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Abstract

Background: Tuberculosis (TB) is one of the most infectious diseases that can be fatal. Its early diagnosis and treatment can
significantly reduce the mortality rate. In the literature, several computer-aided diagnosis (CAD) tools have been proposed for
the efficient diagnosis of TB from chest radiograph (CXR) images. However, the majority of previous studies adopted conventional
handcrafted feature-based algorithms. In addition, some recent CAD tools utilized the strength of deep learning methods to further
enhance diagnostic performance. Nevertheless, all these existing methods can only classify a given CXR image into binary class
(either TB positive or TB negative) without providing further descriptive information.

Objective: The main objective of this study is to propose a comprehensive CAD framework for the effective diagnosis of TB
by providing visual as well as descriptive information from the previous patients’ database.

Methods: To accomplish our objective, first we propose a fusion-based deep classification network for the CAD decision that
exhibits promising performance over the various state-of-the-art methods. Furthermore, a multilevel similarity measure algorithm
is devised based on multiscale information fusion to retrieve the best-matched cases from the previous database.

Results: The performance of the framework was evaluated based on 2 well-known CXR data sets made available by the US
National Library of Medicine and the National Institutes of Health. Our classification model exhibited the best diagnostic
performance (0.929, 0.937, 0.921, 0.928, and 0.965 for F1 score, average precision, average recall, accuracy, and area under the
curve, respectively) and outperforms the performance of various state-of-the-art methods.

Conclusions: This paper presents a comprehensive CAD framework to diagnose TB from CXR images by retrieving the relevant
cases and their clinical observations from the previous patients’ database. These retrieval results assist the radiologist in making
an effective diagnostic decision related to the current medical condition of a patient. Moreover, the retrieval results can facilitate
the radiologists in subjectively validating the CAD decision.

(JMIR Med Inform 2020;8(12):e21790) doi: 10.2196/21790
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Introduction

According to a World Health Organization (WHO) report,
tuberculosis (TB) is a major global health problem that causes

severe medical conditions among millions of people annually.
It ranks along with the HIV as a leading cause of mortality
worldwide [1]. In 2014, approximately 9.6 million new TB
cases were reported as per the WHO report, which ultimately
caused 1.5 million deaths [1]. Today, early diagnosis and proper
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treatment can cure almost all the TB cases. Various types of
laboratory tests have been developed to diagnose TB [2,3].
Among these tests, sputum smear microscopy is the most
common, in which bacteria are examined from sputum samples
using a microscope [2]. Developed in the last few years,
molecular diagnostics [3] are the new techniques to diagnose
TB. However, they may not be suitable in real-time screening
applications. Currently, chest radiography is the most common
test to detect pulmonary TB worldwide [4]. It has become
cheaper and easier to use with the advent of digital chest
radiography [5]. However, all these diagnostic tests are assessed
by specialized radiologists, who must expend significant time
and effort to make an accurate diagnostic decision. Therefore,
such subjective methods may not be suitable for real-time
screening.

Over the past few years, researchers have made a significant
contribution to the development of computer-aided diagnosis
(CAD) tools related to chest radiography [6,7]. Such automated
tools can detect the various type of chest abnormalities within
seconds and can aid in population screening applications,
particularly in scenarios which lack medical expertise.
Fortunately, the recent development in artificial intelligence
has presented a remarkable breakthrough in the performance of
these tools. Deep learning algorithms, specifically artificial
neural networks [8], are the state-of-the-art achievement in the
artificial intelligence domain. These algorithms offer more
reliable methods to distinguish positive and negative TB cases
from chest radiographs (CXR) images in a fully automated
manner. In recent decades, several ground-breaking CAD
methods have been proposed for TB diagnosis [9-24]. Most of
the previous studies used segmentation-, detection-, and
classification-based approaches to make the ultimate diagnostic
decisions. All these methods indicated a binary decision (either
TB positive or TB negative) without providing further
descriptive information that may assist medical experts to
validate the CAD decision. As the CAD decision can also be
erroneous in some scenarios, a method to perform its
cross-validation is necessary. Therefore, further research is
required to achieve the practical performance and usability of
such diagnostic systems in the real world. A comprehensive
analysis of these existing studies [9-24] in comparison with our
proposed method can be found in Multimedia Appendix 1.

Recently, various types of artificial neural networks have been
proposed in the domain of general image processing to achieve
the maximum performance in terms of accuracy (ACC) and
computational cost. Among these models, convolutional neural
networks (CNNs) [25] attract special attention because of their
outstanding performance in many general and medical image
recognition applications [26,27]. The entire structure of a CNN
model consists of an input layer, hidden layers, and a final output
layer. Among all these layers, hidden layers are considered the
main components of the CNN model and primarily consist of
a series of convolutional layers that include trainable filters of
different sizes and depths. These filters are trained by
performing a training procedure to extract the deep features
from a training data set. When the training procedure is
completed, the trained network can analyze the given testing
data and generate the desired output.

In this paper, a novel CAD framework is proposed to diagnose
TB from a given CXR image and provide the appropriate visual
and descriptive information from a previous database, which
can further assist radiologists to subjectively validate the
computer decision. Thus, both subjective and CAD decisions
will complement each other and ultimately result in effective
diagnosis and treatment. The performance of our proposed
framework was evaluated using 2 well-known CXR data sets
[9,28]. The overall performance of our method is substantially
higher than that of various state-of-the-art methods. The main
contributions of our work can be summarized as follows:

1. To the best of our knowledge, this is the first comprehensive
CAD framework in chest radiography based on multiscale
information fusion that effectively diagnoses TB by
providing visual and descriptive information based on a
previous patients’ database.

2. We propose an ensemble classification model obtained by
integrating 2 CNNs named shallow CNN (SCNN) to capture
the low-level features such as edge information and a deep
CNN (DCNN) to extract high-level features such as TB
patterns.

3. Furthermore, a multilevel similarity measure (MLSM)
algorithm is proposed based on multiscale information
fusion to retrieve the best-matched cases from a previous
database by computing a weighted structural similarity
(SSIM) score of multilevel features.

4. The cross-data analysis (trained with one data set and tested
with another data set, and vice versa) is a key measure to
access the generalizability of a CAD tool. However, in the
medical image analysis domain, most of the existing studies
[9-15,18,19,21-24] did not analyze the performance of their
methods in cross data set. Therefore, to further highlight
the discriminative power of the proposed model in
real-world scenarios, we also analyzed its performance in
a cross data set.

