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Abstract

Background: Asthmaisamajor chronic disease that poses a heavy burden on health care. To facilitate the allocation of care
management resources aimed at improving outcomes for high-risk patients with asthma, we recently built a machine learning
model to predict asthma hospital visitsin the subsequent year in patients with asthma. Our model is more accurate than previous
models. However, like most machine learning models, it offers no explanation of its prediction results. This creates a barrier for
use in care management, where interpretability is desired.

Objective: This study aims to develop a method to automatically explain the prediction results of the model and recommend
tailored interventions without lowering the performance measures of the model.

Methods: Our data were imbalanced, with only a small portion of data instances linking to future asthma hospital visits. To
handle imbal anced data, we extended our previous method of automatically offering rule-formed explanations for the prediction
results of any machinelearning model on tabular datawithout |owering the model’ s performance measures. In asecondary analysis
of the 334,564 data instances from Intermountain Healthcare between 2005 and 2018 used to form our model, we employed the
extended method to automatically explain the prediction results of our model and recommend tail ored interventions. The patient
cohort consisted of all patients with asthma who received care at Intermountain Healthcare between 2005 and 2018, and resided
in Utah or Idaho as recorded at the visit.

Results: Our method explained the prediction results for 89.7% (391/436) of the patients with asthma who, per our model’s
correct prediction, were likely to incur asthma hospital visitsin the subsequent year.

Conclusions: This study is the first to demonstrate the feasibility of automatically offering rule-formed explanations for the
prediction results of any machine learning model on imbalanced tabular data without lowering the performance measures of the
model. After further improvement, our asthma outcome prediction model coupled with the automatic explanation function could
be used by clinicians to guide the alocation of limited asthma care management resources and the identification of appropriate
interventions.

(JMIR Med Inform 2020;8(12):€21965) doi: 10.2196/21965
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Methods

Background

About 8.4% of Americans have asthma [1]. Each year in the
United States, asthma costs over US $50 hillion and resultsin
more than 2 million emergency department (ED) visits, about
half amillion inpatient stays, and more than 3000 deaths [1,2].
A major goal in managing patients with asthma is to reduce
their hospital visits, including ED visits and inpatient stays. As
employed by health plansin 9 of 12 metropolitan communities
[3] and by health care systems such as I ntermountain Healthcare,
Kaiser Permanente Northern California[4], and the University
of Washington Medicine, the state-of-the-art method for
achieving this goal is to employ a predictive model to predict
which patients with asthma are highly likely to have poor
outcomes in the future. Once identified, such patients are
enrolled in care management. Care managers then call these
patients on the phone regularly and help them make
appointments for health and related services. By offering such
tailored preventive care properly, up to 40% of future hospital
visits by patients with asthma can be avoided [5-8].

A care management program has limited enrollment capacity
[9]. As a result, the effectiveness of the program depends
critically on the accuracy of the predictive model. Not enrolling
a patient who is likely to have future hospital visits in the
program is a missed opportunity to improve the patient’s
outcomes. Unnecessarily enrolling a patient who is likely to
have no future hospital visit would increase health care costs
and waste scarce care management resources with no potential
benefit. The current models for predicting hospital visits in
patients with asthma are inaccurate, with published sensitivity
of £49% and an area under the receiver operating characteristic
curve (AUC) <0.81 [4,10-22]. When employed for care
management, these models miss more than half of the patients
who will have future hospital visitsand erroneously label many
other patients as likely to have future hospital visits [23]. To
address these issues, we recently built an extreme gradient
boosting (XGBoost) [24] machine learning model to predict
asthma hospital visits in the subsequent year in patients with
asthma[23]. Compared with previous models, our model raised
the AUC by at least 0.049. However, like most machinelearning
models, our model offers no explanation of its prediction results.
This creates a barrier for use in care management, where care
managers need to understand why a patient is at risk for poor
outcomes to make care management enrollment decisions and
identify suitable interventions for the patient.

Objectives

To overcome the abovementioned barrier, this study aims to
develop amethod to automatically explain the prediction results
of our model and recommend tailored interventions without
lowering any of the performance measures of our model, such
as AUC, accuracy, sensitivity, specificity, positive predictive
value, and negative predictive value.

In the following sections, we describe our methods and the
evaluation results. A list of abbreviations adopted in this paper
isprovided at the end of the paper.

http://medinform.jmir.org/2020/12/€21965/

We used the same patient cohort, data set, prediction target,
cutoff threshold for binary classification, method for data
preprocessing, including data cleaning and data normalization,
and method for partitioning the whole data set into the training
and test sets that we described in our prior paper [23].

Ethics Approval and Study Design

Thisstudy consists of asecondary analysis of retrospective data
and was evaluated and approved by the institutional review
boards of the University of Washington Medicine, University
of Utah, and Intermountain Healthcare.

Patient Population

Our patient cohort included al patients with asthma who
received care at any Intermountain Healthcare facility between
2005 and 2018 and resided in Utah or Idaho asrecorded at the
visit. Intermountain Healthcareisthe largest health care system
in Utah and southeastern Idaho. It operates 185 clinics and 22
hospitals and provides care for approximately 60% of people
living in that region. A patient was considered asthmatic in a
specific year if inthe encounter billing database, the patient had
one or more asthma diagnosis codes during that year
(International Classification of Diseases, ninth revision [ICD-9]:
493.0x, 493.1x, 493.8x, 493.9x; International Classification of
Diseases, tenth revision [ICD-10]: J45.x) [12,25,26]. The only
exclusion criterion from the analysis in any given year was
patient death during that year.

Data Set

We used a structured clinical and administrative data set
provided by the enterprise data warehouse of |ntermountain
Healthcare. The data set covered all visits by the patient cohort
within Intermountain Healthcare between 2005 and 2018.

Prediction Target (the Dependent or Outcome
Variable)

For each patient identified as asthmatic in a specific year, the
outcome was whether any asthma hospital visit occurred in the
subsequent year. In this paper, an asthma hospital visit refers
toan ED visit or aninpatient stay at an Intermountain Healthcare
facility with a principal diagnosis of asthma (1CD-9: 493.0x,
493.1x, 493.8x, 493.9x; ICD-10: J45.x). For training and testing
the X GBoost model and automati c explanation method, data of
every patient with asthmaup to the end of every year were used
to predict the patient’s outcome in the subsequent year.

Predictive Model and Features (Independent
Variables)

Our recent XGBoost model [23] uses 142 features to predict
asthma hospital visits in the subsequent year in patients with
asthma. As listed in the multimedia appendix in our previous
study [23], these features were computed from the structured
attributes in our data set covering a wide range of categories,
such as patient demographics, visits, medications, laboratory
tests, vital signs, diagnoses, and procedures. Each input data
instance for our model has these 142 features, targets a pair of
apatient with asthmaand ayear, and isemployed to predict the

JMIR Med Inform 2020 | vol. 8 | iss. 12 | €21965 | p. 2
(page number not for citation purposes)


http://www.w3.org/Style/XSL
http://www.renderx.com/

JMIR MEDICAL INFORMATICS

patient’s outcome in the subsequent year. We set the cutoff
threshold for binary classification at the top 10% of patients
with asthma having the largest predicted risk. These patients
were predicted to incur asthma hospital visitsin the subsequent
year.

