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Abstract

Background: Considering morbidity, mortality, and annual treatment costs, the dramatic rise in the incidence of sepsis and
septic shock among intensive care unit (ICU) admissions in US hospitals is an increasing concern. Recent changes in the sepsis
definition (sepsis-3), based on the quick Sequential Organ Failure Assessment (qSOFA), have motivated the international medical
informatics research community to investigate score recalculation and information retrieval, and to study the intersection between
sepsis-3 and the previous definition (sepsis-2) based on systemic inflammatory response syndrome (SIRS) parameters.

Objective: The objective of this study was three-fold. First, we aimed to unpack the most prevalent criterion for sepsis (for both
sepsis-3 and sepsis-2 predictors). Second, we intended to determine the most prevalent sepsis scenario in the ICU among 4 possible
scenarios for qSOFA and 11 possible scenarios for SIRS. Third, we investigated the multicollinearity or dichotomy among qSOFA
and SIRS predictors.

Methods: This observational study was conducted according to the most recent update of Medical Information Mart for Intensive
Care (MIMIC-III, Version 1.4), the critical care database developed by MIT. The qSOFA (sepsis-3) and SIRS (sepsis-2) parameters
were analyzed for patients admitted to critical care units from 2001 to 2012 in Beth Israel Deaconess Medical Center (Boston,
MA, USA) to determine the prevalence and underlying relation between these parameters among patients undergoing sepsis
screening. We adopted a multiblind Delphi method to seek a rationale for decisions in several stages of the research design
regarding handling missing data and outlier values, statistical imputations and biases, and generalizability of the study.

Results: Altered mental status in the Glasgow Coma Scale (59.28%, 38,854/65,545 observations) was the most prevalent sepsis-3
(qSOFA) criterion and the white blood cell count (53.12%, 17,163/32,311 observations) was the most prevalent sepsis-2 (SIRS)
criterion confronted in the ICU. In addition, the two-factored sepsis criterion of high respiratory rate (≥22 breaths/minute) and
altered mental status (28.19%, among four possible qSOFA scenarios besides no sepsis) was the most prevalent sepsis-3 (qSOFA)
scenario, and the three-factored sepsis criterion of tachypnea, high heart rate, and high white blood cell count (12.32%, among
11 possible scenarios besides no sepsis) was the most prevalent sepsis-2 (SIRS) scenario in the ICU. Moreover, the absolute
Pearson correlation coefficients were not significant, thereby nullifying the likelihood of any linear correlation among the critical
parameters and assuring the lack of multicollinearity between the parameters. Although this further bolsters evidence for their
dichotomy, the absence of multicollinearity cannot guarantee that two random variables are statistically independent.
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Conclusions: Quantifying the prevalence of the qSOFA criteria of sepsis-3 in comparison with the SIRS criteria of sepsis-2,
and understanding the underlying dichotomy among these parameters provides significant inferences for sepsis treatment initiatives
in the ICU and informing hospital resource allocation. These data-driven results further offer design implications for multiparameter
intelligent sepsis prediction in the ICU.

(JMIR Med Inform 2020;8(12):e18352) doi: 10.2196/18352
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Introduction

Sepsis remains one of the most elusive syndromes in medical
science, which is a syndrome induced by infection and
associated with biochemical, physiological, and pathological
abnormalities as a result of an unregulated response from the
human body [1-3]. In the United States, over 1.7 million adults
are affected by sepsis, and more than 970,000 patients are
admitted to hospitals because of sepsis each year. Sepsis both
directly and indirectly contributes to more than 250,000 deaths
annually, representing more than 50% of all hospital deaths
[2,4-8]. Unfortunately, these excruciating statistics have been
exacerbated over recent years, as identified in a two-decade
study on US hospitalizations, costs, and disease epidemiology.
These statistics reflect an 8.7% annual increase in the incidence
of sepsis among hospitalized patients in the United States
[5,9,10].

Besides the alarmingly increasing incidence of sepsis and
associated mortality rate, the average length of stay in hospitals
is considerably higher (approximately 75% higher than that
reported for most other conditions) for sepsis patients in the
United States, thereby increasing the burden associated with
hospital utilization [10-13]. Furthermore, the Agency for
Healthcare Research and Quality [14] reported that the average
length of stay for patients with sepsis dilated compellingly in
2013, and there was a distinct proportion of patients with severe
sepsis cases, including 4.5 days, 6.5 days, and 16.5 days of
hospitalization for sepsis, severe sepsis, and septic shock,
respectively, according to the systematic inflammatory response
syndrome (SIRS) criteria. Moreover, although accounting for
3.6% of hospital stays, sepsis-related care represents 13% of
total US hospital costs, resulting in hospital expenses exceeding
US $24 billion in 2013. Not surprisingly, in 2013, the cost
associated with sepsis management ranked the highest among
the admissions for all diseases and medical conditions, followed
by osteoarthritis at US $17 billion and childbirth (medical
condition) at US $13 billion [15-17]. At present, the hospital
costs associated with sepsis still rank first, and sepsis care
currently requires more than twice the resources required for
other medical conditions [18]. These costs are also expected to
be exacerbated in the near future, and will likely approach a
3-fold increase compared to those of other admissions [3,19,20].