The remainder of the paper is structured as follows. In the
“Methods” section, we describe our proposed framework.
Subsequently, the experimental results along with the data set,
the experimental setup, and the performance evaluation metrics
are provided in the “Results” section. Finally, the “Discussion”
section presents the comprehensive discussions of our paper
including the principal findings.

Methods

This section presents a comprehensive description of our
proposed framework in the following sequential order. First,
we provide a brief overview of the proposed method to describe
its end-to-end workflow. Subsequently, a detailed explanation
of our proposed classification model and similarity measuring
algorithm is presented in subsequent subsections.

Overview of Our Proposed Framework
In general, the overall performance of the image classification
and retrieval framework is directly related to the mechanism of
feature extraction, which is adopted to transform the visual data
from high-level semantics to low-level features. These low-level
features incorporate the distinctive information that can easily
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distinguish the instances of multiple classes. Recently, deep
learning methods provide a fully automated means to extract
the optimal features from available training data sets and lead
to a substantial performance gain. In this study, we used the
strengths of such deep learning methods to develop a
comprehensive CAD tool to diagnose TB from CXR images.
A comprehensive representation of the proposed framework is
shown in Figure 1. The complete framework comprised a
classification stage, a retrieval phase to perform the diagnostic
decision, and retrieval of the descriptive evidence, respectively.
In the first phase, our proposed ensemble-shallow–deep CNN
(ensemble-SDCNN) model was trained to make the diagnostic
decision for the given CXR image I by predicting its class label
(CL) as either TB positive or TB negative. Such a diagnostic
decision was made into 2 stages: feature extraction and
classification. The detailed explanation of the proposed
ensemble-SDCNN model and its workflow is provided in the
subsequent subsection.

In the second phase, a classification-driven retrieval was
performed for the input query image. The ultimate objective of
this phase was to retrieve the relevant cases (such as CXR
images) corresponding to the given CXR image with the
inclusion of clinical observations (such as textual description)
from the previous patients’ database. Such retrieval results can

assist radiologists to subjectively validate the computer
diagnostic decision, which ultimately results in an effective
diagnostic decision. Initially, based on the predicted CL (in the
first phase), a set of positive or negative feature vectors was
selected from features database based on the following

predefined criteria: F = F+, if CL = TB positive; otherwise F =

F–, where F+and F–present the set of positive (F+ = {f1
+, f2

+, ...,

fp
+}) and negative features maps (F– = {f1

–, f2
–, ..., fq

–}) in the
features database, respectively, and p and q are the total numbers
of positive and negative cases, respectively.

Both F+ and F– were extracted from TB-positive and
TB-negative CXR-database (previously collected CXR images
of different patients), respectively, and stored as a features
database. In the subsequent step, our proposed MLSM algorithm
was applied to select a subset of n best-matched features from

this selected set of positive or negative features maps (ie, F={F+}

or {F–}) in the first phase. Such feature matching was performed
for the extracted multilevel features f′ of input query image I
(as explained in a later subsection). Finally, the selected subset
of n best-matched features was used to select the corresponding
CXR images and their clinical readings from CXR-database
and information database, respectively.

Figure 1. Comprehensive flow diagram of the proposed classification and retrieval framework. In the first stage, the given input CXR image is
categorized as either TB positive or TB negative. In the second stage, the n best relevant cases are retrieved from the previous database based on our
proposed MLSM algorithm. The parameter n is a user given input and controls the total number of retrieved cases from the previous record related to
a current medical condition. CXR: chest radiograph; DB: database; MLSM: multilevel similarity measure; SDCNN: shallow–deepCNN; TB: tuberculosis.

Classification Network
The first phase of our proposed framework involved classifying
the given CXR image as either TB positive or TB negative by
predicting its CL. To accomplish this task, we proposed a jointly
connected ensemble-SDCNN model by performing a
features-level fusion of 2 different networks, SCNN and DCNN
(Figure 2). In general, a shallow network captures low-level
features such as edge information while a deep model is used

to exploit high-level information such as overall shape patterns.
In our radiograph image analysis study, the experimental results
prove that the combination of low- and high-level features
results in better performance compared with using only
high-level features. Therefore, both networks were combined
in parallel (by connecting their input and last output layers with
each other; Figure 2) to create a single end-to-end trainable
network. An existing DCNN model called a residual network
(ResNet18) [29] was selected based on its substantial
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classification performance and the optimal number of parameters
in comparison with the other CNN models. After selecting an
optimal DCNN model, we further enhanced its performance by
connecting our proposed SCNN model in parallel to it. Several
experiments were performed to select the optimal number of
convolutional and fully connected (FC) layers (and their hyper
parameters) for the SCNN. The ultimate objective of these
experiments was to construct an optimal shallow network
(according to the number of parameters) that could maximize
the overall classification performance of the complete network.

A complete layer-wise configuration of these models is shown
in Table 1. This information can assist in exploring the
parametric configuration of these models more precisely.
Moreover, Figure 2 shows the overall architecture of the
proposed ensemble-SDCNN model based on shallow and deep
networks. Both SCNN and DCNN models processed the given

CXR image in a parallel order to extract low- and high-level
features, respectively. In the SCNN, the Conv1 layer (first
convolutional layer with a total of 128 filters of size 7 × 7)
explored the input image I in both horizontal and vertical
directions and generated the output feature map, FSN1 of size
73 × 73 × 128. This output feature map was further processed
through the Conv2 layer (second convolutional layer with a
total of 64 filters of size 5 × 5) and converted into a new features
map FSN2 of size 35 × 35 × 64. Thereafter, the FC1 layer (first
fully connected layer including a total of 32 output nodes)
identified the significant hidden patterns in FSN2 by combining
all the learned features into a single features vector fSN of size
1 × 1 × 32. Thus, we obtained a low-dimension features vector
fSNthat held a more diverse representation of the low-level
features compared with FSN2.