Automatic Explanation M ethod

Previously, we developed an automated method to offer
rule-formed explanations for any machine learning model’s
prediction results on tabular data and recommend tailored
interventions without lowering the performance measures of
the model [27,28]. Our method was initially demonstrated to
predict the diagnosis of type 2 diabetes [27]. Later, other
researchers successfully applied our method to predict death or
lung transplantation in patientswith cystic fibrosis[29], predict
cardiac death in patients with cancer, and use predictions to
manage preventive care, heart transplant waiting list, and
posttransplant follow-ups in patients with cardiovascular
diseases [30]. In our method, each rule used for providing
explanations has a performance measure termed confidence that
must be greater than or equal to a given minimum confidence
threshold c¢,;,,. Our original automatic explanation method [27]
was designed for reasonably balanced data, where distinct values
of the outcome variable appear with relatively similar
frequencies. Recently, we outlined an extension of this method
[31,32] to handle imbalanced data, where one value of the
outcome variable appears much less often than another. This
dataimbal ance exists when predicting asthma hospital visitsin
patients with asthma, where only about 4% of the datainstances
arelinked to future asthma hospital visits[23]. In our extended
method, each rule used for providing explanations has a second
performance measure termed commonality, which must be
greater than or equal to agiven minimum commonality threshold
Min- TO date, no technique has been developed to efficiently
mine the rules with commonality greater than or equal to my,,,
compute their confidence, and eliminate those rules with
confidence less than ¢,,;,, in the extended method, despite such
techniques being essential for handling large data sets. No
guideline exists for setting the values of the parameters used in
the extended method, athough they greatly impact the
performance of the extended method. The extended method has
never been implemented in computer code. Moreover, the
effectiveness of the extended method has not been evaluated or
demonstrated.

In this study, we made the following innovative contributions:

1 We provide several techniques for efficiently mining the
rules with commonality greater than or equa to my;p,,
computing their confidence, and eliminating those rules
with confidence less than ¢, in the extended automatic
explanation method. This completes our extended method.
Although our extended method was designed for imbalanced
data, it can also be used on reasonably balanced data to
improve the efficiency of mining the rules needed to provide
automatic explanations. Among the existing automatic
explanation methods for machine learning prediction results,
our method is the only one that can automatically
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recommend tailored interventions [33,34]. This capability
isdesired for many medical applications.

2. We present a guideline to set the values of the parameters
used in the extended method (see the Discussion section).

3. We completed the first computer coding implementation
of the extended method and explained it in this paper.

4. We demonstrate the effectiveness of the extended method
in predicting asthmahospital visitsin patientswith asthma.

Review of Our Original Automatic Explanation Method

Main |dea

Our automatic explanation method separates explanation and
prediction by employing 2 models concurrently, each for a
distinct purpose. The first model is used to make predictions
and can be any model that takes continuous and categorical
featuresasitsinputs. Usually, we adopt the most accurate model
asthefirst model to avoid lowering the performance measures
of the model. The second model uses class-based association
rules[35,36] mined from historical datato explain the prediction
results of thefirst model rather than to make predictions. Before
using a standard association rule mining method like Apriori
to mine the rules [36], each continuous feature is first
transformed into a categorical feature through automatic
discretization [35,37]. Each rule shows a feature pattern
associated with a value w of the outcome variable in the form
of g; AND g, AND ... AND ¢, - w. The values of n and w can
change across rules. For binary classification distinguishing
poor versus good outcomes, wis usually the poor outcome value.
Every item q; (1<i<n) is a feature-value pair (f, u) showing
feature f has value u or avalue within u, depending on whether
u is avalue or a range. The rule points out that a patient’s
outcome variableisinclined to have valuew if the patient fulfills
di, o, ---, and g,. An example ruleis asfollows:

« Thepatient had 212 ED visitsin the past year

AND the patient had =21 distinct medications in al asthma
medication orders in the past year

- the patient will incur one or more asthma hospital visitsin
the subsequent year.

The Association Rule Mining and Pruning Processes

The association rule mining process is controlled by 2
parameters. the minimum support threshold s, and the
minimum confidence threshold c,;,, [36]. For any rulel: g; AND
g, AND ... AND q,-Ww, the percentage of data instances
satisfying g, Oy, ..., and g, and linking to wistermed |’s support
showing I's coverage. Among all data instances satisfying o,
dy, ---, and q,,, the percentage of data instances linking to w is
termed I's confidence reflecting I's precision. Our original
automatic explanation method uses ruleswith support =s,,;, and

confidence =>c,;,. For binary classification distinguishing poor
versus good outcomes, we usually focus on the rules that have
right-hand sides containing the poor outcome value.

Usually, numerous association rules have support and
confidence=s,;, and =C,,, respectively. To avoid overwhelming
the users of the automatic explanation function with too many
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rules, we used 4 techniquesto reduce the number of rulesin the
second model. First, only features adopted by the first model
are used to form rules. Second, a clinician in the automatic
explanation function’s design team checks all possible values
and value ranges of these features and marks those that could
possibly have a positive correlation with the values of the
outcome variabl e reflecting poor outcomes. Only those marked
values and value ranges of these features are allowed to show
up in the rules. Third, the rules are limited to having no more
than a given small number of items on their left-hand sides, as
long rules are hard to understand. A typical value of this number
is4. Fourth, each more specific ruleis dropped when there exists
amore general rule with confidence that is not lower by more
than a given threshold 1=0. More specifically, consider 2 rules,
[, and I, whose right-hand sides have the samevalue. Theitems
ontheleft-hand side of |, are a superset of those on theleft-hand

sideof I,. Wedrop |, if I;’s confidence is=l,’s confidence-T.

For the association rules remaining after the rule-pruning
process, a clinician in the automatic explanation function’s
design team gathers zero or more interventions targeting the
reason the rule presents. A rule is caled actionable if one or
more interventions are compiled for it. Usually, each
intervention links to one of the feature-value pair items on the
rule’s left-hand side. Such an item is called actionable. Thus,
an actionablerule containsat least 1 actionableitem. To expedite
the intervention compilation process, the clinician can identify
all of the actionable items and compile interventions for each
of them. All of the interventions linking to the actionable items
on arule's left-hand side are automatically connected to the
rule.

Our automatic explanation method uses 2 types of knowledge
manually compiled by a clinician: the values and value ranges
of the features that could possibly have a positive correlation
with the outcome variable's values reflecting poor outcomes
and the interventions for the actionable items. Our automatic
explanation method isfully automatic, except for the knowledge
compilation step.

