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Abstract

Background: Asthma is a major chronic disease that poses a heavy burden on health care. To facilitate the allocation of care
management resources aimed at improving outcomes for high-risk patients with asthma, we recently built a machine learning
model to predict asthma hospital visits in the subsequent year in patients with asthma. Our model is more accurate than previous
models. However, like most machine learning models, it offers no explanation of its prediction results. This creates a barrier for
use in care management, where interpretability is desired.

Objective: This study aims to develop a method to automatically explain the prediction results of the model and recommend
tailored interventions without lowering the performance measures of the model.

Methods: Our data were imbalanced, with only a small portion of data instances linking to future asthma hospital visits. To
handle imbalanced data, we extended our previous method of automatically offering rule-formed explanations for the prediction
results of any machine learning model on tabular data without lowering the model’s performance measures. In a secondary analysis
of the 334,564 data instances from Intermountain Healthcare between 2005 and 2018 used to form our model, we employed the
extended method to automatically explain the prediction results of our model and recommend tailored interventions. The patient
cohort consisted of all patients with asthma who received care at Intermountain Healthcare between 2005 and 2018, and resided
in Utah or Idaho as recorded at the visit.

Results: Our method explained the prediction results for 89.7% (391/436) of the patients with asthma who, per our model’s
correct prediction, were likely to incur asthma hospital visits in the subsequent year.

Conclusions: This study is the first to demonstrate the feasibility of automatically offering rule-formed explanations for the
prediction results of any machine learning model on imbalanced tabular data without lowering the performance measures of the
model. After further improvement, our asthma outcome prediction model coupled with the automatic explanation function could
be used by clinicians to guide the allocation of limited asthma care management resources and the identification of appropriate
interventions.

(JMIR Med Inform 2020;8(12):e21965) doi: 10.2196/21965
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Introduction

Background
About 8.4% of Americans have asthma [1]. Each year in the
United States, asthma costs over US $50 billion and results in
more than 2 million emergency department (ED) visits, about
half a million inpatient stays, and more than 3000 deaths [1,2].
A major goal in managing patients with asthma is to reduce
their hospital visits, including ED visits and inpatient stays. As
employed by health plans in 9 of 12 metropolitan communities
[3] and by health care systems such as Intermountain Healthcare,
Kaiser Permanente Northern California [4], and the University
of Washington Medicine, the state-of-the-art method for
achieving this goal is to employ a predictive model to predict
which patients with asthma are highly likely to have poor
outcomes in the future. Once identified, such patients are
enrolled in care management. Care managers then call these
patients on the phone regularly and help them make
appointments for health and related services. By offering such
tailored preventive care properly, up to 40% of future hospital
visits by patients with asthma can be avoided [5-8].

A care management program has limited enrollment capacity
[9]. As a result, the effectiveness of the program depends
critically on the accuracy of the predictive model. Not enrolling
a patient who is likely to have future hospital visits in the
program is a missed opportunity to improve the patient’s
outcomes. Unnecessarily enrolling a patient who is likely to
have no future hospital visit would increase health care costs
and waste scarce care management resources with no potential
benefit. The current models for predicting hospital visits in
patients with asthma are inaccurate, with published sensitivity
of ≤49% and an area under the receiver operating characteristic
curve (AUC) ≤0.81 [4,10-22]. When employed for care
management, these models miss more than half of the patients
who will have future hospital visits and erroneously label many
other patients as likely to have future hospital visits [23]. To
address these issues, we recently built an extreme gradient
boosting (XGBoost) [24] machine learning model to predict
asthma hospital visits in the subsequent year in patients with
asthma [23]. Compared with previous models, our model raised
the AUC by at least 0.049. However, like most machine learning
models, our model offers no explanation of its prediction results.
This creates a barrier for use in care management, where care
managers need to understand why a patient is at risk for poor
outcomes to make care management enrollment decisions and
identify suitable interventions for the patient.

Objectives
To overcome the abovementioned barrier, this study aims to
develop a method to automatically explain the prediction results
of our model and recommend tailored interventions without
lowering any of the performance measures of our model, such
as AUC, accuracy, sensitivity, specificity, positive predictive
value, and negative predictive value.

In the following sections, we describe our methods and the
evaluation results. A list of abbreviations adopted in this paper
is provided at the end of the paper.

Methods

We used the same patient cohort, data set, prediction target,
cutoff threshold for binary classification, method for data
preprocessing, including data cleaning and data normalization,
and method for partitioning the whole data set into the training
and test sets that we described in our prior paper [23].

Ethics Approval and Study Design
This study consists of a secondary analysis of retrospective data
and was evaluated and approved by the institutional review
boards of the University of Washington Medicine, University
of Utah, and Intermountain Healthcare.

Patient Population
Our patient cohort included all patients with asthma who
received care at any Intermountain Healthcare facility between
2005 and 2018 and resided in Utah or Idaho as recorded at the
visit. Intermountain Healthcare is the largest health care system
in Utah and southeastern Idaho. It operates 185 clinics and 22
hospitals and provides care for approximately 60% of people
living in that region. A patient was considered asthmatic in a
specific year if in the encounter billing database, the patient had
one or more asthma diagnosis codes during that year
(International Classification of Diseases, ninth revision [ICD-9]:
493.0x, 493.1x, 493.8x, 493.9x; International Classification of
Diseases, tenth revision [ICD-10]: J45.x) [12,25,26]. The only
exclusion criterion from the analysis in any given year was
patient death during that year.

Data Set
We used a structured clinical and administrative data set
provided by the enterprise data warehouse of Intermountain
Healthcare. The data set covered all visits by the patient cohort
within Intermountain Healthcare between 2005 and 2018.

Prediction Target (the Dependent or Outcome
Variable)
For each patient identified as asthmatic in a specific year, the
outcome was whether any asthma hospital visit occurred in the
subsequent year. In this paper, an asthma hospital visit refers
to an ED visit or an inpatient stay at an Intermountain Healthcare
facility with a principal diagnosis of asthma (ICD-9: 493.0x,
493.1x, 493.8x, 493.9x; ICD-10: J45.x). For training and testing
the XGBoost model and automatic explanation method, data of
every patient with asthma up to the end of every year were used
to predict the patient’s outcome in the subsequent year.

Predictive Model and Features (Independent
Variables)
Our recent XGBoost model [23] uses 142 features to predict
asthma hospital visits in the subsequent year in patients with
asthma. As listed in the multimedia appendix in our previous
study [23], these features were computed from the structured
attributes in our data set covering a wide range of categories,
such as patient demographics, visits, medications, laboratory
tests, vital signs, diagnoses, and procedures. Each input data
instance for our model has these 142 features, targets a pair of
a patient with asthma and a year, and is employed to predict the
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patient’s outcome in the subsequent year. We set the cutoff
threshold for binary classification at the top 10% of patients
with asthma having the largest predicted risk. These patients
were predicted to incur asthma hospital visits in the subsequent
year.

