, we fixed all parameters except one and
hyper-tuned that specific parameter. After reaching a short list
of candidates for each variable, we used grid search on all of
them to find the best combination. The network configuration
was reached by extensive hyperparameter search over the
following parameters: activation functions (tanh, relu, selu),
loss functions (mean squared error, mean absolute error, binary
cross entropy), optimizers (Adam, sgd), batch size (512, 1024,
2048), L2 regularization (0.001, 0.01, 0.10, 0.05, 1, 2, 10),
dropout rate (from 0 to 0.80 every 0.05), number of layers (1
to 7), and various number of neurons in each layer (different
combinations of powers of 2 as expected to be faster while using
GPU nodes).

Review Panel Validation Method
Identifying inaccuracy in coded disease states was a major
motivation for the study, and we hypothesized that a well-trained
model would be accurate even when some diagnosis codes in
the training set were incorrectly coded. Because it is impossible

to evaluate this goal using existing diagnosis codes which
themselves can be flawed, we asked 3 board-certified practicing
physicians to review cases where the model contradicted the
documented diagnosis. In this experiment, experts were provided
with the same information as the model, including all
demographic information, laboratory results, and medications
as well as event timelines for inpatient encounters. Furthermore,
the experiment was performed in a blinded manner—experts
did not have any knowledge of the diagnosis from either the
model prediction or EHR documentation. We believe this
experiment can shed light into the usefulness of such a model
for flagging cases in hospital systems.

Results

Experimental Setup
For training and testing the deep learning models, we used Keras
framework [52] backed by Tensorflow [53] and the scikit-learn
library [54]. The training was performed on a NVIDIA Tesla
V100 GPU with 640 Tensor Cores.

Performance of Phenotyping Diabetes According to
EHR Labels
We compared our sequential-based model with other models
based on a variety of metrics. As the data set is imbalanced
(21.59% positive cases), accuracy cannot be a distinguishing
metric among models. The area under the receiver operating
characteristic curve (AUROC) also can be misleading in these
data sets. The F1 score (harmonic mean of precision and recall)
and area under the precision–recall curve (AUPRC) are more
suitable metrics for this purpose [22,55,56]. In this project it is
important to capture the majority of patients, therefore a model
with high recall is desired. The precision for 0.80 recall is also
measured and reported in Table 2. As shown in Figure 2, the
LSTM-DNN model outperforms other models in both the
AUROC and AUPRC curves. We excluded GRU-DNN in Figure
2 as it is close to the LSTM-DNN model.

Table 2. Methods performance comparison.

AUROCbAUPRCaF1 scorePrecision @0.8 recallAccuracyModels

96.15c91.18c84.30c89.02c93.04cLSTM-DNN

95.7790.6583.9288.0492.80GRU-DNN

95.4990.1083.1786.6492.49DNN

93.9686.4780.0381.8690.77Logistic regression

94.1786.8676.7878.3990.95Random forest

aAUPRC: area under the precision–recall curve.
bAUROC: area under the receiver operating characteristic curve.
cNumbers for the best method.
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Figure 2. ROC and PR curves for all models. (A) ROC curve. Diagonal dotted purple line is the performance of random model. (B) PR curve. The
vertical solid line shows precision of different models for achieving 0.8 recall. Straight dotted purple line is the performance of random model. DNN:
dense neural network; LR: logistic regression; LSTM: long short-term memory; PR: precision-recall; RF: random forest; ROC: receiver
operating-characteristic curve.

Review Panel Validation Results
For analyzing discordant cases where the model disagreed with
what was recorded in the EHR, we performed a blinded review
with a group of domain experts including at least three
board-certified practicing physicians for each case review. For
facilities 131 and 143, we used 32 sampled cases per facility
where the model-predicted diagnosis was discordant with the
EHR and the model had a high confidence (sigmoid output
>0.83 or <0.17). We asked the review panel to answer 2

questions: (1) does the patient have diabetes; and (2) what is
their confidence level? (high or low). In 52 out of the 64 cases,
the panel’s conclusions agreed with the results from the model’s
prediction. In 37 out of the 39 cases with which the panel had
high confidence, the model’s prediction (output of the
LSTM-DNN model) was consistent with the panel’s conclusion.
Generally, the panel would have low confidence when there
was insufficient evidence from the data to support a conclusion.
The evaluation results are shown in Figure 3.