The Explanation Method

For each patient for whom the first model predicts a poor
outcome, we explain the prediction result by listing the
association rules in the second model whose right-hand sides
have the corresponding poor outcome val ue and whose | eft-hand
sides are fulfilled by the patient, whereas ignoring the rulesin
the second model whose right-hand sides have a value that
differs from the corresponding poor outcome value and whose
left-hand sides are fulfilled by the patient. Every rule listed
offers a reason why the patient is predicted to have a poor
outcome. For each actionablerulelisted, thelinked interventions
are displayed next to it. This helps the user of the automatic
explanation function find tailored inventions suitable for the
patient. Typically, the rules in the second model describe
common reasons for poor outcomes. However, some patients
will have poor outcomes for rare reasons not covered by these
rules. Conseguently, the second model can provide explanations
for most, but not all, of the patients for whom the first model
predicts poor outcomes.
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The Previously Outlined Extension of the Original
Automatic Explanation Method

Our origina automatic explanation method was designed for
reasonably balanced dataand is unsuitable for imbalanced data,
where one value of the outcome variable appears much less
often than another. If the minimum support threshold s, is
large on imbalanced data, we cannot obtain enough association
rules for the outcome variable's rare values. Consequently, for
a large portion of the first model's prediction results on these
values, we cannot give any explanation. Conversealy, if sy, is
too small, the rule mining process will generate too many rules
asintermediate results, most of which will be filtered out in the
end. This easily exhausts computer memory and makestherule
mining process extremely slow. In addition, many overfitted
rules will be produced in the end, making it difficult for
clinicians to examine the mined rules.

In our recently outlined extension of the original automatic
explanation method [31,32] to handle imbalanced data, we
replace support with val ue-specific support termed commonality
[38]. For any rulel: g, AND g, AND ... AND g,—w, among
all datainstanceslinking to w, the percentage of data instances
satisfying g, y, ..., ad g, istermed I’s commonality showing
I’'s coverage within the context of w. Moreover, we replace the
minimum support threshold S, with the minimum commonality
threshold my;,,. Instead of using rules whose support is =S,
and whose confidence is = the minimum confidence threshold
Crrin» We used rules whose commonality is 2m,,, and whose
confidence is >Cp,.

Each value of the outcome variable falls into one of 2 possible
cases. In the first case, the value is interesting and represents
an abnormal case. The prediction results of this value require
attention and explanations. In the second case, the value is
uninteresting and represents a normal case. The prediction
results of this value require neither specia attention nor
explanation. Typically, each interesting value is a rare one
reflecting poor outcomes. The second model contains only the
association rules related to interesting values. To mine these
rules, we proceeded in 2 steps:

«  Step 1: For each interesting value w, we applied a standard
association rule mining method like Apriori [36] to the set
Sy of data instances linking to w to mine the rules related
to w and with support on S,, = the minimum commonality
threshold m;,. Theserules have commonality =m,;, onthe
set S, of al datainstances. AsS, ismuch smaller than S,
mining theserulesfrom S, is much more efficient than first
applying the association rule mining method to S, to obtain
the rules with support on Sy =2m;,X|S,/[Sal, and then
filtering out those rules unrelated to w. Here, |§ denotes

the cardinality of set S
« Step 2: For each rule mined from S,, we compute its

confidence on S;;. We keep it only if its confidence on S,
is = the minimum confidence threshold c;.

Techniquesfor Efficiently Mining the Association Rules
Whose Commonality is=m,,,, Computing Their
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Confidence, and Eliminating Those Rules Whose
Confidenceis <c,,, in the Extended Automatic
Explanation Method

When the set S, of all data instances includes many data
instances and features, we often find that the set S, of data
instances linking to an interesting value w contains many data
instances, and the first model adopts many features. Without
limiting the number of data instancesin S,, and the number of
features, numerous (eg, several billion) association ruleswould
be mined from S, in Step 1. This makes the computer easily
run out of memory and the rule mining process extremely slow.
In addition, many rules will be produced at the end, making it
difficult for clinicians to examine them. To address this issue,
we can use one or more of the following approaches:

1. Wetakearandom sample of datainstances Sgye from S,
and use Sgypie rather than Sy to mine the rules [39].

2. Beforethe rule mining process starts, each datainstanceis
transformed into a transaction. To reduce its size, we
remove from the transaction those values and value ranges
that the clinician in the automatic explanation function’'s
design team marks as not allowed to show up in any of the
rules.

3. Instead of using all of the features adopted by the first
model, we use only the top features to mine the rules.
Usually, the top features contain most of the predictive
power possessed by all features adopted by the first model
[23]. If the machine learning algorithm used to build the
first model is like XGBoost [24] or random forest, which
automatically computes each feature's importance value,
the top features are those with the highest importance
values. Otherwise, if the machine learning algorithm used
to build the first model does not automatically compute
each feature's importance value, we can use an automatic
feature selection method [40] such asthe information gain
method to choose the top features. Alternatively, we can
use XGBoost or random forest to construct a model,
automatically compute each feature’'s importance value,
and choose the top features with the highest importance
values.

In the following, we focus on the case of using the set S, of al
data instances to mine the association rules. The case of using
arandom sample of datainstances Syype from Sy, to mine the
rules can be handled in a similar way. To compute the rules
confidence values, we transformed S, to the matrix format,
with each row of the matrix linking to a distinct data instance
and each column of the matrix linking to a distinct value or
value range of afeature. For medical data, the matrix is often
not very sparse. In this case, we can use a separate bitmap to
represent each column of the matrix in a condensed manner.
For eachrulel: g; AND g, AND ... AND q,, - w, we performed
efficient bitmap operations to pinpoint the data instances
satisfying gy, O, ..., and ¢, and needed for computing I's
confidence.

Among all the mined association rulesrelated to an interesting
value w, we needed to identify those whose confidence on the
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set S, of all data instances is = the minimum confidence
threshold c,i,. To expedite the identification process, we
proceeded asfollows: for each rulel: g; AND g, AND ... AND
g,— W, let |, denote the number of data instances satisfying q;,
dy, ---, and g, and linking to w, and |_,, denote the number of
datainstances satisfying gy, 0y, ..., and g, and not linking to w.

our key insight was that I's confidence on Sy = 1,/(1,+_,) is

<G if and only if Iy, is >T, =1, %(1-Cyi)/Crir. We partitioned
S, into 2 subsets: S, containing all of the datainstanceslinking
towand S, containing all of the data instances not linking to
w. Using the bitmap method mentioned above, we went over
all of thedatainstancesin S, to computel,,. Then, wewent over
the datainstancesin S, one by one to count the datainstances
satisfying gy, O, ---, and g, and not linking to w. Oncethis count
is>T,, weknow I's confidence on S, is<c,,,, Stop the counting
process, and drop |. This saves the overhead of going through
theremaining datainstancesin S, to compute | _,,. Otherwise,
if this count is <T, when we reach the last datainstancein S,
wekeepl, obtain|_,,, and computel’s confidenceon S, which
must be >C;,.