Automatic Explanation Method
Previously, we developed an automated method to offer
rule-formed explanations for any machine learning model’s
prediction results on tabular data and recommend tailored
interventions without lowering the performance measures of
the model [27,28]. Our method was initially demonstrated to
predict the diagnosis of type 2 diabetes [27]. Later, other
researchers successfully applied our method to predict death or
lung transplantation in patients with cystic fibrosis [29], predict
cardiac death in patients with cancer, and use predictions to
manage preventive care, heart transplant waiting list, and
posttransplant follow-ups in patients with cardiovascular
diseases [30]. In our method, each rule used for providing
explanations has a performance measure termed confidence that
must be greater than or equal to a given minimum confidence
threshold cmin. Our original automatic explanation method [27]
was designed for reasonably balanced data, where distinct values
of the outcome variable appear with relatively similar
frequencies. Recently, we outlined an extension of this method
[31,32] to handle imbalanced data, where one value of the
outcome variable appears much less often than another. This
data imbalance exists when predicting asthma hospital visits in
patients with asthma, where only about 4% of the data instances
are linked to future asthma hospital visits [23]. In our extended
method, each rule used for providing explanations has a second
performance measure termed commonality, which must be
greater than or equal to a given minimum commonality threshold
mmin. To date, no technique has been developed to efficiently
mine the rules with commonality greater than or equal to mmin,
compute their confidence, and eliminate those rules with
confidence less than cmin in the extended method, despite such
techniques being essential for handling large data sets. No
guideline exists for setting the values of the parameters used in
the extended method, although they greatly impact the
performance of the extended method. The extended method has
never been implemented in computer code. Moreover, the
effectiveness of the extended method has not been evaluated or
demonstrated.

In this study, we made the following innovative contributions:

1. We provide several techniques for efficiently mining the
rules with commonality greater than or equal to mmin,
computing their confidence, and eliminating those rules
with confidence less than cmin in the extended automatic
explanation method. This completes our extended method.
Although our extended method was designed for imbalanced
data, it can also be used on reasonably balanced data to
improve the efficiency of mining the rules needed to provide
automatic explanations. Among the existing automatic
explanation methods for machine learning prediction results,
our method is the only one that can automatically

recommend tailored interventions [33,34]. This capability
is desired for many medical applications.

2. We present a guideline to set the values of the parameters
used in the extended method (see the Discussion section).

3. We completed the first computer coding implementation
of the extended method and explained it in this paper.

4. We demonstrate the effectiveness of the extended method
in predicting asthma hospital visits in patients with asthma.

Review of Our Original Automatic Explanation Method

Main Idea

Our automatic explanation method separates explanation and
prediction by employing 2 models concurrently, each for a
distinct purpose. The first model is used to make predictions
and can be any model that takes continuous and categorical
features as its inputs. Usually, we adopt the most accurate model
as the first model to avoid lowering the performance measures
of the model. The second model uses class-based association
rules [35,36] mined from historical data to explain the prediction
results of the first model rather than to make predictions. Before
using a standard association rule mining method like Apriori
to mine the rules [36], each continuous feature is first
transformed into a categorical feature through automatic
discretization [35,37]. Each rule shows a feature pattern
associated with a value w of the outcome variable in the form
of q1 AND q2 AND … AND qn→w. The values of n and w can
change across rules. For binary classification distinguishing
poor versus good outcomes, w is usually the poor outcome value.
Every item qi (1≤i≤n) is a feature-value pair (f, u) showing
feature f has value u or a value within u, depending on whether
u is a value or a range. The rule points out that a patient’s
outcome variable is inclined to have value w if the patient fulfills
q1, q2, ..., and qn. An example rule is as follows:

• The patient had ≥12 ED visits in the past year

AND the patient had ≥21 distinct medications in all asthma
medication orders in the past year

→the patient will incur one or more asthma hospital visits in
the subsequent year.

The Association Rule Mining and Pruning Processes

The association rule mining process is controlled by 2
parameters: the minimum support threshold smin and the
minimum confidence threshold cmin [36]. For any rule l: q1 AND
q2 AND … AND qn→w, the percentage of data instances
satisfying q1, q2, ..., and qn and linking to w is termed l’s support
showing l’s coverage. Among all data instances satisfying q1,
q2, ..., and qn, the percentage of data instances linking to w is
termed l’s confidence reflecting l’s precision. Our original
automatic explanation method uses rules with support ≥smin and
confidence ≥cmin. For binary classification distinguishing poor
versus good outcomes, we usually focus on the rules that have
right-hand sides containing the poor outcome value.

Usually, numerous association rules have support and
confidence ≥smin and ≥cmin, respectively. To avoid overwhelming
the users of the automatic explanation function with too many
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rules, we used 4 techniques to reduce the number of rules in the
second model. First, only features adopted by the first model
are used to form rules. Second, a clinician in the automatic
explanation function’s design team checks all possible values
and value ranges of these features and marks those that could
possibly have a positive correlation with the values of the
outcome variable reflecting poor outcomes. Only those marked
values and value ranges of these features are allowed to show
up in the rules. Third, the rules are limited to having no more
than a given small number of items on their left-hand sides, as
long rules are hard to understand. A typical value of this number
is 4. Fourth, each more specific rule is dropped when there exists
a more general rule with confidence that is not lower by more
than a given threshold τ≥0. More specifically, consider 2 rules,
l1 and l2, whose right-hand sides have the same value. The items
on the left-hand side of l2 are a superset of those on the left-hand
side of l1. We drop l2 if l1’s confidence is ≥l2’s confidence-τ.

For the association rules remaining after the rule-pruning
process, a clinician in the automatic explanation function’s
design team gathers zero or more interventions targeting the
reason the rule presents. A rule is called actionable if one or
more interventions are compiled for it. Usually, each
intervention links to one of the feature-value pair items on the
rule’s left-hand side. Such an item is called actionable. Thus,
an actionable rule contains at least 1 actionable item. To expedite
the intervention compilation process, the clinician can identify
all of the actionable items and compile interventions for each
of them. All of the interventions linking to the actionable items
on a rule’s left-hand side are automatically connected to the
rule.

Our automatic explanation method uses 2 types of knowledge
manually compiled by a clinician: the values and value ranges
of the features that could possibly have a positive correlation
with the outcome variable’s values reflecting poor outcomes
and the interventions for the actionable items. Our automatic
explanation method is fully automatic, except for the knowledge
compilation step.