Figure 2. Overall architecture of our ensemble-SDCNN model by connecting 2 different networks, SCNN and DCNN. Both networks process the input
image I simultaneously (in the testing phase) and extract 2 different feature vectors, which are concatenated and finally used to make a diagnostic
decision by predicting the CL. CL: class label; CNN: convolutional neural network; DCNN: deep CNN; SCNN: shallow CNN; SDCNN: shallow–deep
CNN.
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Table 1. Layer-wise configuration details of the proposed ensemble-SDCNNa model.b

ParametersIterationsFilter sizedOutput sizecLayer name

DCNNe model

——gN/Af(224,224,3)Input

96001(7,7,64)(112,112,64)Conv1

—1(3,3)(56,56,64)Max pooling

74,1122(3,3,64)(56,56,64)IMh-based RU1i

74,1122(3,3,64)(56,56,64)IM-based RU2

230,5282; 1(3,3,128); (1,1,128)(28,28,128)CMj-based RU3

295,6802(3,3,128)(28,28,128)IM-based RU4

919,8082; 1(3,3,256);

(1,1,256)

(14,14,256)CM-based RU5

1,181,1842(3,3,256)(14,14,256)IM-based RU6

3,674,6242; 1(3,3,512);

(1,1,512)

(7,7,512)CM-based RU7

4,721,6642(3,3,512)(7,7,512)IM-based RU8

—1(7,7)(1,1,512)Avg pooling

SCNNk model

19,2001(7,7,128)(112,112,128)Conv1

204,9921(5,5,64)(35,35,64)Conv2

2,508,8321(5,5,64)(1,1,32)FC1

—1—(1,1,544)Depth concat

10901—(1,1,2)FC2

—1—(1,1,2)SoftMax

—1—2Classification

aSDCNN: shallow–deep CNN.
bTotal learnable parameters: 13,915,426.
cOutput size (image width, image height, # of channels),
dKernel size (kernel width, kernel height, # of filters), Max pooling (kernel width, kernel height), Avg pooling (kernel width, kernel height).
eDCNN: deep CNN.
fN/A: not applicable.
g—: not available.
hIM: identity mapping.
iRU: residual unit.
jCM: convolutional mapping.
kSCNN: shallow CNN.

Similarly, for the DCNN, the input image I passes through a
large number of convolutional layers (as compared with the
SCNN) to exploit the high-level features. Our selected DCNN
model was composed of multiple residual units (RUs) that
consisted of identity mapping–based or convolutional
mapping–based shortcut connections to each pair of 3 × 3 filters
[29]. These shortcut connections caused the network to converge
more efficiently compared with other sequential networks
without including any shortcut connection. Moreover, a detailed
explanation of these RUs is provided in [30]. Figure 2 also
depicts an abstract representation of our selected DCNN model.

Primarily, the input image I underwent the first convolutional
layer, Conv1, with a total 64 filters of size 7 × 7. Subsequently,
a Max pooling layer (with a window size 3 × 3) further down
sampled the output of Conv1 and generated an intermediate
features map FDN1 of size 56 × 56 × 64. Thereafter, a stack of
8 consecutive RUs (including 5 identity mapping–based RUs
and 3 convolutional mapping–based RUs, as shown in Figure
2) further exploited high-level features. Furthermore, each RU
converted the preceding features map into a new one by
exploiting much deeper features in comparison with the previous
layer. In Figure 2, all the intermediate features maps (ie, FDN2,
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FDN3, FDN4, and FDN5) after each pair of RU show the
progressive effect of different RUs. We observed that the depth
of these features maps increased progressively, and the spatial
size decreased after passing through the RUs. Ultimately, a
low-dimension feature vector, fDN, of size 1 × 1 × 512 was
obtained after processing the final features map, FDN5 (obtained
from the last RU), through an average pooling layer. This
low-dimension feature vector exhibited a high-level abstraction
of the input image I and substantially contributed, together with
fSN, to the prediction of the final CL.

After extracting both low- and high-level features, a depth
concatenation layer (labeled as Depth concat in Figure 2 and
Table 1) performed the feature-level fusion by combining both
fSN and fDN along the depth direction and generated a final
features vector, f, of size 1 × 1 × 544. Finally, a stack of the
FC2, SoftMax, and the classification layers (Figure 2) acted as
a multilayer perceptron classifier and predicted the CL for the
given image I using the ultimate features vector f. In this stack,
the FC2 layer (including the number of nodes equal to the total
number of classes) identified the larger patterns in fby
combining all the features values. It multiplied f by a weight
matrix W, and then added a bias vector b, where y = W·f + b,
with y = [yi|i=1,2]. Subsequently, the SoftMax layer converted
the output of FC2 in terms of probability by applying the

softmax function as y′i=eyi/Σ2
i=1 [8]. Ultimately, the

classification layer obtained (y′i)from the SoftMax layer was
assigned each input to one of the 2 mutually exclusive classes
(ie, TB positive and TB negative) using a cross-entropy (CE)

loss function as LossCE(W,b) = Σ2
i=1 ciln(y′i) [8]. Here, (W, b)

are the network trainable parameters and ci is the indicator of
the actual class label of the ith class during the training

procedure. Meanwhile, in the testing phase, the network
generated a single CL (as either TB positive or TB negative)
corresponding to each input image I.

There is also an existing SDCNN model [31] (proposed for
effective breast cancer diagnosis). However, there is a
substantial difference between our proposed and the existing
model [31] in terms of architecture, application, and
computational complexity. In [31], the authors proposed an
ensemble of 2 existing ResNet50 [29] models to extract the
deep features and then used a gradient boosted tree classifier to
make the diagnostic decision. In addition, a 4-layer FC network,
namely SCNN (which includes FC convolutional layers), was
proposed for image reconstruction to increase the data samples
in the preprocessing stage. By contrast, in our work, we
proposed an ensemble of SCNN (which includes 2 convolutional
layers [no FC] and 1 FC layer) and DCNN models as shown in
Figure 2 to extract low- and high-level features, respectively.
Then, an FC classifier (also known as a multilayer perceptron)
was used to make the final diagnostic decision using both low-
and high-level features. Furthermore, the SCNN [31] is an image
reconstruction network (ie, both input and output are images),
whereas our proposed SCNN is a classification network (ie,
input is image, and output is feature vector). Therefore, the
architecture of both SCNN models is completely different from
each other. In addition, our DCNN model is based on ResNet18
that includes a substantially lower number of trainable
parameters than ResNet50 as used in [31], that is, 11.2M
(ResNet18) << 23.5M (ResNet50). In this way, the total number
of trainable parameters of the proposed ensemble-SDCNN is
substantially lower than the existing SDCNN [31], that is, 13.9M
(proposed) << 47M [31]. Figure 3 further highlights the overall
structural difference between our proposed and the existing
model [31].

Figure 3. Overall structural comparison of our proposed ensemble-SDCNN (left) and existing SDCNN model (right). MLP: multilayer perceptron;
GBT: gradient boosted tree.