Computer Coding | mplementation

We implemented our extended automatic explanation method
in computer code, using a hybrid of the C and R programming
languages. As R is an interpreted language and inefficient at
handling certain operations on large data sets, we wrote several
parts of our code in C to improve our code’s execution speed.
Considering that our asthmaoutcome variableishard to predict,
we limited the association rulesto have at most 5 items on their
left-hand sides (see the guideline in the Discussion section).
We set the minimum confidence threshold c,;,, to 50% and the

minimum commonality threshold my;,, to 0.2%.

Data Analysis

The Training and Test Set Partitioning

As outcomes came from the subsequent year, our data set
included 13 years of effective data (2005-2017) during the 14
years between 2005 and 2018. To mirror the practical use of
our XGBoost model and our extended automatic explanation
method, the 2005 to 2016 data were used as the training set to
train our XGBoost model and mine the association rules used
by our extended method. The 2017 data were used as the test
set to evaluate the performance of our XGBoost model and
extended method. We used the full set of 142 features to make
predictions and the top 50 features that our XGBoost model
[23] ranked with the highest importance values to mine the
association rules. Our X GBoost model reached an AUC of 0.859
using the full set of 142 features [23] and an AUC of 0.857
using the top 50 features.

Presenting 5 Example Association Rules Used in the
Second Model
To give the reader a concrete feeling of the association rules

used in the second model, we randomly chose 5 example rules
to present in this paper.
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Performance Metrics

We evaluated the performance of our extended automatic
explanation method in several ways. The main performance
metric that we used to show our extended method's explanation
capability wasthe percentage of patientsfor whom our extended
method could provide explanations among the patients with
asthmawhom our X GBoost model correctly predicted to incur
asthma hospital visitsin the subsequent year. We reported both
the average number of rules and the average number of
actionable rulesfitting such a patient. A rulefitsapatient if the
patient fulfills al of the items on its left-hand side.

As shown in our previous study [27], multiple rules fitting a
patient frequently differ from each other by a single
feature-value pair item on their left-hand sides. When many
rules fit a patient, the amount of nonredundant information
embedded in them is often much less than the number of these
rules. To give a full picture of the information richness of the
automatic explanations provided for the patients, we present 3
distributions of the patients with asthma whom our XGBoost

http://medinform.jmir.org/2020/12/€21965/

RenderX

Luoet al

model correctly predicted to incur asthma hospital visitsin the
subsequent year: (1) by the number of rulesfitting a patient, (2)
by the number of actionable rules fitting a patient, and (3) by
the number of distinct actionable items appearing in all of the
rulesfitting a patient.

Results

Our Patient Cohort’s Demographic and Clinical
Characteristics

Every data instance targets a distinct pair of a patient with
asthma and a year. Table 1 lists the demographic and clinical
characteristics of our patient cohort between 2005 and 2016,
which included 182,245 patients. Table 2 lists the demographic
and clinical characteristics of our patient cohort in 2017, which
included 19,256 patients. These 2 sets of characteristics are
reasonably similar. Between 2005 and 2016, 3.59%
(11,332/315,308) of data instances were related to asthma
hospital visits in the subsegquent year. In 2017, this percentage
was 4.22% (812/19,256).
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Table 1. Demographic and clinical characteristics of the Intermountain Healthcare patients with asthma between 2005 and 2016.

Characteristics

Datainstancesrelated to no asthmahospi-

tal visit in the subsequent year

Datainstancesrelated to asthmahospital  Data instances
visitsin the subsequent year (n=11,332), (n=315,308), n (%)

(n=303,976), n (%) n (%)

Gender

Female 181,928 (59.85) 6163 (54.39) 188,001 (59.65)

Male 122,048 (40.15) 5169 (45.61) 127,217 (40.35)
Age (years)

265 46,260 (15.22) 621 (5.48) 46,881 (14.87)

1810 65 172,436 (56.73) 5003 (44.15) 177,439 (56.27)

61t0<18 50,572 (16.64) 2590 (22.86) 53,162 (16.86)

<6 34,708 (11.42) 3118 (27.52) 37,826 (12.00)
Ethnicity

Non-Hispanic 244,442 (80.41) 8157 (71.98) 252,599 (80.11)

Hispanic 27,014 (8.89) 2279 (20.11) 29,293 (9.29)

Unknown or not reported 32,520 (10.70) 896 (7.91) 33,416 (10.60)
Race

White 273,206 (89.88) 9420 (83.13) 282,626 (89.63)

Native Hawaiian or other Pacific 3877 (1.28) 411 (3.63) 4288 (1.36)

Islander

Black or African American 5291 (1.74) 460 (4.06) 5751 (1.82)

Asian 2120 (0.70) 77 (0.68) 2197 (0.70)

American Indian or AlaskaNa 2295 (0.76) 214 (1.89) 2509 (0.80)

tive

Unknown or not reported 17,187 (5.65) 750 (6.62) 17,937 (5.69)
Duration of asthma (years)

>3 76,810 (25.27) 3666 (32.35) 80,476 (25.52)

<3 227,166 (74.73) 7666 (67.65) 234,832 (74.48)
Insurance

Self-paid or charity 26,611 (8.75) 1902 (16.78) 28,513 (9.04)

Public 76,916 (25.30) 3238 (28.57) 80,154 (25.42)

Private 200,449 (65.94) 6192 (54.64) 206,641 (65.54)
Smoking status

Never smoker or unknown 251,501 (82.74) 8952 (79.00) 260,453 (82.60)

Former smoker 18,735 (6.16) 569 (5.02) 19,304 (6.12)

Current smoker 33,740 (11.10) 1811 (15.98) 35,551 (11.28)
Comorbidity

Sleep apnea 20,421 (6.72) 471 (4.16) 20,892 (6.63)

Sinusitis 14,164 (4.66) 592 (5.22) 14,756 (4.68)

Premature birth 5102 (1.68) 440 (3.88) 5542 (1.76)

Obesity 35,215 (11.58) 1076 (9.50) 36,291 (11.51)

Gastroesophageal reflux 54,887 (18.06) 1309 (11.55) 56,196 (17.82)

Eczema 4484 (1.48) 443 (3.91) 4927 (1.56)

Cystic fibrosis 447 (0.15) 11 (0.10) 458 (0.15)