The Explanation Method

For each patient for whom the first model predicts a poor
outcome, we explain the prediction result by listing the
association rules in the second model whose right-hand sides
have the corresponding poor outcome value and whose left-hand
sides are fulfilled by the patient, whereas ignoring the rules in
the second model whose right-hand sides have a value that
differs from the corresponding poor outcome value and whose
left-hand sides are fulfilled by the patient. Every rule listed
offers a reason why the patient is predicted to have a poor
outcome. For each actionable rule listed, the linked interventions
are displayed next to it. This helps the user of the automatic
explanation function find tailored inventions suitable for the
patient. Typically, the rules in the second model describe
common reasons for poor outcomes. However, some patients
will have poor outcomes for rare reasons not covered by these
rules. Consequently, the second model can provide explanations
for most, but not all, of the patients for whom the first model
predicts poor outcomes.

The Previously Outlined Extension of the Original
Automatic Explanation Method
Our original automatic explanation method was designed for
reasonably balanced data and is unsuitable for imbalanced data,
where one value of the outcome variable appears much less
often than another. If the minimum support threshold smin is
large on imbalanced data, we cannot obtain enough association
rules for the outcome variable's rare values. Consequently, for
a large portion of the first model's prediction results on these
values, we cannot give any explanation. Conversely, if smin is
too small, the rule mining process will generate too many rules
as intermediate results, most of which will be filtered out in the
end. This easily exhausts computer memory and makes the rule
mining process extremely slow. In addition, many overfitted
rules will be produced in the end, making it difficult for
clinicians to examine the mined rules.

In our recently outlined extension of the original automatic
explanation method [31,32] to handle imbalanced data, we
replace support with value-specific support termed commonality
[38]. For any rule l: q1 AND q2 AND ... AND qn→w, among
all data instances linking to w, the percentage of data instances
satisfying q1, q2, ..., and qn is termed l’s commonality showing
l’s coverage within the context of w. Moreover, we replace the
minimum support threshold smin with the minimum commonality
threshold mmin. Instead of using rules whose support is ≥smin

and whose confidence is ≥ the minimum confidence threshold
cmin, we used rules whose commonality is ≥mmin and whose
confidence is ≥cmin.

Each value of the outcome variable falls into one of 2 possible
cases. In the first case, the value is interesting and represents
an abnormal case. The prediction results of this value require
attention and explanations. In the second case, the value is
uninteresting and represents a normal case. The prediction
results of this value require neither special attention nor
explanation. Typically, each interesting value is a rare one
reflecting poor outcomes. The second model contains only the
association rules related to interesting values. To mine these
rules, we proceeded in 2 steps:

• Step 1: For each interesting value w, we applied a standard
association rule mining method like Apriori [36] to the set
Sw of data instances linking to w to mine the rules related
to w and with support on Sw ≥ the minimum commonality
threshold mmin. These rules have commonality ≥mmin on the
set Sall of all data instances. As Sw is much smaller than Sall,
mining these rules from Sw is much more efficient than first
applying the association rule mining method to Sall to obtain
the rules with support on Sall ≥mmin×|Sw|/|Sall|, and then
filtering out those rules unrelated to w. Here, |S| denotes
the cardinality of set S.

• Step 2: For each rule mined from Sw, we compute its
confidence on Sall. We keep it only if its confidence on Sall

is ≥ the minimum confidence threshold cmin.

Techniques for Efficiently Mining the Association Rules
Whose Commonality is ≥mmin, Computing Their
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Confidence, and Eliminating Those Rules Whose
Confidence is <cmin in the Extended Automatic
Explanation Method
When the set Sall of all data instances includes many data
instances and features, we often find that the set Sw of data
instances linking to an interesting value w contains many data
instances, and the first model adopts many features. Without
limiting the number of data instances in Sw and the number of
features, numerous (eg, several billion) association rules would
be mined from Sw in Step 1. This makes the computer easily
run out of memory and the rule mining process extremely slow.
In addition, many rules will be produced at the end, making it
difficult for clinicians to examine them. To address this issue,
we can use one or more of the following approaches:

1. We take a random sample of data instances Ssample from Sall

and use Ssample rather than Sall to mine the rules [39].
2. Before the rule mining process starts, each data instance is

transformed into a transaction. To reduce its size, we
remove from the transaction those values and value ranges
that the clinician in the automatic explanation function’s
design team marks as not allowed to show up in any of the
rules.

3. Instead of using all of the features adopted by the first
model, we use only the top features to mine the rules.
Usually, the top features contain most of the predictive
power possessed by all features adopted by the first model
[23]. If the machine learning algorithm used to build the
first model is like XGBoost [24] or random forest, which
automatically computes each feature’s importance value,
the top features are those with the highest importance
values. Otherwise, if the machine learning algorithm used
to build the first model does not automatically compute
each feature’s importance value, we can use an automatic
feature selection method [40] such as the information gain
method to choose the top features. Alternatively, we can
use XGBoost or random forest to construct a model,
automatically compute each feature’s importance value,
and choose the top features with the highest importance
values.

In the following, we focus on the case of using the set Sall of all
data instances to mine the association rules. The case of using
a random sample of data instances Ssample from Sall to mine the
rules can be handled in a similar way. To compute the rules’
confidence values, we transformed Sall to the matrix format,
with each row of the matrix linking to a distinct data instance
and each column of the matrix linking to a distinct value or
value range of a feature. For medical data, the matrix is often
not very sparse. In this case, we can use a separate bitmap to
represent each column of the matrix in a condensed manner.
For each rule l: q1 AND q2 AND ... AND qn→w, we performed
efficient bitmap operations to pinpoint the data instances
satisfying q1, q2, ..., and qn and needed for computing l’s
confidence.

Among all the mined association rules related to an interesting
value w, we needed to identify those whose confidence on the

set Sall of all data instances is ≥ the minimum confidence
threshold cmin. To expedite the identification process, we
proceeded as follows: for each rule l: q1 AND q2 AND ... AND
qn→w, let lw denote the number of data instances satisfying q1,
q2, ..., and qn and linking to w, and l¬w denote the number of
data instances satisfying q1, q2, ..., and qn and not linking to w.

Our key insight was that l’s confidence on Sall lw/(lw+l¬w) is

<cmin if and only if l¬w is >Tl lw×(1-cmin)/cmin. We partitioned
Sall into 2 subsets: Sw containing all of the data instances linking
to w and S¬w containing all of the data instances not linking to
w. Using the bitmap method mentioned above, we went over
all of the data instances in Sw to compute lw. Then, we went over
the data instances in S¬w one by one to count the data instances
satisfying q1, q2, ..., and qn and not linking to w. Once this count
is >Tl, we know l’s confidence on Sall is <cmin, stop the counting
process, and drop l. This saves the overhead of going through
the remaining data instances in S¬w to compute l¬w. Otherwise,
if this count is ≤Tl when we reach the last data instance in S¬w,
we keep l, obtain l¬w, and compute l’s confidence on Sall, which
must be ≥cmin.