This notable increase in mortality rate and annual health care
expenditure (affected by the increased length of stay) has made
sepsis treatment and research a critical domain in medical
internet research and medical informatics, resulting in a recent
surge in the related literature [21-24]. Studies have shown that

improved and effective methods of early sepsis identification
can substantially reduce the severity and epidemiological burden
of sepsis in the United States [24-29]. In addition, several
authors have recommended that identifying the prevalent risk
factor(s), followed by an instant diagnosis, can reduce the cost
in treatment workflow, and further scale down the mortality
rate for patients with sepsis to some extent [26,30-33]. However,
most of these studies have only concentrated on one risk factor
at a time for the clinical assessment of sepsis, thereby limiting
the probability for sepsis detection as it requires complex
reasoning and implications. In many cases, it is apparent that
the results are sensitive to subtle variations in definition(s) of
sepsis, as well as subjective suspicions of physicians
[21,22,34-36].

The recent major release of Medical Information Mart for
Intensive Care (MIMIC-III, Version 1.4) is an extensive,
single-center, and comprehensive database comprising
information pertaining to patients admitted to the critical care
units at Beth Israel Deaconess Medical Center in Boston,
Massachusetts, including vital signs, laboratory measurements,
observations and notes charted by care providers, imaging
reports, fluid balance, medications, procedure codes, diagnostic
codes, and hospital length of stay [17,21,37,38]. MIMIC-III is
a multidisciplinary collaborative effort of the Laboratory for
Computational Physiology at MIT, Computer Science and
Artificial Intelligence Laboratory at MIT, and Information
Systems Department at Beth Israel Deaconess Medical Center.
The underlying motivation behind this collaboration is to assure
reproducibility and improve the quality of data-driven medical
informatics research. The salient features of MIMIC-III (Version
1.4) include that it is the only freely accessible critical care
database of its kind in the United States that promotes analysis
without additional restriction after accepting the data use
agreement.

Furthermore, a critical care dataset with detailed individual
patient care information spanning more than a decade empowers
medical informatics research and pedagogy around the world.
MIMIC-III (Version 1.4) contains data from 58,976 hospital
admissions for patients admitted to the critical care units from
2001 to 2012. Personal information is removed, and the original
records are shifted and reformatted to ensure that the data are
not identifiable to human patients. The database comprises 26
tables linked by identifiers for corresponding patients. Each of
the tables is a spreadsheet including information on patient
hospital stays and the physiological data collected in the
intensive care unit (ICU), along with data dictionaries to explain
the observational context. MIMIC-III (Version 1.4) allows for
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a variety of data forms, ranging from text interpretations for
radiology images to time-stamped physiological measures
[21,37]. This open and unrestricted nature of extensive health
care data allows for clinical studies to be improved and
reproduced in ways that would not otherwise be possible [39].
Hence, MIMIC-III (Version 1.4) can facilitate exploratory and
data-driven studies on sepsis, its diagnosis, and treatment in the
ICU [17,21].

Sepsis was first formally defined by a 1991 consensus
conference as a SIRS to infection in the host [1,40]. According
to the then-prevailing definition, sepsis associated with organ
dysfunction was referred to as severe sepsis, and severe sepsis
followed by sepsis-induced persisting hypotension despite
adequate fluid resuscitation was termed as septic shock.
Subsequently, considering the limitations of 1991 consensus
conference definitions, the 2001 task force extended the list of
diagnostic criteria for sepsis [41]. Despite discrepancy in the
1991 interpretation, the 2001 task force could not offer an
alternative definition due to lack of supporting evidence;
therefore, the sepsis definition remained mostly unchanged from
1991 to 2016 [41,42]. In 2016, a task force comprising experts
of sepsis pathobiology, pathophysiology, epidemiology, and
clinical trials convened by the Society of Critical Care Medicine
along with the European Society of Intensive Care Medicine
revised the definition of sepsis and septic shock.