Chronic obstructive pulmonary 12,496 (4.11) 391 (3.45) 12,887 (4.09)

disease
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Characteristics Datainstancesrelated to no asthmahospi- Datainstancesrelated to asthmahospital  Data instances
tal visit in the subsequent year visitsin the subsequent year (n=11,332), (n=315,308), n (%)
(n=303,976), n (%) n (%)
Bronchopulmonary dysplasia 394 (0.13) 35(0.31) 429 (0.14)
Anxiety or depression 55,245 (18.17) 1716 (15.14) 56,961 (18.07)
Allergic rhinitis 4534 (1.49) 181 (1.60) 4715 (1.50)
Asthma medication prescription
Systemic corticosteroid 129,318 (42.54) 7324 (64.63) 136,642 (43.34)
Short-acting, inhaled beta-2 ago- 121,983 (40.13) 7545 (66.58) 129,528 (41.08)
nist
Mast cell stabilizer 114 (0.04) 7 (0.06) 121 (0.04)
Long-acting beta-2 agonist 1744 (0.57) 69 (0.61) 1813 (0.58)
Leukotriene modifier 33,187 (10.92) 2320 (20.47) 35,507 (11.26)
Inhaled corticosteroid/long-act- 42,796 (14.08) 2196 (19.38) 44,992 (14.27)
ing beta-2 agonist combination
Inhaled corticosteroid 73,566 (24.20) 4539 (40.05) 78,105 (24.77)
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Table 2. Demographic and clinical characteristics of the Intermountain Healthcare patients with asthmain 2017.
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Characteristics

Datainstancesrelated to no asthmahos- Datainstances related to asthma hospi-

pital visit in the subsequent year
(n=18,444), n (%)

tal visitsin the subsequent year
(n=812), n (%)

Datainstances
(n=19,256), n (%)

Gender
Female
Male
Age (years)
265
1810 65
6t0<18
<6
Ethnicity
Non-Hispanic
Hispanic
Unknown or not reported
Race
White

Native Hawaiian or other Pacific
Islander

Black or African American
Asian
American Indian or Alaska Native
Unknown or not reported
Duration of asthma (years)
>3
<3
Insurance
Self-paid or charity
Public
Private
Smoking status
Never smoker or unknown
Former smoker
Current smoker
Comorbidity
Sleep apnea
Sinusitis
Premature birth
Obesity
Gastroesophageal reflux
Eczema
Cystic fibrosis

Chronic obstructive pulmonary dis-
ease

11,001 (59.65)
7443 (40.35)

3833 (20.78)
9879 (53.56)
3054 (16.56)
1678 (9.10)

16,242 (88.06)
2020 (10.95)
182 (0.99)

17,025 (92.31)
299 (1.62)

361 (1.96)
195 (1.06)
146 (0.79)
418 (2.27)

7734 (41.93)
10,710 (58.07)

1136 (6.16)
4920 (26.68)
12,388 (67.17)

13,956 (75.67)
2243 (12.16)
2245 (12.17)

2925 (15.86)
746 (4.04)
435 (2.36)
3389 (18.37)
3477 (18.85)
273 (1.48)
94 (0.51)
1033 (5.60)

439 (54.06)
373 (45.94)

46 (5.67)

386 (47.54)
181 (22.29)
199 (24.51)

618 (76.11)
192 (23.65)
2(0.25)

681 (83.87)
47 (5.79)

42 (5.17)
10 (1.23)
13 (1.60)
19 (2.34)

389 (47.91)
423 (52.09)

142 (17.49)
208 (25.62)
462 (56.90)

583 (71.80)
83 (10.22)
146 (17.98)

78 (9.61)
34 (4.19)
41 (5.05)
116 (14.29)
71(8.74)
34 (4.19)
1(0.12)
23(2.83)

11,440 (59.41)
7816 (40.59)

3879 (20.14)
10,265 (53.31)
3235 (16.80)
1877 (9.75)

16,860 (87.56)
2212 (11.49)
184 (0.96)

17,706 (91.95)
346 (1.80)

403 (2.09)
205 (1.06)
159 (0.83)
437 (2.27)

8123 (42.18)
11,133 (57.82)

1278 (6.64)
5128 (26.63)
12,850 (66.73)

14,539 (75.50)
2326 (12.08)
2391 (12.42)

3003 (15.60)
780 (4.05)
476 (2.47)
3505 (18.20)
3548 (18.43)
307 (1.59)
95 (0.49)
1056 (5.48)
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Characteristics
pital visit in the subsequent year
(n=18,444), n (%)

Datainstancesrelated to no asthmahos- Datainstances rel ated to asthma hospi-
tal visitsin the subsequent year

(n=812), n (%)

Datainstances
(n=19,256), n (%)

Bronchopulmonary dysplasia 12 (0.07)
Anxiety or depression 3815 (20.68)
Allergic rhinitis 382 (2.07)

Asthma medication prescription
Systemic corticosteroid 11,327 (61.41)

Short-acting, inhaled beta-2 agonist 13,046 (70.73)

Mast cell stabilizer 8(0.04)
Long-acting beta-2 agonist 47 (0.25)
L eukotriene modifier 3364 (18.24)

Inhaled corticosteroid/long-acting 4178 (22.65)
beta-2 agonist combination

Inhaled corticosteroid 6817 (36.96)

3(0.37)
131 (16.13)
10 (1.23)

693 (85.34)
739 (91.01)
0 (0.00)
5(0.62)
209 (25.74)
222 (27.34)

424 (52.22)

15 (0.08)
3946 (20.49)
392 (2.04)

12,020 (62.42)
13,785 (71.59)
8 (0.04)

52 (0.27)
3573 (18.56)
4400 (22.85)

7241 (37.60)

For each demographic or clinical characteristic, Table 3 presents
the statistical test results on whether the data instances related
to asthmahospital visitsin the subsequent year and thoserelated
to no asthma hospital visit in the subsequent year had the same
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distribution. When the P value was >.05, the 2 sets of data
instances had the same distribution. Otherwise, they had
different distributions. All P values <.05 are shown initalicsin

Table 3.
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Table 3. For each demographic or clinical characteristic, the statistical test results on whether the data instances related to asthma hospital visitsin the
subsequent year and those related to no asthma hospital visit in the subsequent year had the same distribution.

Characteristics P value for the 2005-2016 data P value for the 2017 data
Gender <.0012P 0022
Age (years) <.001°¢ <.001°¢
Ethnicity <.0012 <.0012
Race <.0012 <.0012
Duration of asthma (years) <.001°€ <.001°¢
Insurance category <.0012 <.0012
Smoking status <.0012 <.0012
Comorbidity
Sleep apnea <.0012 <.001?
Sinusitis 0062 918
Premature birth <.0012 <.0012
Obesity <.0012 0042
Gastroesophageal reflux <.0012 <.0012
Eczema <0012 <0012
Cystic fibrosis 218 202
Chronic obstructive pulmonary disease <0012 <0012
Bronchopulmonary dysplasia <.0012 022
Anxiety or depression <.0012 0022
Allergic rhinitis 382 132
Asthma medication prescription
Systemic corticosteroid <0012 <.0012
Short-acting, inhaled beta-2 agonist <0012 <.0012
Mast cell stabilizer 292 >.99?
Long-acting beta-2 agonist 672 118
L eukotriene modifier <0012 <0012
Inhaled corticosteroid/long-acting beta-2 agonist combination <0012 0022
Inhaled corticosteroid <0012 <.0012

P values obtained by performing the chi-square two-sample test.
bp values <.05 marked in italics.
P values obtained by performing the Cochran-Armitage trend test [41].