Computer Coding Implementation
We implemented our extended automatic explanation method
in computer code, using a hybrid of the C and R programming
languages. As R is an interpreted language and inefficient at
handling certain operations on large data sets, we wrote several
parts of our code in C to improve our code’s execution speed.
Considering that our asthma outcome variable is hard to predict,
we limited the association rules to have at most 5 items on their
left-hand sides (see the guideline in the Discussion section).
We set the minimum confidence threshold cmin to 50% and the
minimum commonality threshold mmin to 0.2%.

Data Analysis

The Training and Test Set Partitioning
As outcomes came from the subsequent year, our data set
included 13 years of effective data (2005-2017) during the 14
years between 2005 and 2018. To mirror the practical use of
our XGBoost model and our extended automatic explanation
method, the 2005 to 2016 data were used as the training set to
train our XGBoost model and mine the association rules used
by our extended method. The 2017 data were used as the test
set to evaluate the performance of our XGBoost model and
extended method. We used the full set of 142 features to make
predictions and the top 50 features that our XGBoost model
[23] ranked with the highest importance values to mine the
association rules. Our XGBoost model reached an AUC of 0.859
using the full set of 142 features [23] and an AUC of 0.857
using the top 50 features.

Presenting 5 Example Association Rules Used in the
Second Model
To give the reader a concrete feeling of the association rules
used in the second model, we randomly chose 5 example rules
to present in this paper.
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Performance Metrics
We evaluated the performance of our extended automatic
explanation method in several ways. The main performance
metric that we used to show our extended method’s explanation
capability was the percentage of patients for whom our extended
method could provide explanations among the patients with
asthma whom our XGBoost model correctly predicted to incur
asthma hospital visits in the subsequent year. We reported both
the average number of rules and the average number of
actionable rules fitting such a patient. A rule fits a patient if the
patient fulfills all of the items on its left-hand side.

As shown in our previous study [27], multiple rules fitting a
patient frequently differ from each other by a single
feature-value pair item on their left-hand sides. When many
rules fit a patient, the amount of nonredundant information
embedded in them is often much less than the number of these
rules. To give a full picture of the information richness of the
automatic explanations provided for the patients, we present 3
distributions of the patients with asthma whom our XGBoost

model correctly predicted to incur asthma hospital visits in the
subsequent year: (1) by the number of rules fitting a patient, (2)
by the number of actionable rules fitting a patient, and (3) by
the number of distinct actionable items appearing in all of the
rules fitting a patient.

Results

Our Patient Cohort’s Demographic and Clinical
Characteristics
Every data instance targets a distinct pair of a patient with
asthma and a year. Table 1 lists the demographic and clinical
characteristics of our patient cohort between 2005 and 2016,
which included 182,245 patients. Table 2 lists the demographic
and clinical characteristics of our patient cohort in 2017, which
included 19,256 patients. These 2 sets of characteristics are
reasonably similar. Between 2005 and 2016, 3.59%
(11,332/315,308) of data instances were related to asthma
hospital visits in the subsequent year. In 2017, this percentage
was 4.22% (812/19,256).
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Table 1. Demographic and clinical characteristics of the Intermountain Healthcare patients with asthma between 2005 and 2016.

Data instances
(n=315,308), n (%)

Data instances related to asthma hospital
visits in the subsequent year (n=11,332),
n (%)

Data instances related to no asthma hospi-
tal visit in the subsequent year
(n=303,976), n (%)

Characteristics

Gender

188,091 (59.65)6163 (54.39)181,928 (59.85)Female

127,217 (40.35)5169 (45.61)122,048 (40.15)Male

Age (years)

46,881 (14.87)621 (5.48)46,260 (15.22)≥65

177,439 (56.27)5003 (44.15)172,436 (56.73)18 to 65

53,162 (16.86)2590 (22.86)50,572 (16.64)6 to <18

37,826 (12.00)3118 (27.52)34,708 (11.42)<6

Ethnicity

252,599 (80.11)8157 (71.98)244,442 (80.41)Non-Hispanic

29,293 (9.29)2279 (20.11)27,014 (8.89)Hispanic

33,416 (10.60)896 (7.91)32,520 (10.70)Unknown or not reported

Race

282,626 (89.63)9420 (83.13)273,206 (89.88)White

4288 (1.36)411 (3.63)3877 (1.28)Native Hawaiian or other Pacific
Islander

5751 (1.82)460 (4.06)5291 (1.74)Black or African American

2197 (0.70)77 (0.68)2120 (0.70)Asian

2509 (0.80)214 (1.89)2295 (0.76)American Indian or Alaska Na-
tive

17,937 (5.69)750 (6.62)17,187 (5.65)Unknown or not reported

Duration of asthma (years)

80,476 (25.52)3666 (32.35)76,810 (25.27)>3

234,832 (74.48)7666 (67.65)227,166 (74.73)≤3

Insurance

28,513 (9.04)1902 (16.78)26,611 (8.75)Self-paid or charity

80,154 (25.42)3238 (28.57)76,916 (25.30)Public

206,641 (65.54)6192 (54.64)200,449 (65.94)Private

Smoking status

260,453 (82.60)8952 (79.00)251,501 (82.74)Never smoker or unknown

19,304 (6.12)569 (5.02)18,735 (6.16)Former smoker

35,551 (11.28)1811 (15.98)33,740 (11.10)Current smoker

Comorbidity

20,892 (6.63)471 (4.16)20,421 (6.72)Sleep apnea

14,756 (4.68)592 (5.22)14,164 (4.66)Sinusitis

5542 (1.76)440 (3.88)5102 (1.68)Premature birth

36,291 (11.51)1076 (9.50)35,215 (11.58)Obesity

56,196 (17.82)1309 (11.55)54,887 (18.06)Gastroesophageal reflux

4927 (1.56)443 (3.91)4484 (1.48)Eczema

458 (0.15)11 (0.10)447 (0.15)Cystic fibrosis

12,887 (4.09)391 (3.45)12,496 (4.11)Chronic obstructive pulmonary
disease
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Data instances
(n=315,308), n (%)

Data instances related to asthma hospital
visits in the subsequent year (n=11,332),
n (%)

Data instances related to no asthma hospi-
tal visit in the subsequent year
(n=303,976), n (%)

Characteristics

429 (0.14)35 (0.31)394 (0.13)Bronchopulmonary dysplasia

56,961 (18.07)1716 (15.14)55,245 (18.17)Anxiety or depression

4715 (1.50)181 (1.60)4534 (1.49)Allergic rhinitis

Asthma medication prescription

136,642 (43.34)7324 (64.63)129,318 (42.54)Systemic corticosteroid

129,528 (41.08)7545 (66.58)121,983 (40.13)Short-acting, inhaled beta-2 ago-
nist

121 (0.04)7 (0.06)114 (0.04)Mast cell stabilizer

1813 (0.58)69 (0.61)1744 (0.57)Long-acting beta-2 agonist

35,507 (11.26)2320 (20.47)33,187 (10.92)Leukotriene modifier

44,992 (14.27)2196 (19.38)42,796 (14.08)Inhaled corticosteroid/long-act-
ing beta-2 agonist combination

78,105 (24.77)4539 (40.05)73,566 (24.20)Inhaled corticosteroid
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Table 2. Demographic and clinical characteristics of the Intermountain Healthcare patients with asthma in 2017.