Figure 3. Expert review of cases where the model prediction disagreed with coded diagnosis. The error bars were 5% confidence intervals calculated
from the beta binomial distribution.

Through expert validation, we can provide a conservative
estimate of how frequently a case flagged by the model for

review would result in a correction at each facility. We
calculated the range of the total population that would be
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potentially impacted for each facility with lower and upper
bounds. The lower bound considers only the model’s high
confidence interval—probability of more than 0.83 or less than
0.17 for positive and negative labeling, respectively, on sigmoid
output—and the upper bound is for all predictions made by the
model. Each value bound is multiplied by the probability of the
model being correct, as derived from the expert validation
(Figure 3). This final value is the percentage of the impacted
population. In facility 131, we estimated that 1.25%-3.03% of
the total population were missing a diabetes-related diagnosis
code, and 1.65%-2.98% were improperly labeled as having
diabetes. These numbers varied for facility 143, where there
were 1.61%-3.73% missing a diabetes code and 1.12%-1.89%
improperly labeled. Taking the mean of the intervals across
facilities, we estimate that the error rate is 4.3% across these
facilities. This suggests a considerable impact of this
misclassification that can impact patients, hospitals, health
systems, and payers.

These results demonstrate that when the model prediction
contradicts the coders, the model is most often correct even for
patients with several past encounters. From 32 cases with
background information in 24 cases, experts agreed with the
model. This suggests that a deep learning model trained from
EHR data, which are often noisy, is capable of phenotyping and
flagging cases for further review.

Multiple Facilities Versus Single-Facility Models
In our study, we found that different facilities used different
coding schemes for laboratory tests and medications. As a result,
the diversity of features is higher than we had anticipated. For
instance, blood glucose measurement, a standard test in diabetes,

has a variety of names and Logical Observation Identifiers
Names and Codes (LOINC) across facilities. Facilities reported
“Glucose lab,” “Glucose [Mass/volume] in Blood,” “Glucose
[Mass/volume] in Body fluid,” “Glucose [Mass/volume] in
Blood by Test strip manual,” “Glucose; blood, reagent strip,”
and “Glucose finger stick.” Each name has a different LOINC,
making automated consolidation difficult. This problem exists
in other data elements such as medications, where brand names,
generic names, and various similar formulations are recorded.
For this reason, a model trained on a single facility will not
perform as well on another facility. Our goal was to develop a
generalizable model that could perform well on all facilities
independent of features available. Because features might vary
widely, we proposed to collate all information from all facilities,
and created 1 data set containing all features rather than manual
or automatic merging of them (the data set we used for previous
experiments). We were curious to see how does a model trained
on this “combined” data set would differ from a model trained
on just a single facility? From one perspective, with more data
the model should perform better. However, as coding patterns
and features vary significantly between facilities, this
combination can end up misleading the model.

We trained a model for each facility using the exact same steps
we did previously using our best architecture (LSTM-DNN).
As shown in Figure 4, the results from the combined model are
very similar to those from the single facility–based models. In
another experiment, we repeated the training on the combined
data set without including facility IDs, and the results were
almost the same. This suggests that the model trained on the
combined data has the capability to learn all different patterns
and can benefit from this approach.

Figure 4. Comparison of F1 scores on single facility-based models and multifacility combined model.

Facility 384 showed very low performance, and we suspect that
this is due to poor data quality and feature availability. We found
that facility 384 reported fewer laboratory tests than other

facilities (Table 1). It also lacked some laboratory tests essential
to diabetes diagnosis, such as hemoglobin A1c. The facility also
reported far fewer diagnoses per patient, including much lower
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prevalence of diabetes, even though it recorded metformin (a
typical drug used for diabetes treatment) as much as other
facilities. Thus, we believe that the low performance was due
to the low availability of vital training features and the poor
quality of recorded diagnosis codes. Interestingly, the model
appeared to be resilient to other data problems, such as the
paucity of medication data in facility 898.