The Number of Association Rules L eft at Different
Phases of Rule Mining and Pruning Processes

The association rules used in the second model were mined on
the training set. Using the top 50 features that were ranked by
our XGBoost model with the highest importance values, we
obtained 559,834 association rules. Figure 1 presentsthe number
of rulesleft versusthe confidence difference threshold . Recall
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that each more specific ruleis dropped when there existsamore
genera rule whose confidence is not lower by more than t.
Initialy, when T is small, the number of rules left decreases
quickly as T increases. Once 1 becomes 0.15 or larger, the
number of rules left approaches an asymptote. Accordingly, in
our computer coding implementation, we set T to 0.15, resulting
in 132,816 remaining rules.
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Figure 1. The number of association rules left versus.
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A clinical expert on asthma(MJ) in our team marked the values
and value ranges of the top 50 features that could possibly have
a positive correlation with future asthma hospital visits. After
dropping the rules including any other value or value range,
124,506 rules were left. Each rule explains why a patient is
predicted to incur one or more asthma hospital visits in the
subsequent year. Almost al (124,502/124,506, 100.00%) of

http://medinform.jmir.org/2020/12/€21965/
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these rules were actionable. The |eft-hand sides of these rules
contain various combinations of 208 distinct items related to
50 features.

Example Association Rulesin the Second M odel

Table 4 presents 5 sample association rules randomly chosen
from the 124,502 actionable rules used in the second model.
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Table 4. Five sample association rules.

Item on the left-hand side of the rule Implication of the item Intervention compiled for the item

Rule 1: The patient had 212 ED? visitsin the past year AND the patient had =21 distinct medicationsin all of the asthma medication orders
in the past year — the patient will incur one or more asthma hospital visitsin the subsequent year.

The patient had =12 ED visitsin the past year Having many ED visits reflects poor asthma Implement control strategies to avoid the
control need for emergency care

The patient had =21 distinct medicationsin all of the  Using many asthma medications reflects poor  Tailor prescribed asthmamedications and
asthma medication ordersin the past year asthma control help the patient maximize asthma control
medication adherence

Rule2: Thepatient had =9 distinct asthma medication prescribersin thepast year AND theblock group wherethe patient liveshasa national
health literacy score [42] <244 AND the patient had =21 distinct medicationsin all of the asthma medication ordersin the past year - the
patient will incur one or more asthma hospital visitsin the subsequent year.

The patient had =9 distinct asthma medication pre- Having many asthmamedication prescribersre-  Provide the patient with social resources

scribersin the past year flects poor care continuity, which often leadsto to address social chaos that |eads to inef-
poor outcomes fective access to headlth care
The block group where the patient lives hasanational  Having low health literacy is correlated with Improve education access in the area
health literacy score <244 poor outcomes where the patient lives to help increase
health literacy

Rule 3: The patient had atotal of =25 units of systemic corticosteroidsordered in the past year AND the patient had 212 ED visitsin the past
year AND the patient isHispanic — the patient will incur one or more asthma hospital visitsin the subsequent year.

The patient had atotal of =25 unitsof systemic corticos-  Systemic corticosteroids are onetype of asthma  Tailor prescribed asthmamedications and
teroids ordered in the past year medication intended for short-term usetorelieve  help the patient maximize asthma control
acute asthma exacerbations. Using alot of syss  medication adherence
temic corticosteroidsreflects poor asthmacontrol

The patient is Hispanic Inthe US, Hispanic people haveadisproportion- __b
ately high rate of poor asthma outcomes

Rule 4: The patient had =4 major visitsfor asthmain the past year AND the patient isbetween 11 and 35 yearsold AND the patient had no
outpatient visit in the past year AND the average length of an inpatient stay of the patient in the past year is>1.75 and <2.95 days - the
patient will incur one or more asthma hospital visitsin the subsequent year.

The patient had 24 major visitsfor asthmainthepast ~ Asdefined in our paper [23], amajor visit for  Implement control strategies to avoid the
year asthmaisan inpatient stay or ED visit having  need for emergency care

an asthma diagnosis code, or an outpatient visit

having aprimary diagnosis of asthma. Intuitive-

ly, al else being equal, a patient having major

visitsfor asthmahas a higher likelihood of incur-

ring future asthma hospital visits than a patient

having only outpatient visits with asthmaas a

secondary diagnosis

The average length of an inpatient stay of the patientin Having inpatient stays reflects poor asthma Implement control strategies to avoid the

the past year is>1.75 and <2.95 days control need for emergency care

The patient had no outpatient visit in the past year For good asthma management, a patient with Help the patient obtain a primary care
asthma is supposed to see the primary care provider if the patient does not already

provider regularly. Having no outpatient visit ~ have one
oftenimpliesthat the patient has no primary care
provider

Rule5: The patient had =4 major visitsfor asthmain the past year AND the patient'slast ED visit iswithin thelast 49 days AND the patient
had between 6 and 8 distinct asthma medication prescribersin the past year AND the patient had a total of =236 units of asthma medications
ordered in the past year AND >23.7% and <33.3% of familiesin the block group wherethe patient lives are below 150% of the federal
poverty level — the patient will incur one or more asthma hospital visitsin the subsequent year.

The patient’s last ED visit iswithin the |last 49 days Having arecent ED visit reflects poor asthma  Implement control strategies to avoid the

control need for emergency care

The patient had atotal of =36 units of asthmamedica-  Taking many asthma medications reflects poor  Tailor prescribed asthmamedications and
tions ordered in the past year asthma control help the patient maximize asthma control

medication adherence
>23.7% and <33.3% of familiesin the block group Poverty correlates with poor outcomes Provide living wage programs in the area
where the patient lives are below 150% of the federal where the patient lives to increase re-
poverty level sources for health care
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3ED: emergency department.
BNot applicable.

Performance M easures Reached by the Extended
Automatic Explanation Method

Our extended automatic explanation method was assessed on
the test set. This method explained the prediction results for
92.4% (182/197) of the adultswith asthma (age >18 years) and
87.5% (209/239) of the children with asthma (age <18 years)
for whom our XGBoost model correctly predicted the
occurrence of asthma hospital visits in the subsequent year.
Combined, our extended method explained the prediction results
for 89.7% (391/436) of the patients with asthma whom our
XGBoost model correctly predicted to incur asthma hospital
visitsin the subsequent year. For each such patient, our extended
method offered an average of 974.01 (SD 1600.48) explanations,
974.00 (SD 1600.47) of which were actionable. Each
explanation came from 1 rule. When confined to using
actionable rules, our extended method explained the prediction
results for 89.7% (391/436) of the patients with asthma for
whom our XGBoost model correctly predicted the occurrence
of asthma hospital visits in the subsequent year.