Data instances
(n=19,256), n (%)

Data instances related to asthma hospi-
tal visits in the subsequent year
(n=812), n (%)

Data instances related to no asthma hos-
pital visit in the subsequent year
(n=18,444), n (%)

Characteristics

Gender

11,440 (59.41)439 (54.06)11,001 (59.65)Female

7816 (40.59)373 (45.94)7443 (40.35)Male

Age (years)

3879 (20.14)46 (5.67)3833 (20.78)≥65

10,265 (53.31)386 (47.54)9879 (53.56)18 to 65

3235 (16.80)181 (22.29)3054 (16.56)6 to <18

1877 (9.75)199 (24.51)1678 (9.10)<6

Ethnicity

16,860 (87.56)618 (76.11)16,242 (88.06)Non-Hispanic

2212 (11.49)192 (23.65)2020 (10.95)Hispanic

184 (0.96)2 (0.25)182 (0.99)Unknown or not reported

Race

17,706 (91.95)681 (83.87)17,025 (92.31)White

346 (1.80)47 (5.79)299 (1.62)Native Hawaiian or other Pacific
Islander

403 (2.09)42 (5.17)361 (1.96)Black or African American

205 (1.06)10 (1.23)195 (1.06)Asian

159 (0.83)13 (1.60)146 (0.79)American Indian or Alaska Native

437 (2.27)19 (2.34)418 (2.27)Unknown or not reported

Duration of asthma (years)

8123 (42.18)389 (47.91)7734 (41.93)>3

11,133 (57.82)423 (52.09)10,710 (58.07)≤3

Insurance

1278 (6.64)142 (17.49)1136 (6.16)Self-paid or charity

5128 (26.63)208 (25.62)4920 (26.68)Public

12,850 (66.73)462 (56.90)12,388 (67.17)Private

Smoking status

14,539 (75.50)583 (71.80)13,956 (75.67)Never smoker or unknown

2326 (12.08)83 (10.22)2243 (12.16)Former smoker

2391 (12.42)146 (17.98)2245 (12.17)Current smoker

Comorbidity

3003 (15.60)78 (9.61)2925 (15.86)Sleep apnea

780 (4.05)34 (4.19)746 (4.04)Sinusitis

476 (2.47)41 (5.05)435 (2.36)Premature birth

3505 (18.20)116 (14.29)3389 (18.37)Obesity

3548 (18.43)71 (8.74)3477 (18.85)Gastroesophageal reflux

307 (1.59)34 (4.19)273 (1.48)Eczema

95 (0.49)1 (0.12)94 (0.51)Cystic fibrosis

1056 (5.48)23 (2.83)1033 (5.60)Chronic obstructive pulmonary dis-
ease

JMIR Med Inform 2020 | vol. 8 | iss. 12 | e21965 | p. 9http://medinform.jmir.org/2020/12/e21965/
(page number not for citation purposes)

Luo et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Data instances
(n=19,256), n (%)

Data instances related to asthma hospi-
tal visits in the subsequent year
(n=812), n (%)

Data instances related to no asthma hos-
pital visit in the subsequent year
(n=18,444), n (%)

Characteristics

15 (0.08)3 (0.37)12 (0.07)Bronchopulmonary dysplasia

3946 (20.49)131 (16.13)3815 (20.68)Anxiety or depression

392 (2.04)10 (1.23)382 (2.07)Allergic rhinitis

Asthma medication prescription

12,020 (62.42)693 (85.34)11,327 (61.41)Systemic corticosteroid

13,785 (71.59)739 (91.01)13,046 (70.73)Short-acting, inhaled beta-2 agonist

8 (0.04)0 (0.00)8 (0.04)Mast cell stabilizer

52 (0.27)5 (0.62)47 (0.25)Long-acting beta-2 agonist

3573 (18.56)209 (25.74)3364 (18.24)Leukotriene modifier

4400 (22.85)222 (27.34)4178 (22.65)Inhaled corticosteroid/long-acting
beta-2 agonist combination

7241 (37.60)424 (52.22)6817 (36.96)Inhaled corticosteroid

For each demographic or clinical characteristic, Table 3 presents
the statistical test results on whether the data instances related
to asthma hospital visits in the subsequent year and those related
to no asthma hospital visit in the subsequent year had the same

distribution. When the P value was ≥.05, the 2 sets of data
instances had the same distribution. Otherwise, they had
different distributions. All P values <.05 are shown in italics in
Table 3.
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Table 3. For each demographic or clinical characteristic, the statistical test results on whether the data instances related to asthma hospital visits in the
subsequent year and those related to no asthma hospital visit in the subsequent year had the same distribution.

P value for the 2017 dataP value for the 2005-2016 dataCharacteristics

.002 a<.001 a, bGender

<.001 c<.001 cAge (years)

<.001 a<.001 aEthnicity

<.001 a<.001 aRace

<.001 c<.001 cDuration of asthma (years)

<.001 a<.001 aInsurance category

<.001 a<.001 aSmoking status

Comorbidity

<.001 a<.001 aSleep apnea

.91a.006 aSinusitis

<.001 a<.001 aPremature birth

.004 a<.001 aObesity

<.001 a<.001 aGastroesophageal reflux

<.001 a<.001 aEczema

.20a.21aCystic fibrosis

<.001 a<.001 aChronic obstructive pulmonary disease

.02 a<.001 aBronchopulmonary dysplasia

.002 a<.001 aAnxiety or depression

.13a.38aAllergic rhinitis

Asthma medication prescription

<.001 a<.001 aSystemic corticosteroid

<.001 a<.001 aShort-acting, inhaled beta-2 agonist

>.99a.29aMast cell stabilizer

.11a.67aLong-acting beta-2 agonist

<.001 a<.001 aLeukotriene modifier

.002 a<.001 aInhaled corticosteroid/long-acting beta-2 agonist combination

<.001 a<.001 aInhaled corticosteroid

aP values obtained by performing the chi-square two-sample test.
bP values <.05 marked in italics.
cP values obtained by performing the Cochran-Armitage trend test [41].