Limitations of Rule-Based Models
The traditional approach for phenotyping is based on a
predefined set of rules and steps to determine whether a patient
has a specific disease. To compare with such rule-based
methods, we followed the steps in the eMERGE project [46].
Because of the lack of required data elements such as family
history of diabetes and counts of dates that the patient had
face-to-face outpatient clinic encounters, the performance of
this algorithm was not ideal on our data set. For 75.28% of the
patients, the results from the method were undecided and no
final decision could be made. Another major limitation of such
rule-based methods is the need for constant updates for new
ICD codes, laboratory codes, and medications. Even after
mapping and updating codes to current ICD-10, the method
would often fail and detect only obvious cases and discard
uncertain cases. As a result, it was not possible to make a
reasonable comparison between models’ performances and the
eMERGE criteria.

Discussion

Principal Findings
Our study demonstrates the successful identification of patient
phenotypes using a deep learning model trained on
heterogenous, minimally curated data. The model identifies a
noticeable subset of potential coding errors in instances when
patients are either improperly labeled as having or not having
diabetes and is able to avoid errors arising from missing clinician
documentation or sporadic coder errors. Given that the data
were mapped to the OHDSI data model, the model is
independent of facility-specific data representations and could
be adopted by different health care systems based on
normalization using OHDSI.

For much of the work on phenotyping, there is a presumption
that the documented EHR diagnosis codes represent ground
truth. However, human error can result in improper classification
of a patient’s comorbidities and true illness severity. The
motivation for this work was to detect and reclassify individuals
in whom the wrong diagnosis was assigned at the time of
discharge from the hospital, a fact that drives the development
of such phenotyping algorithms. Our efforts can be used to flag
discordant records for human review, leading to more accurate
patient and population characterization. This strategy can be
used to guide coders at the time of discharge to re-evaluate
charts detected by the algorithm, with more directed attention
to the potential missed diagnosis.

To validate the simulation of operational deployment of such
a model, we used a double-blinded physician review panel to
review the discordant cases where the model prediction was in
contrary to the documented diagnosis. From this review, we not
only captured the panel’s diagnosis but also the confidence level
of their decision. During the review, the experts felt that some
cases were too complex or needed more data for a model to
classify correctly. Despite this, our panel and algorithm agreed
on the final diagnosis among 81.25% of cases when the
algorithm was confident in its prediction. In a real health system,
this would equate to an anticipated 4 corrections to the coding
for every 5 cases flagged by the model for further review. This
is estimated to impact about 2.4% of a facility’s entire
population missing a diabetes code that should be present, and
about 1.9% of the population who were given the code of
diabetes when it should not have been present. This suggests
that our methodology is highly promising for improving clinical
decision support to flag possibly missing or improper ICD
classifications.

Limitations
This work could benefit from expert validation at larger scale,
which would result in a more accurate estimation of the effect
on the population. As patients’ background information was
very limited in this study, we did not expect significant
difference using other methods such as attention-based models;
however, they can be beneficial where more background data
are available. Moreover, we are collaborating with the diabetes
care group of our network hospitals to incorporate our prediction
model into a pilot study.

Conclusions
As research continues to advance the capabilities of predictive
algorithms to medicine, we demonstrate a successful application
of deep learning methodology bridging the gap at the
intersection of computer science and clinical medicine.

We can classify a disease state in patients using a generalizable
model that is deployable in institutions adopting the OHDSI
standard. Our sequential deep learning–based model
outperformed both traditional machine learning and
nonsequential DNN as shown earlier. Results proved that the
deep learning model can capture patterns for phenotyping from
a high-dimension feature space without hand-crafted feature
engineering. The findings also provide insights into how to
build a framework/workflow using real-world EHR data for
enhancing operations in real-world health care organizations,
especially in applications to clinical intervention, documentation
and billing, as well as quality improvement. The success of such
disease prediction models can also benefit academic and
translational research, as a faster and more refined disease
phenotyping process allows researchers to better refine their
study cohorts and minimize bias or confounding variables. Most
importantly, one cannot understate the potential impact to patient
care and clinical outcomes afforded by this approach to
diagnostic validation and case ascertainment.
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