The substantial advances observed in pathobiology,
epidemiology, immunology, and intervention management
motivated efforts to reexamine the interpretation of sepsis. The
definition devised by the 2016 task force has since been
supported by 31 international sites [1]. Singer et al [1] concluded
that it is necessary to change the perception about sepsis to
establish a more reliable predictive indicator of mortality and
impact in the survivability of patients. Consequently, the
SIRS-based definition was replaced by the quick Sequential
Organ Failure Assessment (qSOFA) criteria. The qSOFA
suggests three criteria to evaluate patients who are more likely
to have a poor outcome due to sepsis: hypotension, altered
mental status, and high respiratory rate [21]. In addition to
qSOFA, the sepsis-3 definition (given that this was the third
updated definition of sepsis) includes the Sepsis-related Organ
Failure Assessment (SOFA) for making a sepsis diagnosis.
Albeit not substantially, SOFA provides better predictive
accuracy with greater consistency compared to qSOFA.
However, the intricacy and time-consuming lab tests involved
in SOFA have remained poorly understood outside the critical
care community since the definition was updated in 2016.

As sepsis is still perceived as a spectrum disease that
subsequently ends in organ dysfunction, septic shock is a crucial
juncture for multiparameter intelligent sepsis prediction in the
ICU. However, we here focus on sepsis defined according to
SIRS and qSOFA. We adopted a data-driven approach using
MIMIC-III (Version 1.4) to offer unique contributions to the
field. First, we aimed to unpack the most prevalent SIRS and
qSOFA criteria. Second, we evaluated the most prevalent sepsis
scenarios based on SIRS and qSOFA criteria. Third, we
investigated the dichotomy among SIRS and qSOFA criteria to
establish underlying statistical relations among these predictors,
with design implications for predictive modeling. Quantifying

the prevalence of the qSOFA criteria (in comparison with SIRS)
and understanding the underlying dichotomy of these parameters
have important implications for sepsis treatment initiatives in
the ICU and for informing hospital resource allocation. Hence,
this study has potential to improve preventable deaths from
sepsis.

Methods

Theoretical Background

Sepsis Pathophysiology
Sepsis—commonly interpreted as a spectrum disease—ranges
from milder symptoms and ends in septic shock, followed by
multiple organ dysfunction syndromes. This entire spectrum
begins with the introduction of pathogens in the blood vessels,
such as gram-positive or gram-negative bacteria, fungi, viruses,
and parasites. The appearance of pathogens in the blood vessels
makes them no longer sterile; when the white blood cells
confront these infective materials (pathogens), they become
activated. Consequently, more white blood cells are called in
to the site of infection to eradicate the pathogens. Generally,
these infective materials exist outside in the interstitial tissue
rather than in the bloodstream. Therefore, to access the infective
materials and eradicate them, the white blood cells release
substances such as nitric oxide. Three events occur once these
substances interact with the blood vessels. First, the diameter
of the blood vessel expands, resulting in vasodilation. The
vasodilation reduces the localized systemic vascular resistance
and affects the speed of the blood flow, including the blood
flow in the infected area. Second, the permeability of the blood
vessels increases so that the immune system can confront the
peripheral infective material easily. In the context of this paper,
blood pressure—in the mathematical sense—is considered to
be the product of cardiac output and systemic vascular
resistance, thus affecting tissue perfusion. Hence, the lower the
systemic vascular resistance, the lower the blood pressure, and
consequently tissue perfusion is reduced [43,44].

The decrease in tissue perfusion is further exacerbated by the
increased permeability of the blood vessels since the fluid can
reach out and build around the tissue, which eventually makes
it challenging for oxygen to diffuse through the fluids and access
the cells. This exacerbated tissue perfusion is the cardinal reason
behind the shock. Third, when the white blood cells interact
with the pathogens, they release lytic enzymes as well as reactive
oxygen species to eliminate the infective materials. These
enzymes damage not only the pathogens but also the blood
vessels to some extent, resulting in serious complications. When
the blood vessels are ruptured, proteins are released to cause
clotting as a patch due to coagulation factors in the blood. This
may initially preclude the blood from spilling into the
extravascular space; however, over time, some of these clots
can break off into the bloodstream to allow the blood to spill
out of the blood vessels, resulting in disseminated intravascular
coagulation. Since this complication is disseminated throughout
the body, the damaging enzymes and cytokines associated with
different immune molecules may also cause damage to the blood
vessels in the lungs. Damage and rupture in all of the blood
vessels in the lungs seriously affects oxygen absorption into the
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bloodstream, resulting in acute respiratory distress syndrome.
This can lead to severe respiratory distress since the respiratory
system can no longer pull in oxygen into the bloodstream from
the environment. In response, the human body initially pushes
to increase the cardiac output to compensate for the decreased
systemic vascular resistance so as to maintain blood pressure.
However, if remained untreated, the septic shock will persist
and the cardiac output will eventually start to be depressed,
resulting in a serious decrease in cardiac output [43-46]. These
pathophysiological incidents caused by sepsis are reflected in
several physiological parameters as clinical clues, hence
commonly named as symptom distributives. Although highly
elusive in nature, the entire purpose of the sepsis-3 and sepsis-2
definitions is to capture the underlying symptom distributives
that are the most relevant.