The Number of Association Rules Left at Different
Phases of Rule Mining and Pruning Processes
The association rules used in the second model were mined on
the training set. Using the top 50 features that were ranked by
our XGBoost model with the highest importance values, we
obtained 559,834 association rules. Figure 1 presents the number
of rules left versus the confidence difference threshold τ. Recall

that each more specific rule is dropped when there exists a more
general rule whose confidence is not lower by more than τ.
Initially, when τ is small, the number of rules left decreases
quickly as τ increases. Once τ becomes 0.15 or larger, the
number of rules left approaches an asymptote. Accordingly, in
our computer coding implementation, we set τ to 0.15, resulting
in 132,816 remaining rules.
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Figure 1. The number of association rules left versus τ.

A clinical expert on asthma (MJ) in our team marked the values
and value ranges of the top 50 features that could possibly have
a positive correlation with future asthma hospital visits. After
dropping the rules including any other value or value range,
124,506 rules were left. Each rule explains why a patient is
predicted to incur one or more asthma hospital visits in the
subsequent year. Almost all (124,502/124,506, 100.00%) of

these rules were actionable. The left-hand sides of these rules
contain various combinations of 208 distinct items related to
50 features.

Example Association Rules in the Second Model
Table 4 presents 5 sample association rules randomly chosen
from the 124,502 actionable rules used in the second model.
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Table 4. Five sample association rules.

Intervention compiled for the itemImplication of the itemItem on the left-hand side of the rule

Rule 1: The patient had ≥12 EDa visits in the past year AND the patient had ≥21 distinct medications in all of the asthma medication orders
in the past year → the patient will incur one or more asthma hospital visits in the subsequent year.

Implement control strategies to avoid the
need for emergency care

Having many ED visits reflects poor asthma
control

The patient had ≥12 ED visits in the past year

Tailor prescribed asthma medications and
help the patient maximize asthma control
medication adherence

Using many asthma medications reflects poor
asthma control

The patient had ≥21 distinct medications in all of the
asthma medication orders in the past year

Rule 2: The patient had ≥9 distinct asthma medication prescribers in the past year AND the block group where the patient lives has a national
health literacy score [42] ≤244 AND the patient had ≥21 distinct medications in all of the asthma medication orders in the past year → the
patient will incur one or more asthma hospital visits in the subsequent year.

Provide the patient with social resources
to address social chaos that leads to inef-
fective access to health care

Having many asthma medication prescribers re-
flects poor care continuity, which often leads to
poor outcomes

The patient had ≥9 distinct asthma medication pre-
scribers in the past year

Improve education access in the area
where the patient lives to help increase
health literacy

Having low health literacy is correlated with
poor outcomes

The block group where the patient lives has a national
health literacy score ≤244

Rule 3: The patient had a total of ≥25 units of systemic corticosteroids ordered in the past year AND the patient had ≥12 ED visits in the past
year AND the patient is Hispanic → the patient will incur one or more asthma hospital visits in the subsequent year.

Tailor prescribed asthma medications and
help the patient maximize asthma control
medication adherence

Systemic corticosteroids are one type of asthma
medication intended for short-term use to relieve
acute asthma exacerbations. Using a lot of sys-
temic corticosteroids reflects poor asthma control

The patient had a total of ≥25 units of systemic corticos-
teroids ordered in the past year

—bIn the US, Hispanic people have a disproportion-
ately high rate of poor asthma outcomes

The patient is Hispanic

Rule 4: The patient had ≥4 major visits for asthma in the past year AND the patient is between 11 and 35 years old AND the patient had no
outpatient visit in the past year AND the average length of an inpatient stay of the patient in the past year is >1.75 and ≤2.95 days → the
patient will incur one or more asthma hospital visits in the subsequent year.

Implement control strategies to avoid the
need for emergency care

As defined in our paper [23], a major visit for
asthma is an inpatient stay or ED visit having
an asthma diagnosis code, or an outpatient visit

The patient had ≥4 major visits for asthma in the past
year

having a primary diagnosis of asthma. Intuitive-
ly, all else being equal, a patient having major
visits for asthma has a higher likelihood of incur-
ring future asthma hospital visits than a patient
having only outpatient visits with asthma as a
secondary diagnosis

Implement control strategies to avoid the
need for emergency care

Having inpatient stays reflects poor asthma
control

The average length of an inpatient stay of the patient in
the past year is >1.75 and ≤2.95 days

Help the patient obtain a primary care
provider if the patient does not already
have one

For good asthma management, a patient with
asthma is supposed to see the primary care
provider regularly. Having no outpatient visit
often implies that the patient has no primary care
provider

The patient had no outpatient visit in the past year

Rule 5: The patient had ≥4 major visits for asthma in the past year AND the patient's last ED visit is within the last 49 days AND the patient
had between 6 and 8 distinct asthma medication prescribers in the past year AND the patient had a total of ≥36 units of asthma medications
ordered in the past year AND >23.7% and ≤33.3% of families in the block group where the patient lives are below 150% of the federal
poverty level → the patient will incur one or more asthma hospital visits in the subsequent year.

Implement control strategies to avoid the
need for emergency care

Having a recent ED visit reflects poor asthma
control

The patient’s last ED visit is within the last 49 days

Tailor prescribed asthma medications and
help the patient maximize asthma control
medication adherence

Taking many asthma medications reflects poor
asthma control

The patient had a total of ≥36 units of asthma medica-
tions ordered in the past year

Provide living wage programs in the area
where the patient lives to increase re-
sources for health care

Poverty correlates with poor outcomes>23.7% and ≤33.3% of families in the block group
where the patient lives are below 150% of the federal
poverty level
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aED: emergency department.
bNot applicable.

Performance Measures Reached by the Extended
Automatic Explanation Method
Our extended automatic explanation method was assessed on
the test set. This method explained the prediction results for
92.4% (182/197) of the adults with asthma (age ≥18 years) and
87.5% (209/239) of the children with asthma (age <18 years)
for whom our XGBoost model correctly predicted the
occurrence of asthma hospital visits in the subsequent year.
Combined, our extended method explained the prediction results
for 89.7% (391/436) of the patients with asthma whom our
XGBoost model correctly predicted to incur asthma hospital
visits in the subsequent year. For each such patient, our extended
method offered an average of 974.01 (SD 1600.48) explanations,
974.00 (SD 1600.47) of which were actionable. Each
explanation came from 1 rule. When confined to using
actionable rules, our extended method explained the prediction
results for 89.7% (391/436) of the patients with asthma for
whom our XGBoost model correctly predicted the occurrence
of asthma hospital visits in the subsequent year.