Multilevel Similarity Measure Algorithm
In the medical domain, the visually correlated images
occasionally depict different illnesses, whereas the images for
a similar ailment have distinctive appearances. Therefore,
estimating the similarity by contemplating the multilevel features
is more advantageous in content-based medical image retrieval
systems rather than using single-level features. Most of the
existing systems often use a single-level similarity measure
(SLSM) method to perform the content-based medical image
retrieval task. However, it can miss the potentially useful

information that is required in discriminating the different
diseases in visually correlated images. To overcome these
challenges, we proposed an MLSM algorithm to retrieve the
best-matched cases from the previous patients’ database by
fusing multilevel features starting from a low-level visual to a
high-level semantic scale. The similarity at multiple features
levels was calculated using a well-known matching algorithm
called SSIM [32], as it quantified the visibility of errors
(differences) between 2 samples more appropriately compared
with other simple matching schemes such as mean square error,
peak signal-to-noise ratio (PSNR), and Euclidean distance. A

JMIR Med Inform 2020 | vol. 8 | iss. 12 | e21790 | p. 6http://medinform.jmir.org/2020/12/e21790/
(page number not for citation purposes)

Owais et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


generalized mathematical expression to calculate the SSIM
score between 2 samples (x and y) is given as follows:

SSIM(x,y) = ([2µxµx + c1][2σxy + c2])/[µ
2
x + µ2

y + c1]

[σ2
x + σ2

y + c2]     (1)

where [µx·µy], [σx·σy], and σxy are the local mean, standard
deviation, and cross-covariance of the given samples,
respectively; and c1 and c2 are constants to avoid instabilities
such as infinity errors and undefined solutions.

In our MLSM algorithm, multilevel features were extracted
from the 8 different locations of the ensemble-SDCNN model
(Figure 4). Each features map in Figure 4 was obtained by
calculating the depth-wise averaging of each stack of feature
maps (extracted from a particular location). Moreover, this
newly obtained feature map corresponding to each specific
location was further presented with a pseudocolor scheme to

highlight the activated regions more appropriately. In Figure 4,
f′ presents a set of these multilevel features maps (ie, {F′SN1,
F′SN2, F′DN1, F′DN2, F′DN3, F′DN4, F′DN5, f*}) corresponding to

the given query image I. Similarly, f+
i or f–

i notates a set of
multilevel features maps (ie, {FSN1, FSN2, FDN1, FDN2, FDN3,
FDN4, FDN5, f}) for the ith positive or negative sample image in

CXR-database, respectively. The selection of f+
i or f–

i was
conducted based on the CL prediction, which was performed
by our proposed network in the first phase. For example, in a
positive prediction (ie, CL = TB positive) for the input query
image I, the MLSM score between the query image I and set of

p positive sample images I+ (stored in CXR-database) is
calculated as follows:

MLSM = Σ8
k=1wkSSIM(f′{k},f+

i{k}) i=1, 2, …, p     (2)

Figure 4. Complete workflow diagram of our proposed MLSM algorithm using the multilevel features (extracted from the different parts of the proposed
ensemble-SDCNN model) in retrieving the best-matched cases from a previous patients’ database. DCNN: deep convolutional neural network; MLSM:
multilevel similarity measure; SCNN: shallow convolutional neural network; SSIM: structure similarity.

Similarly, in a negative prediction (ie, CL = TB negative), the
MLSM score between the query image I and set of q negative

sample images I– (also stored in CXR-database) is calculated
as follows:

MLSM = Σ8
k=1wkSSIM(f′{k},f–

i{k}) i=1, 2, …, q     (3)

In both mathematical expressions, w1, w2, w3, …, w8 are the
weights of SSIM measured at different levels and their total

sum is equal to one (ie, Σ8
i=1 wi=1). The optimal weights were

obtained by maximizing the intraclass SSIM score for some

selected pairs of positive CXR images. Each pair (I+
i, I

+
j) was

selected from the positive data samples based on the highly
correlated clinical observations between 2 CXR images. These
observations were provided in our selected data sets as a text
file for each data sample. As our main objective was to diagnose
TB by retrieving similar abnormal cases from a previous
database, we only considered positive CXR images in
calculating the optimal weights rather than using normal images.

Finally, the overall objective function to maximize the intraclass
similarity is defined as follows:
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w*=max(Σi,jεTBpositiveΣ8
k=1wk SSIM[f+

i{k},f+
j{k}])

/N+     (4)

where N+is the total number of pair images selected from the
positive data samples. In our experiment, the total number of

pairs was 30 (ie, N+ = 30). After performing the optimization
according to Equation (4), we obtained the optimal values of
w1, w2, w3, …, w8 as 0.069, 0.179, 0.087, 0.133, 0.071, 0.123,
0.299, and 0.039, respectively. Finally, these optimal weights

were used to calculate the MLSM scores between f′ and F+ (set

of positive features maps in features database) or F– (set of
negative features maps in features database) depending on the
predicted CL in the classification stage. Thereafter, the indices
of n best-matched features were selected based on the maximum
MLSM scores. These indices were eventually used to select the
corresponding CXR images and their clinical readings from
CXR-database and information database, respectively. Thus, n
best-matched cases were retrieved from the previous patients’
database, which could assist radiologists in making an effective
diagnostic decision after performing the subjective validation
of the computer decision.

Results

Data Set and Preprocessing
Our proposed diagnostic framework was validated using 2
publicly available data sets: Montgomery County (MC) and
Shenzhen (SZ) [9,28]. The MC data set is a subset of a larger
CXR repository collected within the TB control program of the
Department of Health and Human Services of Montgomery
County, Maryland, USA. All these images are in 12-bit
grayscale, captured using a Eureka stationary X-ray machine.
This data set comprises a total of 138 posteroanterior CXR
images, among which there are 80 normal and 58 abnormal
images with the manifestations of TB disease. The abnormal
images encompass a vast range of abnormalities related to
pulmonary TB. The SZ data set is collected from the Shenzhen
No. 3 People’s Hospital in Shenzhen, Guangdong Providence,
China. This data set includes a total of 326 normal and 336
abnormal CXR images, which include different types of
abnormalities related to pulmonary TB. All these images are
also in 12-bit grayscale and were captured using the Philips DR
DigitalDiagnost system. In both data sets, a radiologist report
is also provided for each CXR image as a text file, containing
the clinical observation related to chest abnormalities along
with the patient’s age and gender information. After collecting
both data sets, we resized all the images to a spatial dimension
of 224 × 224 (according to the fixed input layer size of our
ensemble-SDCNN model).