Bedside Monitoring: qSOFA vs SIRS
Sepsis, unlike most other human diseases, is not a specific
disease entity but rather a syndrome consorted with an
ambiguous pathobiology and the absence of gold-standard
diagnostic tests for assessments [1,21]. Therefore, numerous
endeavors have been made to capture the pathobiology,
pathophysiology, and epidemiology of sepsis to explain the

syndrome. An initial definition of sepsis (sepsis-1) was
introduced at the 1991 Consensus Conference that described
sepsis as SIRS [21,40]. Addressing the limitations of sepsis-1,
the 2001 task force extended the list of diagnostic criteria for
sepsis (sepsis-2), based on SIRS, with the following four criteria:
fever or hypothermia (body temperature>100.4°F or <96.8°F),
tachypnea (respiratory rate >20 breaths/minute), tachycardia
(heart rate >90 beats/minute), and white blood cell count

>12,000/mm3 or <4000/mm3 (or >10% immature bands) [47].
In particular, sepsis-2 interprets sepsis as a cascaded disease
that is primarily diagnosed as SIRS, followed by sepsis, severe
sepsis, and septic shock. At the very end of the spectrum,
patients may experience multiple organ dysfunction syndrome,
an incurable stage of sepsis. Table 1 lists the parameters and
cascaded development of sepsis as per the SIRS criteria.
However, this definition failed to distinguish sepsis from the
other uncomplicated infections and diseases that exhibit identical
criteria, and indispensably failed to define what sepsis really is
[1]. The task force also coined definitions for severe sepsis and
septic shock, interpreting severe sepsis as sepsis complicated
by organ dysfunction and septic shock as sepsis-induced
hypotension persisting despite sufficient fluid resuscitation [47].

Table 1. Systemic inflammatory response syndrome (SIRS) criteria for sepsis definition.

Phases of syndrome developmentParameters/Criteria

Criterion 1: Body Temperature

Phase 1: SIRS ≥ 2 criteria>100.4°F or <96.8°F

Criterion 2: Respiratory Rate

Phase 2: Sepsis (SIRS + suspected or confirmed infection)>20 breaths/minute (or PaCO2 <32 mmHg)

Criterion 3: Heart Rate

Phase 3: Severe sepsis (sepsis + organ dysfunction)> 90 beats/minute

Criterion 4: White blood cell count

Phase 4: Septic shock (severe sepsis + persistent hypotension)>12,000/mm3 or <4000/mm (or >10% bands)

Final Phase: Multiple Organ Dysfunction

Reported ≥ 2 organs failing

With significant advancements in the understanding of sepsis
pathophysiology and pathobiology, after nearly two decades, a
new definition of sepsis was proposed at the Third International
Consensus in 2016 [1]. Currently, sepsis (sepsis-3) is defined
as a syndrome pertaining to a life-threatening organ dysfunction
introduced by a dysregulated host response to a microorganism.
According to the definitions of sepsis-3, the SOFA score
(criteria) is used in the ICU to determine the extent of a patient’s
organ functions (dysfunction) [1]. In addition, sepsis can be
promptly identified for an individual with a suspected infection
at bedside using the qSOFA (sepsis-3) score. qSOFA requires
satisfying at least two of the following criteria to determine that
a patient is likely to have poor outcome due to sepsis [21]:
respiratory rate ≥22 breaths/minutes, altered mental status (≤13
on the Glasgow Coma scale), and low blood pressure (≤100
mm Hg).

With the goal of leveraging the greater consistency of sepsis-3
in clinical trials and epidemiologic studies, several predictive

machine-learning models were developed using the qSOFA
parameters. Khwannimit et al [48] found that the qSOFA score
showed higher prognostic accuracy for mortality and organ
failure compared with SIRS criteria. Moreover, in predicting
mortality and ICU-free days, qSOFA rendered considerably
better discrimination in comparison with SIRS [49]. Donnele
et al [50] and Hwang et al [51] provided substantial evidence
to support employing SOFA and qSOFA in the ICU sepsis
diagnosis and treatment workflow over SIRS criteria. However,
numerous studies implied conflicting results, and asserted that
qSOFA manifests inconsistent performance in mortality
prediction [21]. Several studies reported that qSOFA showed
poor sensitivity and inconsistent precision in the predictive
models [49,51,52]. Although counterintuitive to some extent,
Haydar et al [49] and Fernando et al [52] indicated that qSOFA
took much longer in the patients’ trajectory in comparison with
SIRS to identify patients with sepsis, which further delayed the
initiation of medical interventions in the ICU, and thereby
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subjected the patients to a higher risk of developing septic shock
and multiple organ dysfunction.