For the patients for whom our extended automatic explanation
method could offer explanations of our XGBoost model’s

correct prediction results of incurring asthma hospital visits in
the subsequent year, the average number of distinct actionable
items appearing in all of the rules fitting a patient was 21.50
(SD 8.71). This number is much less than 974.01, the average
number of actionable rules fitting such a patient.

For the patients with asthma whom our XGBoost model
correctly predicted to incur asthma hospital visits in the
subsequent year, Figure 2 shows the distribution of patients by
the number of rules fitting a patient. This distribution has a long
tail and is highly skewed toward the left. As the number of rules
fitting a patient becomes larger, the number of patients to each
of whom this number of rules apply is inclined to drop
nonmonotonically. The largest number of rules fitting a patient
is high, 9223, although only 1 patient fits such a high number
of rules.

For the patients with asthma whom our XGBoost model
correctly predicted to incur asthma hospital visits in the
subsequent year, Figure 3 shows the distribution of patients by
the number of actionable rules fitting a patient. This distribution
is similar to that shown in Figure 2. The largest number of
actionable rules fitting a patient is high, 9223, although only 1
patient fits such a high number of actionable rules.

Figure 2. Distribution of patients by the number of rules fitting a patient for the patients with asthma whom our extreme gradient boosting model
correctly predicted to incur asthma hospital visits in the subsequent year. (a) When no limit is placed on the number of rules fitting a patient. (b) When
the number of rules fitting a patient is ≤250.
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Figure 3. Distribution of patients by the number of actionable rules fitting a patient for the patients with asthma whom our extreme gradient boosting
model correctly predicted to incur asthma hospital visits in the subsequent year. (a) When no limit is placed on the number of actionable rules fitting a
patient. (b) When the number of actionable rules fitting a patient is ≤250.

For the patients with asthma whom our XGBoost model
correctly predicted to incur asthma hospital visits in the
subsequent year, Figure 4 exhibits the distribution of patients
by the number of distinct actionable items appearing in all of
the rules fitting a patient. The largest number of distinct
actionable items appearing in all of the rules fitting a patient is
35, much smaller than the largest number of (actionable) rules
fitting a patient. Frequently, 2 or more actionable items
appearing in the rules fitting a patient link to the same set of
interventions. For example, the intervention of tailoring
prescribed asthma medications and helping the patient maximize

asthma control medication adherence links to several value
ranges of multiple medication-related features.

Our extended automatic explanation method could offer
explanations for 69.2% (562/812) of patients with asthma who
will incur asthma hospital visits in the subsequent year.

To evaluate the generalizability of our extended automatic
explanation method for predicting asthma hospital visits, we
tested our method on the University of Washington Medicine
data and Kaiser Permanente Southern California data. The
results we obtained are similar to the abovementioned results
and are detailed in 2 separate papers [43,44].

Figure 4. Distribution of patients by the number of distinct actionable items appearing in all of the rules fitting a patient for the patients with asthma
whom our extreme gradient boosting model correctly predicted to incur asthma hospital visits in the subsequent year.

Discussion

Principal Findings
We developed a method to automatically offer rule-formed
explanations for any machine learning model’s prediction results
on imbalanced tabular data without lowering the performance
measures of the model. We showed that this method explained
the prediction results for 89.7% (391/436) of the patients with
asthma whom our XGBoost model correctly predicted to incur
asthma hospital visits in the subsequent year. This percentage

is high enough for routine clinical use of this method. After
further improvement of its accuracy, our asthma outcome
prediction model coupled with the automatic explanation
function could be used for decision support to guide the
allocation of limited asthma care management resources. This
could help boost asthma outcomes and reduce resource use and
costs.

Our extended automatic explanation method could offer
explanations for 69.2% (562/812) of the patients with asthma
who will incur asthma hospital visits in the subsequent year.
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This percentage is smaller than the success rate of 89.7%
(391/436) for our extended automatic explanation method to
explain the correct prediction results of our XGBoost model of
incurring asthma hospital visits in the subsequent year. One
possible reason is that the prediction results of the association
rules are correlated with the prediction results of our XGBoost
model. Among the patients with asthma who will incur asthma
hospital visits in the subsequent year and on whom our XGBoost
model gave incorrect predictions, many are difficult cases for
any model to correctly predict or explain their outcomes. Among
the patients with asthma whom our XGBoost model correctly
predicted to incur asthma hospital visits in the subsequent year,
many are easy cases for using association rules to explain the
outcomes of these cases.

Asthma in adults differs from asthma in children. As shown in
a previous study [23], the AUC of our XGBoost model for adults
with asthma was 0.034 higher than that for children with asthma,
that is, the outcome is easier to predict for adults with asthma
than for children with asthma. Intuitively, the degree of difficulty
in predicting the outcome is positively correlated with that of
using association rules to explain the prediction results of the
model, as each rule is a small predictive model. Hence, our
extended automatic explanation method explained the prediction
results for a larger portion of the adults with asthma than the
children with asthma for whom our XGBoost model correctly
predicted the occurrence of asthma hospital visits in the
subsequent year.

A Guideline for Setting the Values of the Parameters
Used in Our Extended Automatic Explanation Method
Our extended automatic explanation method has 4 parameters:
the maximum number of items lmax allowed on the left-hand
side of an association rule, the minimum commonality threshold
mmin, the minimum confidence threshold cmin, and the confidence
difference threshold τ. These parameters significantly affect the
performance of the method. Our previous papers [31,32]
outlined the method but gave no guideline for setting the values
of these parameters. We offer such a guideline here.

The maximum number of items lmax allowed on the left-hand
side of an association rule is usually small, as long rules are
difficult to understand [35]. Our previous study [27] showed
that for an outcome variable that is relatively easy to predict,
an lmax of 4 works well for automatic explanation. When the
outcome variable is hard to predict, we can increase lmax slightly
to a number such as 5. Without making the rules too complex
to understand, this helps ensure that the second model can
provide explanations for a large portion of the data instances
that the first model correctly predicts to take one of the
interesting values of the outcome variable.