Implementation Details
The proposed framework was implemented using a standard
deep learning toolbox available in the MATLAB R2019a
(MathWorks, Inc.) framework [33]. It provides a complete
framework for developing and testing different types of artificial
neural networks and using existing pretrained networks. All the
experiments were performed on a desktop computer with a
3.50-GHz Intel Core i7-3770K CPU [34], 16-GB RAM, an
NVIDIA GeForce GTX 1070 graphics card [35], and Windows
10 operating system (Microsoft). Our proposed and other
baseline models were trained through back-propagation (a
procedure to determine the optimal parameters of a model) using
a well-known optimization algorithm called the stochastic
gradient descent [36]. It iteratively trains the network by
computing the optimal learnable parameters (such as filter
weights and biases) that are included in different layers of the
network. The following hyper-parameters were selected for our
proposed and all the comparative CNN-based methods: learning
rate as 0.001 with a drop factor of 0.1. Moreover, the min-batch
size was selected as 10 (ie, feeding a stack of 10 images per
gradient update in each iteration), L2-regularization as 0.0001,
and a momentum factor as 0.9.

Evaluation Metrics and Protocol
After the training, the quantitative performance of our proposed
framework was evaluated based on the following metrics: ACC,
average precision (AP), average recall (AR), F1 score (F1), and
finally the area under the curve (AUC) [37]. These well-known
metrics can quantify the overall performance of a deep learning
model from many perspectives. The mathematical definition of
all these metrics is provided in Table 2.

In our binary classification problem, true positive (TP) and true
negative (TN) were the outcomes of our model for correctly
predicted positive and negative cases, respectively, whereas
false positive (FP) and false negative (FN) could be interpreted
as the incorrectly predicted positive and negative cases,
respectively. Finally, these 4 different outcomes were further
used in assessing the overall performance of a model in terms
of ACC, AP, AR, F1, and AUC. We performed a fivefold
cross-validation in all the experiments by randomly selecting
80% of data (110/138 [79.7%] of MC data and 530/662 [80.0%]
SZ data) for training and the remaining 20% (28/138 [20.2%]
of MC data and 132/662 [19.9%] SZ data) for testing. As most
of the previous studies considered fivefold cross-validations,
we followed a similar data splitting protocol. However, the
fivefold cross-validation was not possible for the evaluation of
the cross–data set performance, as a complete data set was used
for training and others for testing. However, we performed
cross-data validation using the MC data set as training and the
SZ data set as testing, and vice versa.
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Table 2. Mathematical definition of our selected performance evaluation metrics.

Mathematical equationMetric name

(TPa + TNb)/(TP + TN + FPc + FNd)Accuracy (ACC)

TP/(TP + FP)Average precision (AP)

TP/(TP + FN)Average recall (AR)

2×([AP × AR]/[AP + AR])F1 score (F1)

0.5 × (TP/[TP + FP] + TN/[TN + FP])Area under the curve (AUC)

aTP: true positive.
bTN: true negative.
cFP: false positive.
dFN: false negative.

Our Results and an Ablation Study
The overall performance of our diagnostic framework was
directly related to the classification performance of the proposed
ensemble-SDCNN model. As in our classification-driven
retrieval framework, the first step was to predict the CL for the
given query image and then explore that predicted class database
to retrieve the relevant cases. Consequently, the correct
prediction would ultimately result in correct retrieval and the
incorrect prediction in incorrect retrieval. Therefore, we
comprehensively assessed the classification performance of the
proposed model for both data sets and their combinations. Table
3 shows the performance of our classification model along with
an ablation study to highlight the significance of each submodel
in enhancing the overall performance. Therefore, the individual
performance of both SCNN and DCNN models was also
computed as an ablation study. The experimental results
indicated that the combination of SCNN and DCNN resulted
in a substantial performance gain (ie, 8.8%, 8.12%, 9.42%,
8.76%, and 5.68% for the average F1, AP, AR, ACC, and AUC,
respectively) compared with their individual performances. We
further performed a t test [38] and Cohen d [39] analysis to

signify the performance gain of our SDCNN model in contrast
to the DCNN (second-best model). In these 2 performance
analysis measures, a large number of experimental results
appropriately discriminated the performances of 2 systems.

Therefore, the detailed performance results of both
ensemble-SDCNN and DCNN for all the different folds were
used to perform the t test and Cohen d analysis. In the t test
analysis, all the P-values (ie, .012, .011, .015, .014, and .012 in
the case of average F1, AP, AR, ACC, and AUC, respectively)
were less than .05. These results implied the discriminative
performance of our ensemble-SDCNN against the SCNN with
a 95% confidence score. In the Cohen d analysis, the
performance difference between 2 systems was measured in
terms of effect size [40], which is generally categorized as small
(approximately 0.2-0.3), medium (approximately 0.5), and large
(≥0.8). The large effect size indicated a substantial performance
difference between the 2 systems. In this analysis, all the effect
sizes (ie, 0.6, 0.6, 0.6, 0.5, and 0.5 for the average F1, AP, AR,
ACC, and AUC, respectively) were greater than and equal to
0.5, which also indicated the substantial performance difference
between the ensemble-SDCNN and SCNN models.
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Table 3. Classification performance of our proposed ensemble-SDCNNa model including the submodels as an ablation study.

AUCeACCdARcAPbF1Data sets and models

MCf

0.8170.7690.7570.7750.765SCNNg,h

0.9320.8780.8720.8880.88DCNNi,j

0.9650.9280.9210.9370.929ensemble-SDCNN

SZk

0.8680.8020.8020.8030.802SCNN

0.9390.8910.8920.8920.892DCNN

0.9480.9080.9080.9090.908ensemble-SDCNN

MC + SZ

0.8410.7890.7880.7930.79SCNN

0.9430.890.890.8920.891DCNN

0.950.8990.8980.9020.9ensemble-SDCNN

MC train and SZ test

0.5410.5570.5550.5590.557SCNN

0.7370.5170.510.5740.54DCNN

0.8530.7920.7930.7980.795ensemble-SDCNN

SZ train and MC test

0.6010.6160.6260.6240.625SCNN

0.7540.710.6980.7020.7DCNN

0.8730.7970.8130.8080.811ensemble-SDCNN

aSDCNN: shallow–deep CNN.
bAP: average precision.
cAR: average recall.
dACC: accuracy.
eAUC: area under the curve.
fMC: Montgomery County.
gAblation study performance by only considering SCNN for classification.
hSCNN: shallow CNN.
iAblation study performance by only considering DCNN for classification.
jDCNN: deep CNN.
kSZ: Shenzhen.