Considering these stark contrasts in the results (reflected by
evaluation metrics such as accuracy, sensitivity, precision, and
G-mean) of predictive modeling using SIRS and qSOFA
parameters, in this study, we decided to take a step back and
have a more in-depth look at the qSOFA and SIRS parameters,
and their underlying attributes and interrelations.
Multicollinearity among parameters often intensifies the tension

between optimization and generalizability, and eventually leads
to model overfitting, which in turn hampers the generalizability
of discriminant functions [53]. Moreover, model overfitting
indicates that a small deviation in the input data can result in
considerable, and sometimes aberrant, changes in the model,
even leading to changes in the sign of parameter estimates
[21,53]. Table 2 compares the SIRS and qSOFA criteria,
highlighting the changes brought in with sepsis-3 from sepsis-2
throughout all of the cascaded steps.

Table 2. Comparison of sepsis-2 and sepsis-3 criteria.

Sepsis-3 criteria (qSOFAb)Sepsis-2 criteria (SIRSa)Stage

Suspected or confirmed infection + qSOFA score ≥2Suspected or confirmed infection + SIRSSepsis

Category removedSepsis + organ dysfunction (lab markers, including hypoxia,
hypotension, elevated lactate)

Severe sepsis

Sepsis + vasopressors to maintain mean arterial pressure ≥65 mmHg
+ serum lactate level >2 mmol/L

Severe sepsis + persistent hypotension (after adequate fluid
resuscitation)

Septic shock

aSIRS: systemic inflammatory response syndrome.
bqSOFA: quick Sequential Organ Failure Assessment.

Data and Research Design
We used MIMIC-III (Version 1.4), a publicly available ICU
patient database [1], for this study. The data, ranging from 2001
to 2012, involves 58,976 distinct hospital admissions. For the
purpose of our study, we used the parameters of the qSOFA as
well as SIRS to identify all ICU patients who had been
diagnosed with sepsis or were most susceptible to the disease.
We then analyzed the qSOFA and SIRS parameters of these
identified sepsis patients, or the patients who had undergone
sepsis screening, to study their intrarelationship. In our
population, 1994 hospital admissions resulted in a diagnosis of
sepsis among 58,976 overall admissions from 2001 to 2012.
Among these 1994 patients, the mortality rate was 21.11%
(n=421 deaths).

The selection criteria included identifying the unique key for
the critical parameter records and omittable parameters that we
deemed to be bias-free for the purpose of this study, such as
patient gender, data storage time, and deidentified date of birth
in the case of sepsis. During research design and data wrangling,
we confronted missing data and outlier values that were not
biologically reasonable, albeit not for a considerable amount of
records. This modicum amount of unexpected data points opened
up the possibility of two distinct research designs. First, we

could ignore the observations that have such data point(s)
because they are of negligible number compared to the total
observations available. Second, we could follow the
conventional central-value imputation or multiple imputations
by chained equations to handle the missing data. A multiblind
Delphi process, convened by Ubicomp Lab of the Department
of Computer Science at Marquette University and Regenstrief
Center for Healthcare Engineering at Purdue University, came
to the decision that ignoring the observations that have such
unexpected data point(s) will be more suitable for the purpose
of this study, which requires avoiding imputation bias.
Moreover, outlier values that are not biologically reasonable
were excluded, considering them as mistaken data entries in the
ICU [21].

To determine the prevalence and dichotomy of the qSOFA and
SIRS parameters, we identified 13,783,035 patient records
(Chartevent) from 330,712,483 records (Chartevent) available
in MIMIC-III (Version 1.4), which are unique for each Hospital
Admission ID and chart time and pertaining to patients who
had received a sepsis diagnosis. Then, to identify the most
prevalent qSOFA and SIRS criteria, we selected 540,953 and
770,368 patient records for SIRS and qSOFA, respectively (in
which respiratory rate was common in both cases). Figure 1
summarizes the research design in a simple flow chart.
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Figure 1. Outline of research design.

To assure the consistency and interpretability of the results
while determining the most prevalent sepsis scenario, our
selection criteria only filtered within chart times for which we
had observations for all three qSOFA parameters since the
observation frequency varies with the parameters based on the
intricacy involved in measurement. For instance, observations
for altered mental status (based on the Glasgow Coma Scale)
are less frequently recorded than those of the respiratory rate.
More importantly, since sepsis is a spectrum disease, studying
and comparing the observations for different parameters at
different record times for a particular patient can confound the
result and its interpretability. For the same reason, studying the
parameters that are observed at the same time can capture the
patient’s disease trajectory more consistently. For determining
the most prevalent sepsis scenario for SIRS, our selection criteria
only filtered within chart times for which we had observations
for all four parameters (temperature, heart rate, respiratory rate,
and white blood cell count). The white blood cell count
observations are considerably less frequent compared to the
other three parameters of SIRS, and therefore observations
considered for the SIRS criteria are substantially reduced
compared with those considered for the qSOFA criteria.