For the patients for whom our extended automatic explanation
method could offer explanations of our XGBoost model’s

Luoet al

correct prediction results of incurring asthma hospital visitsin
the subsequent year, the average number of distinct actionable
items appearing in al of the rules fitting a patient was 21.50
(SD 8.71). This number is much less than 974.01, the average
number of actionable rules fitting such a patient.

For the patients with asthma whom our XGBoost model
correctly predicted to incur asthma hospital visits in the
subsequent year, Figure 2 shows the distribution of patients by
the number of rulesfitting apatient. Thisdistribution hasalong
tail andishighly skewed toward the left. Asthe number of rules
fitting a patient becomes larger, the number of patients to each
of whom this number of rules apply is inclined to drop
nonmonotonically. The largest number of rulesfitting a patient
is high, 9223, although only 1 patient fits such a high number
of rules.

For the patients with asthma whom our XGBoost model
correctly predicted to incur asthma hospital visits in the
subsequent year, Figure 3 shows the distribution of patients by
the number of actionablerulesfitting apatient. Thisdistribution
is similar to that shown in Figure 2. The largest number of
actionable rulesfitting a patient is high, 9223, although only 1
patient fits such a high number of actionable rules.

Figure 2. Distribution of patients by the number of rules fitting a patient for the patients with asthma whom our extreme gradient boosting model
correctly predicted to incur asthma hospital visitsin the subsequent year. (a) When no limit is placed on the number of rulesfitting a patient. (b) When

the number of rulesfitting a patient is <250.
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Figure 3. Distribution of patients by the number of actionable rulesfitting a patient for the patients with asthma whom our extreme gradient boosting
model correctly predicted to incur asthma hospital visitsin the subsequent year. (a) When no limit is placed on the number of actionable rulesfitting a

patient. (b) When the number of actionable rulesfitting a patient is <250.
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For the patients with asthma whom our XGBoost model
correctly predicted to incur asthma hospital visits in the
subsequent year, Figure 4 exhibits the distribution of patients
by the number of distinct actionable items appearing in all of
the rules fitting a patient. The largest number of distinct
actionable items appearing in al of the rulesfitting a patient is
35, much smaller than the largest number of (actionable) rules
fitting a patient. Frequently, 2 or more actionable items
appearing in the rules fitting a patient link to the same set of
interventions. For example, the intervention of tailoring
prescribed asthmamedi cations and hel ping the patient maximize
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asthma control medication adherence links to several value
ranges of multiple medication-related features.

Our extended automatic explanation method could offer
explanations for 69.2% (562/812) of patients with asthmawho
will incur asthma hospital visitsin the subsequent year.

To evaluate the generalizability of our extended automatic
explanation method for predicting asthma hospital visits, we
tested our method on the University of Washington Medicine
data and Kaiser Permanente Southern California data. The
results we obtained are similar to the abovementioned results
and are detailed in 2 separate papers [43,44].

Figure 4. Distribution of patients by the number of distinct actionable items appearing in all of the rulesfitting a patient for the patients with asthma
whom our extreme gradient boosting model correctly predicted to incur asthma hospital visits in the subsequent year.
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Discussion

Principal Findings

We developed a method to automatically offer rule-formed
explanationsfor any machinelearning model’s prediction results
on imbalanced tabular data without lowering the performance
measures of the model. We showed that this method explained
the prediction results for 89.7% (391/436) of the patients with
asthmawhom our X GBoost model correctly predicted to incur
asthma hospital visits in the subsequent year. This percentage
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is high enough for routine clinical use of this method. After
further improvement of its accuracy, our asthma outcome
prediction model coupled with the automatic explanation
function could be used for decision support to guide the
alocation of limited asthma care management resources. This
could help boost asthma outcomes and reduce resource use and
costs.

Our extended automatic explanation method could offer
explanations for 69.2% (562/812) of the patients with asthma
who will incur asthma hospital visits in the subsequent year.
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This percentage is smaller than the success rate of 89.7%
(391/436) for our extended automatic explanation method to
explain the correct prediction results of our X GBoost model of
incurring asthma hospital visits in the subsequent year. One
possible reason is that the prediction results of the association
rules are correlated with the prediction results of our X GBoost
model. Among the patients with asthmawho will incur asthma
hospital visitsin the subsequent year and on whom our X GBoost
model gave incorrect predictions, many are difficult cases for
any model to correctly predict or explain their outcomes. Among
the patients with asthma whom our X GBoost model correctly
predicted to incur asthmahospital visitsin the subsequent year,
many are easy cases for using association rules to explain the
outcomes of these cases.

Asthmain adults differs from asthmain children. Asshownin
aprevious study [23], the AUC of our XGBoost model for adults
with asthmawas 0.034 higher than that for children with asthma,
that is, the outcome is easier to predict for adults with asthma
than for children with asthma. Intuitively, the degree of difficulty
in predicting the outcome is positively correlated with that of
using association rules to explain the prediction results of the
model, as each rule is a small predictive model. Hence, our
extended automatic explanation method explained the prediction
results for a larger portion of the adults with asthma than the
children with asthma for whom our XGBoost model correctly
predicted the occurrence of asthma hospital visits in the
subsequent year.

A Guiddinefor Setting the Values of the Parameters
Used in Our Extended Automatic Explanation M ethod

Our extended automatic explanation method has 4 parameters:
the maximum number of items |, alowed on the left-hand
side of an association rule, the minimum commonality threshold
M, the minimum confidence threshold c,;,,, and the confidence
differencethreshold 1. These parameters significantly affect the
performance of the method. Our previous papers [31,32]
outlined the method but gave no guidelinefor setting the values
of these parameters. We offer such a guideline here.

The maximum number of items |, alowed on the left-hand
side of an association rule is usualy small, as long rules are
difficult to understand [35]. Our previous study [27] showed
that for an outcome variable that is relatively easy to predict,
an |, of 4 works well for automatic explanation. When the
outcome variableishard to predict, we canincreasel,,,, dightly
to a number such as 5. Without making the rules too complex
to understand, this helps ensure that the second model can
provide explanations for a large portion of the data instances
that the first model correctly predicts to take one of the
interesting values of the outcome variable.