Figure 5 depicts the receiver operating characteristic curves of
the proposed model for all the data sets. Each curve plots the
TPR versus the FPR of our model at different classification
thresholds beginning from 0 to 1 at 0.001 increments. Among
all the classification thresholds, the optimal threshold was
obtained based on the operating points (as highlighted with red
closed circles) existing over the operating line. We attained the
optimal threshold value of 0.507 for all the data sets. This
implied that any CXR image with a classification probability
larger than .507 was reported as a positive case. Finally, based

on these receiver operating characteristic curves, we calculated
the AUC results of our model for each data set (Table 3). We
observed that the MC, SZ, and MC + SZ data sets had
comparable AUCs of 0.965, 0.948, and 0.95, respectively.
However, the performance of the cross–data set AUC was lower
than that of the MC and SZ because of high intraclass and
interclass variances between 2 different data sets, but the
comparative performance (as reported in the subsequent section)
of our model was still greater than the existing state-of-the-art
methods for all the data sets.
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Figure 5. Receiver operating characteristic curves of our ensemble-SDCNN model for all the datasets. Each curve plots true-positive rate (TPR) vs
false-positive rate (FPR) of our model at different classification thresholds beginning from 0 to 1 in 0.001 increments. MC: Montgomery County;
SDCNN: shallow–deep convolutional neural network; SZ: Shenzhen.

To determine the optimal ratio of the SCNN features with the
DCNN, we performed several experiments for all the data sets
by considering the different feature lengths of fSN concatenated
with fDN. In this analysis, the feature lengths began from 0 to
512 with the increment of 8 features per experiment. Figure 6
shows the F1 and AUC results (average performance of all the
data sets) according to different features length of fSN. In
addition, the black line depicts the growing number of the total
parameters of our proposed model with the increasing length

of fSN. The figure indicates that our model exhibited the best
performance (ie, maximum F1 of 0.871 and AUC of 0.918 as
indicated by the vertical red line) and required the optimal

number of total parameters as 1.39 × 107 for fSN=32. Although
the total number of trainable parameters of our model was
slightly higher (approximately 2.7 million) than that of the
DCNN, a substantial performance difference was observed,
particularly for the cross data set (Table 3).
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Figure 6. Average performance of the proposed ensemble-SDCNN model by considering different lengths of SCNN features with DCNN features
(beginning from 0 to 512 with the increment of eight features in each experiment). AUC: area under the curve; DCNN: deep convolutional neural
network; SDCNN: shallow–deep convolutional neural network; SCNN: shallow convolutional neural network.

In our classification-driven framework, both classification and
retrieval performances were similar. However, we also evaluated
the retrieval performance without performing the class prediction
to validate the superiority of our classification-driven approach.
In Table 4, the experimental results indicate that our
classification-driven approach exhibited higher retrieval
accuracies than the retrieval without class prediction. Moreover,
our retrieval approach was computationally more efficient than

that without class prediction as feature matching was performed
using only the predicted class database rather than the entire
database as in the retrieval without class prediction. In
conclusion, these comparative results (Tables 3 and 4) implied
that our jointly connected model exhibited superior performance
in making the effective diagnostic decision and retrieving the
best-matched cases from the previous database.
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Table 4. Comparative retrieval performance with and without predicting the class label (CL).

ACCcARbAPaF1Retrieval and data sets

Without class prediction

0.8470.8280.8610.844MCd

0.890.890.8920.891SZe

0.8790.8780.8820.88MC + SZ

0.5330.530.5380.534MC train and SZ test

0.7390.720.7370.729SZ train and MC test

With class prediction

0.9280.9210.9370.929MC

0.9080.9080.9090.908SZ

0.8990.8980.9020.9MC + SZ

0.7920.7930.7980.795MC train and SZ test

0.7970.8130.8080.811SZ train and MC test

aAP: average precision.
bAR: average recall.
cACC: accuracy.
dMC: Montgomery County.
eSZ: Shenzhen.

Comparative Analysis
Several CAD methods are presented in the literature for
diagnosing pulmonary TB in CXR images. To make a fair
comparison, we considered the following state-of-the-art
methods [14,15,17,21,22,41,42], because these approaches
selected the same data sets and experimental protocols as
considered in our study. Moreover, in some recent studies [21],
the authors adopted existing CNN models to classify the
different types of pulmonary abnormalities including TB.

However, these studies considered different data sets and
experimental protocols. For a fair and detailed comparison, we
evaluated the performance of these methods for our selected
data sets and experimental protocol. Additionally, we calculated
the performance of other CNN models [29,43-45] proposed for
the general image-classification domain rather than radiology.
The objective of this comparative analysis was to estimate the
performance of the existing state-of-the-art CNN models in
CXR image analyses. All these comparative analysis results are
shown in Table 5.
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Table 5. Comparative performance analysis of the proposed ensemble-SDCNNa model with various state-of-the-art methods.

MC + SZSZcMCbComparative methods

AUCACCARAPF1AUCACCARAPF1AUCgACCfAReAPdF1

0.7630.7290.7290.7290.7290.830.760.760.760.760.6750.580.50.580.537LBPh and SVMi,j [46]

0.8820.8210.8210.8230.8220.900.850.850.850.850.8630.7970.7980.7960.797HoGk and SVMi [47]

0.9360.8840.8830.8850.8840.9370.8730.8730.8760.8750.840.7480.7270.7710.747ShuffleNeti [43]

0.9440.8850.8840.890.8870.9420.8810.8810.8830.8820.8280.740.7110.7730.739InceptionV3i [44]

0.9460.8840.8830.8880.8860.9410.8750.8750.8780.8760.8330.7690.7550.7690.762MobileNetV2i [45]

—————0.930.86———0.880.79———lSantosh et al [41]

—————0.9260.837———0.8840.674———Hwang et al [17]

0.9210.8790.8780.8810.880.940.8760.8770.8770.8770.8860.790.780.7960.788ResNet50i [29]

0.9230.8580.8570.8620.8590.9340.8610.8620.8650.8640.8950.7980.7820.8210.8ResNet101i [29]

——————————0.890.7910.790.81—Alfadhli et al [14]

0.9140.840.840.8460.8430.9210.8510.8510.8530.8520.9020.8340.8180.8510.834GoogLeNeti [20,21]

—————0.9040.847———0.9260.826———Lopes and Valiati [21]

——————————0.870.783———Vajda et al [42]

0.9250.862———0.90.844———0.8110.79———Pasa et al [22]

——————————0.940.8780.877—0.876Govindarajan and Swaminathan [15]

0.950.8990.8980.9020.90.9480.9080.9080.9090.9080.9650.9280.9210.9370.929Proposed

aSDCNN: shallow–deep CNN.
bMC: Montgomery County.
cSZ: Shenzhen.
dAP: average precision.
eAR: average recall.
fACC: accuracy.
gAUC: area under the curve.
hLBP: local binary pattern.
iWe evaluated the performance of these models using our selected data sets and experimental protocol.
jSVM: support vector machine.
kHoG: histogram of oriented gradients.
l—: not available. These results were not reported in some existing studies.