We further addressed two possible sources of selection bias.
First, it is intuitive that the longer the patient stays in the ICU,
there will be more observations available for that particular
patient. We considered that this may influence the results of

our study to some extent if there are considerably more patients
with a longer length of stay. Second, when evaluating the
respiratory rate for ICU patients, there may be a possible blend
in the data between patients with intubated breathing and natural
breathing. However, the possibility of these two selection biases
also provided an opportunity to test the intrageneralizability of
the results of this study (both for qSOFA and SIRS). Therefore,
in the second phase of this study, we dissected our data for only
the first observations of each hospital admission.

This research design is grounded in statistical theory such that
the results can help in developing multiparameter intelligent
sepsis prediction or treatment models that require predictors
exhibiting the least or no collinearity.

Results

Statistical Distributions: qSOFA and SIRS
The means (SD) and median (IQR) values for qSOFA and SIRS
parameters in each phase of the study are presented in Table 3.
In the first phase of the study, with respect to the qSOFA
criteria, we analyzed the distributions of systolic arterial blood
pressure, Glasgow Coma Scale score, and respiratory rate. For
the SIRS criteria, in the first phase we analyzed the distribution
of heart rate, respiratory rate, temperature, and white blood cell
count. In the second phase, we only considered the first
observation of each hospital admission for each parameter.
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Table 3. Statistical distributions of parameters for quick Sequential Organ Failure Assessment (qSOFA) and systemic inflammatory response syndrome
(SIRS).

Phase 2: First observation onlyPhase 1: Entire patient trajectoryParameter

Median (IQR)Mean (SD)Median (IQR)Mean (SD)

qSOFA

110.0 (96.0-126.0)106.7 (37.62)114.0 (100-131)116.4 (24.78)SABPa (mmHg)

14.00 (8-15)11.53 (4.32)11.00 (9-15)11.17 (3.66)GCSb

20.00 (16.00-24.00)20.48 (6.16)21.00 (17-25)21.07 (6.52)RRc (breaths/min)

SIRS

94.00 (80.00-109.00)95.58 (20.76)87 (76-100)89.1 (18.61)HRd (beats/minute)

20.00 (16.00-24.00)20.48 (6.16)21.00 (17-25)21.07 (6.52)RR (breaths/minute)

98.20 (97.00-99.50)98.25 (2.01)98.30 (97.30-99.30)98.37 (1.57)BTe (°F)

12.80 (8.50-18.90)14.34 (8.28)11.70 (8.10-16.70)13.14 (7.30)WBCf count (/mm3)

aSABP: systolic arterial blood pressure.
bGCS: Glasgow Coma Scale.
cRR: respiratory rate.
dHR: heart rate.
eBT: body temperature.
fWBC: white blood cell.

Kernel density estimation distributions for the qSOFA criteria
(systolic arterial blood pressure, altered mental status in Glasgow
Coma Scale, and respiratory rate) and SIRS criteria (heart rate,
respiratory rate, temperature, and white blood cell count) are
depicted in Figure 2 to investigate the most prevalent sepsis
parameter. Visual statistics demonstrated that most of the
patients’ observations did not meet the qSOFA criterion for
systolic arterial blood pressure (Figure 2a). The distribution for
systolic arterial blood pressure implies that most of the
observations were in the range of 100-125 mmHg, which is in
the healthy range from the clinical point of view. Similarly, the
Glasgow Coma Scale distribution (Figure 2a) indicated that a

significant portion of these observations were in the safe zone
(15 and 14). However, as the Glasgow Coma Scale ranges from
1 to 15, and the domain of consideration for the not-safe zone
(qSOFA, 1-13) and the domain of consideration for the safe
zone (14-15) are significantly disproportionate, the visual
analytics may be confusing for an accurate interpretation. In
the case of respiratory rate (Figure 2a), it is critical to interpret
whether or not the majority of the observations met the qSOFA
criterion, although it is evident that most of the data ranged
between 15 and 24 breaths/minute. From the clinical point of
view, at a resting state, a respiratory rate observation of 12-20
breaths/minute is considered to be healthy.

Figure 2. Kernel density estimation distribution of (a) quick Sequential Organ Failure Assessment (qSOFA) and (b) systemic inflammatory response
syndrome (SIRS) parameters to understand the prevalence of each parameter.
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For the SIRS criteria (Figure 2b), the distribution for heart rate
observations was less confounding using visual analytics in
inferring prevalence, as more of the kernel density was below
the criterion margin (90 beats/minute), which indicates the
presence of more healthy observations. In the case of respiratory
rate measurement, it is worth mentioning that the cutoff for the
SIRS criteria is different than that of the qSOFA criteria. For
SIRS criteria, the criterion cutoff is 20 breaths/minute, and
anything above that level is considered as tachypnea. It is
visually discernible that as the cutoff shifted left (from 22 to
20) for SIRS, more patient observations met the sepsis criteria.
The distribution for body temperature can be interpreted as a
band: the observations inside two temperature cutoffs indicate
the density of the healthy observations, and they represented a
significant portion of the distribution. In the case of white blood
cell count, as the domain of consideration for the not-safe zone
and the domain of consideration for the safe zone were
significantly disproportionate, the visual analytics may be
confusing to imply prevalence. However, we can infer that the
majority of observations met the SIRS criteria.