In the original paper [38] that proposed the concept of
commonality for class-based association rules, mined ruleswere
used to build a classifier. To maximize the accuracy of the
classifier, the minimum commonality threshold m,;,, was set to
14%. However, thisvalueistoo high for automatic explanation.
With such a high value, we cannot obtain enough rules for the
outcome variable srare values. Consequently, for alarge portion
of thefirst model’s prediction results on these val ues, we cannot
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give any explanation. In addition, the mined rules tend to be
too general and have low confidence, causing the users of the
automatic explanation function to have little trust in the
automatically generated explanations. To avoid these problems,
for automati c explanation, we recommend setting m,;,, to avalue
much smaller than 14%. More specificaly, our paper [27]
showed that on reasonably balanced data, a minimum support
threshold s, of 1% and a minimum confidence threshold ¢,
of 50% work well for automatic explanation. By definition,
commonality isaval ue-specific support. Thus, wewould expect
My, and Sy, to have relatively similar optimal values.
Accordingly, we set m,;,, to avalue close to 1% and ¢, to a
value close to 50%. Although a value close to 50% may not
seem so high, it is already much larger than the percentage of
data instances linking to an interesting value of the outcome
variable. For instance, in our case of predicting asthmahospital
visits in patients with asthma, this percentage is 4% [23].
Moreover, a value close to 50% is also much larger than our
XGBoost model’s positive predictive value of 22.65%. The
concrete values of m,;,, and ¢, depend on the data set and are
chosen to meet 2 goals simultaneously and as much as possible.
First, the second model can provide explanations for a large
portion of the data instances that the first model correctly
predicts to take one of the interesting values of the outcome
variable. Often, the harder the outcome variable is to predict,
the smaller my;,, and ¢, need to be to meet this goal. Second,
Crin 1S high enough for users of the automatic explanation
function to trust the automatically generated explanations.

Recall that during the rule-pruning process, each more specific
rule is dropped when there is a more genera rule whose
confidence is not lower by more than the confidence difference
threshold 1. To determine the value of T, we plot the number of
rules left versus 1. As our previous paper [27] shows, initially
when T is small, the number of rules left decreases quickly as
T increases. Once 1 becomes sufficiently large, the number of
rules left approaches an asymptote. Thisis the place to set the
value of T to strike a balance between cutting the number of
rules and retaining high-confidence rules.

FiveClarificationson Usingthe Automatic Explanation
Function

In practice, our automatic explanation method could produce a
paradox. Two patients both fulfilled the left-hand side of the
same rule linking to a poor outcome. The first model correctly
predicts one of them to have a poor outcome. The automatic
explanation function displaysthe rule to explain this prediction
result. Simultaneously, thefirst model correctly predictsagood
outcome on the other patient, for whom the automatic
explanation function shows nothing. In this case, one should
not think that the automatic explanation function actsincorrectly
because it behaves differently in these 2 patients; rather, this
difference occurs because the second patient fulfills someitems
that are not in the rule. These items counter the risk induced by
those on therule€’sleft-hand side and reduce the second patient’s
risk of having a poor outcome to alow level.

When using the automatic explanation function, one needs to
remember that the function is intended to serve as a reminder
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system for decision support rather than areplacement for clinical
judgment. Thefunction isused to help the user quickly identify
some reasonswhy apatient is predicted to have apoor outcome
and some tailored interventions suitable for the patient. If
successful, this helps the clinical user avoid substantia time
laboriously reviewing the records of the patient to assess risk
factors and devise interventions. This also helps reduce the
number of interventionsthat are suitable for the patient, but the
user forgetsto consider. In the end, it is still the user who uses
hisor her own judgment to decide whether to use the prediction
result of the first model and apply suggested interventions to
the patient. If there is doubt about the appropriateness of the
output of the function, the clinical user can always check the
records of the patient to resolve the doubt before making the
final decisionswith the patient.

Different health care systems have different properties and
practice patterns. Consequently, the association rules mined
from the data of one health care system may or may not directly
apply to or work well for another health care system. However,
our automatic explanation method is general. It relies on no
special property of a specific disease, patient cohort, prediction
target, or health care system and can be applied to various
predictive modeling problems and hedth care systems
[27,29,30,43,44], regardless of whether the rules mined from
the dataof 1 health care system generalizeto the data of another
health care system. For any health care system, we would
recommend mining rules from its own data whenever possible,
rather than reusing the rules mined from the data of another
health care system.

In our test case, the second model contained 124,506 association
rules. The left-hand sides of these rules contain various
combinations of 208 distinct itemsrelated to 50 features. Within
1day, aclinicianin our team (MJ) finished manually compiling
the 2 types of knowledge needed by the automatic explanation
function: the values and val ue ranges of the top 50 features that
could possibly have a positive correlation with future asthma
hospital visits and the interventions for the actionable items.
The amount of time needed to perform thismanual compilation
is moderate and acceptable to the cliniciansin our team.

Although many association rules could fit a patient, the total
number of distinct itemsincluded on their left-hand sidesis not
large: a most 35. To avoid overwhelming the automatic
explanation function’s user, we can use the rule diversification
method in our paper [27] to rank these rules. The top few rules
arelikely to contain nonredundant information and are displayed
by default.

Related Work

As described in a survey paper [33] and a book [34], other
researchers previoudy proposed various methods for
automatically explaining the prediction results of machine
learning models. These methods often lower the performance
measures of the model by replacing the original model with a
less accurate model and usualy give nonrule-formed
explanations. Many of these methods work for only a specific

Luoet al

machine learning agorithm rather than for all agorithms.
Moreover, none of these methods can automatically recommend
tailored interventions. In comparison, our extended automatic
explanation method not only offers rule-formed explanations
for the prediction results of any machine learning model on
tabular data but al so recommendstailored interventionswithout
lowering the performance measures of the mode [27].
Compared with nonrule-formed explanations, rule-formed
explanations are easier to comprehend and can more directly
recommend tailored interventions.

Hatwell et a [45] proposed a method to automatically provide
rule-formed explanations for the prediction results of an
AdaBoost model. Thismethod doesnot work for non-AdaBoost
machinelearning algorithms. Therules are unknown beforethe
prediction time and hence cannot be used to automatically
recommend tailored interventions at prediction time. In
comparison, the rules used in our extended automatic
explanation method are precompiled beforehand and used to
automatically recommend tailored interventions at prediction
time.

Limitations

This study has 2 limitations that give interesting directions for
future work:

1. Our data set contained no information on health care use
of the patients outside of Intermountain Healthcare.
Consequently, the features were computed using incomplete
clinica and administrative data [46-49]. In addition, the
prediction target was limited to asthma hospital visits at
Intermountain Healthcare rather than asthmahospital visits
anywhere. It would be interesting to see how the
automatically generated explanations of the prediction
results of the model would differ if we have accessto more
complete clinical and administrative data [50].

2. Qur study used 1 predictive modeling problem, predicting
asthma hospital visitsasthetest case. Although our original
automatic explanation method [27] has been successfully
applied to several predictive modeling problems [29,30],
the generalizability of our extended automatic explanation
method to other predictive modeling problems beyond
predicting asthma hospital visits has not been evaluated.
Conducting such evaluations would help inform the utility
and refine the implementation of our extended method.

Conclusions

Using asthma outcome prediction as ademonstration case, this
study shows for the first time the feasibility of automatically
offering rule-formed explanations for the prediction results of
any machinelearning model onimbalanced tabular datawithout
lowering the performance measures of the model. After further
improvement, our asthma outcome prediction model coupled
with the automatic explanation function could be used for
decision support to guide the allocation of limited asthma care
management resources. Thiscould simultaneoudly help improve
asthma outcomes and reduce resource use and cost.

http://medinform.jmir.org/2020/12/€21965/
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