We observed that our method exhibited a superior performance
(in terms of all the performance measures and data sets)
compared with all the other baseline methods. In addition to
deep learning–based methods, we evaluated and compared the
performance of 2 known handcrafted feature-based methods
[46,47]. To evaluate the performance of these 2 methods [46,47],
we used the following default parameters as provided by the
MATLAB framework [33]: size of histogram of oriented
gradients cell as 8 × 8 with block size of 2 × 2 and number of
overlapping cells between adjacent blocks as 1 block and the
number of orientation bins as 9. In local binary patterns (LBPs)
[46], the number of neighbor pixels considered was 8, with the
linear interpolation method applied to compute pixel neighbors.
Whereas in LBP histogram parameters, cell size was selected
as 1 × 1 by applying L2-normalization to each LBP cell
histogram. Thus, our comparative analysis was more detailed
than the various existing studies [14,17,21,22]. For the MC data

set, the performance gain of our model in contrast to
Govindarajan and Swaminathan [15] (second-best) was greater
than 4.4%, 5%, and 2.5% for AR, ACC, and AUC, respectively.
Similarly, the difference in the performance of our model from
a second-best model called InceptionV3 [44] (for the SZ data
set) was more than 2.6%, 2.6%, 2.7%, 2.7%, and 0.6% for F1,
AP, AR, ACC, and AUC, respectively. Moreover, for the
combined data set (MC + SZ), the performance gain of our
model in contrast to InceptionV3 [44] (second-best) was equal
to 2.1%, 1.9%, 2.4%, 2.3%, and 0.4% for F1, AP, AR, ACC,
and AUC, respectively. Hence, the performance of all these
existing baseline methods validated the superiority of our
proposed model with a substantial performance difference.

Moreover, comparative studies on the analysis of the cross–data
set performance are rare. The majority of the studies only
considered a similar data set for training and testing. Cross–data
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set testing is an important analysis to demonstrate the general
capability of a model and its potential applicability in a
real-world environment. Therefore, similar comparative results
are also evaluated (in a cross data set) for different baseline
models for a detailed performance comparison with the proposed
ensemble-SDCNN model. In this analysis, the MC data set was
used to train the model and SZ was used to test, and vice versa.
Table 6 shows the results of these cross–data set analyses along
with comparative studies.

These comparative results indicated that our model had
outperformed the various deep learning and handcrafted
feature-based TB diagnostic methods. For the SZ data set, which
was used for training, the accuracies were slightly higher than

those for the MC data set. The main reason for this was the
presence of more training data samples compared with the MC
data set. For the scenario in which the MC data set was the
training set and the SZ the testing set, the performance of our
model in contrast to that of Santosh and Antani [16] (second
best) was higher than 3.3%, 3.2%, and 3.3% for AR, ACC, and
AUC, respectively, and the comparative performance difference
of our model with that of Santosh and Antani [16] (for SZ as
training and MC as testing data sets) was also higher than 2.3%,
1.7%, and 2.3% for AR, ACC, and AUC, respectively. All these
experimental results highlighted the potential applicability of
our model in real-world diagnostics related to chest
abnormalities.
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Table 6. Results of comparative performance analysis of our proposed method with various baseline methods for cross data sets.

AUCdACCcARbAPaF1Data sets and our methods

MCe train and SZf test

0.690.4920.50.4920.496LBPg and SVMh,i [46]

0.7620.6390.6350.6950.664HoGj and SVMi [47]

0.7090.610.6150.7150.661ShuffleNeti [43]

0.7610.6980.70.7170.708InceptionV3i [44]

0.780.5650.5590.6780.613MobileNetV2i [45]

0.770.6630.6670.7070.686ResNet50i [29]

0.7720.6720.6710.6770.674ResNet101i [29]

0.650.5910.5890.5950.592GoogLeNeti [20,21]

0.820.760.76——kSantosh and Antani [16]

0.8530.7920.7930.7980.795Proposed

SZ train and MC test

0.5520.580.50.580.537LBP and SVMi [46]

0.6010.5940.5460.5730.559HoG and SVMi [47]

0.6830.6520.6240.6430.633ShuffleNeti [43]

0.7480.6880.6440.7220.681InceptionV3i [44]

0.7970.6520.5890.7720.668MobileNetV2i [45]

0.7870.6160.6380.6420.64ResNet50i [29]

0.6980.6380.5740.7260.641ResNet101i [29]

0.7540.6590.6090.6910.648GoogLeNeti [20,21]

0.850.780.79——Santosh and Antani [16]

0.8730.7970.8130.8080.811Proposed

aAP: average precision.
bAR: average recall.
cACC: accuracy.
dAUC: area under the curve.
eMC: Montgomery County.
fSZ: Shenzhen.
gLBP: local binary pattern.
hSVM: support vector machine.
iWe also evaluated the performance of these models (for the cross data set) using our selected data sets and experimental protocol.
jHoG: histogram of oriented gradients.
k—: not available. The results were not provided in this comparative study for these performance metrics.

Discussion

This article presents an interactive CAD framework based on
multiscale information fusion to diagnose TB in CXR images
and retrieve the relevant cases (CXR images) from a previous
patients’ database including clinical observations. In this
framework, a classification model is primarily proposed to
classify the given CXR image as either a positive or a negative
sample. Subsequently, classification-based retrieval is performed

to retrieve the relevant cases and corresponding clinical readings
based on our newly proposed MLSM algorithm. The proposed
model substantially improves diagnostic performance by
performing the fusion of both low- and high-level features. The
network processes the input image through different layers and
finally activates the class-specific discriminative region [48] as
key-features maps. Figure 7 shows such activation maps
extracted from the 7 different layers (ie, FSN1, FSN2, FDN1, FDN2,
FDN3, FDN4, and FDN5 as labeled in Figure 2) of our model for
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both positive and negative sample images. As Figure 7 shows,
each activation map is generated by calculating the average of
all the extracted maps from a specific location. All the activation
maps overlay on their corresponding input image after resizing

and applying a pseudo-color scheme (blue to red, equivalent to
lower to higher activated region) to produce a better
visualization of the activated regions.