In the following subsections, we provide an explicit numerical
interpretation to better understand the prevalence and underlying
statistical relation between the predictors.

Patients’ Entire Trajectory for qSOFA
The kernel density estimation distribution of qSOFA parameters
for both safe and qSOFA criterion–met observations are
presented in Figure 3 to better understand the prevalent qSOFA
parameters. Overall, 25.12% of the systolic arterial blood
pressure observations, 59.28% of the Glasgow Coma Scale
measurements, and 45.11% of the respiratory rate observations
met the respective qSOFA criterion. It is intuitive from the
qSOFA criteria that determination of the most prevalent criterion
from observational studies would help practitioners and
researchers in further factorial experiments. This observational
study entirely relied on passive retrospective observations
without assigning any further treatment. The results suggest
that altered mental status is the most prevalent qSOFA criterion
experienced in the ICU. We further addressed a nearly
double-barreled question: what is the most prevalent sepsis
scenario in the ICU? We found that 28.19% of the observations
(when three measurements were available at the same time)
showed a two-factored qSOFA of high respiratory rate and
altered mental status (among 3C3+3C2=4 possibilities), resulting
in this pair identified as the most prevalent qSOFA (sepsis-3)
scenario in the ICU. Notably, no sepsis is another possible
scenario besides these four possible qSOFA scenarios in the
ICU (which is also true for our observations).

Figure 3. Kernel density estimation distribution of quick Sequential Organ Failure Assessment (qSOFA) parameters for both safe and qSOFA
criterion-met observations to identify the prevalent qSOFA parameters.

Figure 4 shows a facet grid plot of the qSOFA parameters to
capture the most prevalent sepsis scenario and the underlying
dichotomy among the parameters. This plot has multiple
implications; however, the most obvious is the comparison of
the Pearson correlation coefficients (absolute) of each of the
qSOFA parameters’ pairs. The absolute Pearson correlation
coefficients for respiratory rate-Glasgow Coma Scale
measurement, Glasgow Coma Scale measurement-systolic
arterial blood pressure, and respiratory rate-systolic arterial
blood pressure pairs were 0.09, 0.07, and 0.04, respectively.
These insignificant correlation coefficients nullify the possibility

of any linear correlation among the qSOFA parameters, thereby
ensuring that multicollinearity does not exist between the
parameters and further advocates for the dichotomy among
them. Understanding this relationship can help in developing
predictive models, as it implies that the overdetermined system
involved in the modeling is a full-ranked matrix (ie, not
rank-deficient). However, the lack of multicollinearity cannot
guarantee that two random variables are statistically
independent. Moreover, based on its pathophysiology, sepsis
is a spectrum disease, and therefore one predictor may influence
another during the development of sepsis and septic shock.
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Figure 4. Facet grid illustration of sepsis-3 (qSOFA) parameters to capture the underlying relationship between parameters and the most prevalent
sepsis scenario in the intensive care unit. qSOFA: quick Sequential Organ Failure Assessment.

Patients’ Entire Trajectory for SIRS
Figure 5 shows the kernel density estimation distribution of
SIRS parameters for both safe and SIRS criterion–met
observations to understand the prevalent SIRS parameters. We
found that 43.30% of the heart rate observations, 50.89% of the
respiratory rate observations, 23.08% of the body temperature
observations, and 53.12% of the white blood cell count
observations met the respective SIRS criterion. Although both
the white blood cell count and respiratory rate had a significant
prevalence in the observations of patients who went through
the sepsis screening, white blood cell count was the most
prevalent SIRS criterion experienced in the ICU. In addition,

12.32% of the observations (when four measurements were
available at the same time) showed a three-factored SIRS of
tachypnea-high heart rate-high white blood cell count. It is
critical to consider that there are 6 possible pairs of
combinations, 4 possible trios of combinations, and 1
combination considering all the parameters as the possible sepsis
scenario in the ICU. As mentioned above for qSOFA, no sepsis
is another possible scenario besides these 11 possible SIRS
scenarios in the ICU (which is also the case for our
observations). Identifying the most prevalent criterion and sepsis
scenario in the ICU for SIRS can help practitioners and
researchers in the diagnosis, treatment, and design of further
factorial experiments.