In the original paper [38] that proposed the concept of
commonality for class-based association rules, mined rules were
used to build a classifier. To maximize the accuracy of the
classifier, the minimum commonality threshold mmin was set to
14%. However, this value is too high for automatic explanation.
With such a high value, we cannot obtain enough rules for the
outcome variable’s rare values. Consequently, for a large portion
of the first model’s prediction results on these values, we cannot

give any explanation. In addition, the mined rules tend to be
too general and have low confidence, causing the users of the
automatic explanation function to have little trust in the
automatically generated explanations. To avoid these problems,
for automatic explanation, we recommend setting mmin to a value
much smaller than 14%. More specifically, our paper [27]
showed that on reasonably balanced data, a minimum support
threshold smin of 1% and a minimum confidence threshold cmin

of 50% work well for automatic explanation. By definition,
commonality is a value-specific support. Thus, we would expect
mmin and smin to have relatively similar optimal values.
Accordingly, we set mmin to a value close to 1% and cmin to a
value close to 50%. Although a value close to 50% may not
seem so high, it is already much larger than the percentage of
data instances linking to an interesting value of the outcome
variable. For instance, in our case of predicting asthma hospital
visits in patients with asthma, this percentage is 4% [23].
Moreover, a value close to 50% is also much larger than our
XGBoost model’s positive predictive value of 22.65%. The
concrete values of mmin and cmin depend on the data set and are
chosen to meet 2 goals simultaneously and as much as possible.
First, the second model can provide explanations for a large
portion of the data instances that the first model correctly
predicts to take one of the interesting values of the outcome
variable. Often, the harder the outcome variable is to predict,
the smaller mmin and cmin need to be to meet this goal. Second,
cmin is high enough for users of the automatic explanation
function to trust the automatically generated explanations.

Recall that during the rule-pruning process, each more specific
rule is dropped when there is a more general rule whose
confidence is not lower by more than the confidence difference
threshold τ. To determine the value of τ, we plot the number of
rules left versus τ. As our previous paper [27] shows, initially
when τ is small, the number of rules left decreases quickly as
τ increases. Once τ becomes sufficiently large, the number of
rules left approaches an asymptote. This is the place to set the
value of τ to strike a balance between cutting the number of
rules and retaining high-confidence rules.

Five Clarifications on Using the Automatic Explanation
Function
In practice, our automatic explanation method could produce a
paradox. Two patients both fulfilled the left-hand side of the
same rule linking to a poor outcome. The first model correctly
predicts one of them to have a poor outcome. The automatic
explanation function displays the rule to explain this prediction
result. Simultaneously, the first model correctly predicts a good
outcome on the other patient, for whom the automatic
explanation function shows nothing. In this case, one should
not think that the automatic explanation function acts incorrectly
because it behaves differently in these 2 patients; rather, this
difference occurs because the second patient fulfills some items
that are not in the rule. These items counter the risk induced by
those on the rule’s left-hand side and reduce the second patient’s
risk of having a poor outcome to a low level.

When using the automatic explanation function, one needs to
remember that the function is intended to serve as a reminder
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system for decision support rather than a replacement for clinical
judgment. The function is used to help the user quickly identify
some reasons why a patient is predicted to have a poor outcome
and some tailored interventions suitable for the patient. If
successful, this helps the clinical user avoid substantial time
laboriously reviewing the records of the patient to assess risk
factors and devise interventions. This also helps reduce the
number of interventions that are suitable for the patient, but the
user forgets to consider. In the end, it is still the user who uses
his or her own judgment to decide whether to use the prediction
result of the first model and apply suggested interventions to
the patient. If there is doubt about the appropriateness of the
output of the function, the clinical user can always check the
records of the patient to resolve the doubt before making the
final decisions with the patient.

Different health care systems have different properties and
practice patterns. Consequently, the association rules mined
from the data of one health care system may or may not directly
apply to or work well for another health care system. However,
our automatic explanation method is general. It relies on no
special property of a specific disease, patient cohort, prediction
target, or health care system and can be applied to various
predictive modeling problems and health care systems
[27,29,30,43,44], regardless of whether the rules mined from
the data of 1 health care system generalize to the data of another
health care system. For any health care system, we would
recommend mining rules from its own data whenever possible,
rather than reusing the rules mined from the data of another
health care system.

In our test case, the second model contained 124,506 association
rules. The left-hand sides of these rules contain various
combinations of 208 distinct items related to 50 features. Within
1 day, a clinician in our team (MJ) finished manually compiling
the 2 types of knowledge needed by the automatic explanation
function: the values and value ranges of the top 50 features that
could possibly have a positive correlation with future asthma
hospital visits and the interventions for the actionable items.
The amount of time needed to perform this manual compilation
is moderate and acceptable to the clinicians in our team.

Although many association rules could fit a patient, the total
number of distinct items included on their left-hand sides is not
large: at most 35. To avoid overwhelming the automatic
explanation function’s user, we can use the rule diversification
method in our paper [27] to rank these rules. The top few rules
are likely to contain nonredundant information and are displayed
by default.

Related Work
As described in a survey paper [33] and a book [34], other
researchers previously proposed various methods for
automatically explaining the prediction results of machine
learning models. These methods often lower the performance
measures of the model by replacing the original model with a
less accurate model and usually give nonrule-formed
explanations. Many of these methods work for only a specific

machine learning algorithm rather than for all algorithms.
Moreover, none of these methods can automatically recommend
tailored interventions. In comparison, our extended automatic
explanation method not only offers rule-formed explanations
for the prediction results of any machine learning model on
tabular data but also recommends tailored interventions without
lowering the performance measures of the model [27].
Compared with nonrule-formed explanations, rule-formed
explanations are easier to comprehend and can more directly
recommend tailored interventions.

Hatwell et al [45] proposed a method to automatically provide
rule-formed explanations for the prediction results of an
AdaBoost model. This method does not work for non-AdaBoost
machine learning algorithms. The rules are unknown before the
prediction time and hence cannot be used to automatically
recommend tailored interventions at prediction time. In
comparison, the rules used in our extended automatic
explanation method are precompiled beforehand and used to
automatically recommend tailored interventions at prediction
time.

Limitations
This study has 2 limitations that give interesting directions for
future work:

1. Our data set contained no information on health care use
of the patients outside of Intermountain Healthcare.
Consequently, the features were computed using incomplete
clinical and administrative data [46-49]. In addition, the
prediction target was limited to asthma hospital visits at
Intermountain Healthcare rather than asthma hospital visits
anywhere. It would be interesting to see how the
automatically generated explanations of the prediction
results of the model would differ if we have access to more
complete clinical and administrative data [50].

2. Our study used 1 predictive modeling problem, predicting
asthma hospital visits as the test case. Although our original
automatic explanation method [27] has been successfully
applied to several predictive modeling problems [29,30],
the generalizability of our extended automatic explanation
method to other predictive modeling problems beyond
predicting asthma hospital visits has not been evaluated.
Conducting such evaluations would help inform the utility
and refine the implementation of our extended method.

Conclusions
Using asthma outcome prediction as a demonstration case, this
study shows for the first time the feasibility of automatically
offering rule-formed explanations for the prediction results of
any machine learning model on imbalanced tabular data without
lowering the performance measures of the model. After further
improvement, our asthma outcome prediction model coupled
with the automatic explanation function could be used for
decision support to guide the allocation of limited asthma care
management resources. This could simultaneously help improve
asthma outcomes and reduce resource use and cost.
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