Figure 7. Extracted features maps from the different parts of the proposed ensemble-SDCNN model for both TB positive and negative cases. DCNN:
deep convolutional neural network; SDCNN: shallow–deep convolutional neural network; SCNN: shallow convolutional neural network; TB: tuberculosis.

Figure 7 indicates that the class-specific discriminative regions
of the given input image become more prominent after
processing through the successive layers of the network. A
semilocalized activation map (labeled as FDN5 in Figure 7) is
obtained from the last convolutional layer of the DCNN model,
which includes the more distinctive high-level features for each
class. Moreover, for the SCNN, the obtained activation map
from the last convolutional layer (labeled as FSN2 in Figure 7)
encompasses the low-level features such as edge information.
Finally, both low- and high-level features are used in making
an effective diagnostic decision for the given CXR image. The
experimental results (also provided in Multimedia Appendix 2)
proved that the diagnostic performance of our ensemble-SDCNN
model is more effective than the various CNN models where
only single-level features are used for class prediction.

After an effective diagnostic decision, we can further retrieve
the relevant cases based on our proposed MLSM algorithm,
which considers the multilevel features in retrieving the best
matches. Figure 8 depicts the retrieval results of our proposed
MLSM algorithm in comparison with the conventional
Euclidean distance–based SLSM scheme. In Figure 8, these
results comprise the 5 best-matched CXR images along with
their corresponding high-level activation maps (labeled as FDN5

in Figure 7) and clinical readings. Generally, a high correlation
between the high-level activation maps (as FDN5 in our study)
of the query image and retrieved image implies the optimal
performance of a retrieval system. With our MLSM algorithm,
these activation maps (corresponding to retrieved cases) were
more analogous (in terms of shape and location) to that of query
image compared with the conventional SLSM scheme. This
implied that our algorithm retrieved the highly correlated cases
in terms of TB patterns, location, and clinical observation.
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Figure 8. Visualization of retrieval performance for the given input query image by considering SLSM and MLSM (our proposed model). MLSM:
multilevel similarity measure; SLSM: single-level similarity measure.

In addition, we evaluated the objective similarity score in terms
of the PSNR between the activation maps of the input query
and 20 best-matched cases for both algorithms (MLSM and
SLSM). The main purpose of this analysis was to quantitatively
evaluate such feature-level similarities of both algorithms. A
total of 28 images (28/138, 20.2% of the MC data set) from the
MC data set and 132 images (132/662, 19.9% of the SZ data
set) from the SZ data set were selected as the query database to
perform this analysis. Using each query image one at a time,
we retrieved the 20 best-matched cases corresponding to each
algorithm. Thus, 20 different PSNR values were computed
corresponding to these retrieved images for each matching
algorithm. After these results for the entire selected query
database were evaluated, an average PSNR performance was
calculated to present the average performance of a single query
image for each algorithm. Figure 9 shows the comparative
performance results of our proposed MLSM algorithm and the
conventional SLSM scheme. We observed that our matching
algorithm exhibited the higher features-level similarity scores
in terms of the PSNR (for all the retrieved images and both data
sets) in contrast to the SLSM scheme. Thus, our algorithm
resulted in an optimal retrieval performance because of the
significant correlation of high-level activation maps. All these
results (Figures 8 and 9) were computed based on our selected
classification-driven retrieval method. The experimental results
provided in Table 4 have already proved that our selected class

prediction–based retrieval method outperforms the retrieval
method without class prediction.

In addition to the numerical results provided in Table 4, Figure
10 further distinguishes the retrieved results of these 2 different
approaches (ie, with and without class prediction) figuratively.
Figure 10 indicates that all the retrieved cases (for the given
query image) were TPs in our class prediction–based retrieval
method.

However, in the retrieval without class prediction, the first and
third best matches were FPs (highlighted by the red bounding
box) while the remaining three cases were TPs. Such FP cases
may lead to a vague diagnostic decision. Additionally, the
numerical results (Table 4) indicated that the average number
of FPs in retrieval without class prediction was substantially
higher than our class-prediction retrieval method. Therefore, in
this study, we considered a classification-driven retrieval by
performing the class prediction in the first step and then
retrieving the best-matched cases from the predicted class
database rather than exploring the entire database. Ultimately,
the classification results can aid in making a diagnostic decision
and the retrieved CXR images can assist radiologists to further
validate the computer decision. Furthermore, if the wrong
prediction is made by the computer, the medical expert can
check other relevant cases (ie, second-, third-, or fourth-best
matches) that can be more relevant than the first best match.
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Thus, both classification and retrieval results can aid radiologists
in making an effective diagnostic decision even in scenarios of
small TB patterns that remain undetectable in the early stage.
Such a comprehensive CAD framework may assist radiologists
in clinical practices and alleviate the burden of an increasing

number of patients by providing an effective and timely
diagnostic decision. Our trained model and the training and
testing data splitting information are publicly available [49] to
enable other researchers to evaluate and compare its
performance.

Figure 9. PSNR-based objective similarity measures between the high-level activation maps of the query image and retrieved images to evaluate
feature-level similarities of both algorithms (ie, MLSM and SLSM). MLSM: multilevel similarity measure; PSNR: peak signal-to-noise ratio; SLSM:
single-level similarity measure.
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Figure 10. Visualization of retrieval performance for the given input query image by considering both retrieval methods with class prediction and
without class prediction.
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Abbreviations
ACC: accuracy
AP: average precision
AR: average recall
AUC: area under the curve
CAD: computer-aided diagnosis
CL: class label
CNN: convolutional neural network
CXR: chest radiograph
DCNN: deep convolutional neural network
FN: false negatives
FP: false positives
FPR: false-positive rate
F1: F1 score
HoG: histogram of oriented gradients
LBP: local binary pattern
MC: Montgomery County
MLSM: multilevel similarity measure
PSNR: peak signal-to-noise ratio
ROC: receiver operating characteristic (curve)
SDCNN: shallow–deep convolutional neural network
SCNN: shallow convolutional neural network
SLSM: single-level similarity measure
SSIM: structure similarity
SVM: support vector machine.
SZ: Shenzhen
TB: tuberculosis
TN: true negative
TP: true positive
TPR: true-positive rate
WHO: World Health Organization
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