Figure 5. Kernel density estimation distribution of systemic inflammatory response syndrome (SIRS) parameters for both safe and sepsis criterion–met
observations to identify the prevalent SIRS parameters.

Figure 6 shows a facet grid plot of SIRS (sepsis-2) parameters
to capture the most prevalent SIRS scenario and the underlying
dichotomy among the parameters. The absolute Pearson
correlation coefficients for heart rate-respiratory rate, heart

rate-temperature, heart rate-white blood cell count, respiratory
rate-temperature, respiratory rate-white blood cell count, and
temperature-white blood cell count were 0.32, 0.34, 0.13, 0.11,
0.05, and 0.03, respectively. These insignificant absolute
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correlation coefficients invalidate the possibility of any
correlation among the critical parameters, thereby ensuring that
multicollinearity does not exist between the parameters and
further advocates for the dichotomy among them. However,
despite being not statistically significant, the absolute correlation
coefficients were not negligible in the case of heart

rate-respiratory rate and heart rate-temperature pairs.
Understanding this relationship can help in developing predictive
models as it implies that the overdetermined system involved
in the modeling is a full-ranked matrix (ie, not rank-deficient).
However, the lack of multicollinearity cannot guarantee that
two random variables are statistically independent.

Figure 6. Facet grid illustration of sepsis-2 (SIRS) parameters to capture the underlying relationship between parameters and the most prevalent sepsis
scenario in the intensive care unit. SIRS: systemic inflammatory response syndrome.

Patients’ First Observation Only for qSOFA
In the second phase of this study, we dissected data for only the
first observations of each hospital admission. This may address
two possible selection biases, including the opportunity to test
the intrageneralizability of the result of this observational study.
First, it is intuitive that the longer the patient stays in the ICU,
there will be more observations available for that particular
patient. This may influence the results of our study to some
extent if there is considerable disproportion between the length
of stay among patients. Second, when evaluating the respiratory
rate for ICU patients, there may be a possible blend in the data
between patients under intubated breathing and those naturally
breathing. The kernel density estimation distribution of qSOFA

parameters for both safe and qSOFA criterion–met observations
are presented in Figure 7 to understand the prevalent qSOFA
parameters. We found that 32.58% of the systolic arterial blood
pressure observations, 44.54% of the Glasgow Coma Scale
measurements, and 40.53% of the respiratory rate observations
met the respective qSOFA criterion. This observational study
entirely relied on passive retrospective observation without
assigning any further treatment. The results suggest that altered
mental status is the most prevalent qSOFA criterion experienced
in the ICU. In addition, 18.25% of the observations had a
two-factored qSOFA of high respiratory rate and altered mental
status (among 3C3+3C2=4 possibilities), resulting in this pair
as the most prevalent qSOFA (sepsis-3) scenario in the ICU,
although the no-sepsis scenario is also possible.
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Figure 7. Kernel density estimation distribution of quick Sequential Organ Failure Assessment (qSOFA) parameters for both safe and qSOFA
criterion–met patients at first observations to identify the prevalent qSOFA parameters.

Figure 8 shows the facet grid on qSOFA parameters to
understand the most prevalent qSOFA scenario and the
underlying dichotomy among the parameters. The absolute
Pearson correlation coefficients for respiratory rate-Glasgow
Coma Scale measurement, Glasgow Coma Scale
measurement-systolic arterial blood pressure, and respiratory
rate-systolic arterial blood pressure pairs were 0.15, 0.01, and

0.02, respectively. These insignificant correlation coefficients
invalidate the possibility of any correlation among the critical
parameters, ensuring that multicollinearity does not exist
between the parameters and further bolsters the dichotomy
among them. However, the lack of multicollinearity cannot
guarantee that two random variables are statistically
independent.

Figure 8. Facet grid illustration of sepsis-3 (qSOFA) parameters to capture the underlying relationship between parameters and the most prevalent
sepsis scenario of patients at first observations in the intensive care unit. qSOFA: quick Sequential Organ Failure Assessment.

Patients’ First Observation Only for SIRS
Figure 9 shows the kernel density estimation distribution of
SIRS parameters for both safe and SIRS criterion–met
observations using only the first observations. We found that
57.03% of the heart rate observations, 45.89% of the respiratory
rate observations, 33.93% of the body temperature observations,

and 60.57% of the white blood cell count observations met the
respective SIRS criterion. These results suggest that white blood
cell count is the most prevalent criterion experienced in the
ICU, albeit considering that both the white blood cell count and
respiratory rate had significant prevalence. In addition, 11.38%
of the SIRS criteria–met sepsis patients showed a three-factored
SIRS of tachypnea-high heart rate-high white blood cell count

JMIR Med Inform 2020 | vol. 8 | iss. 12 | e18352 | p. 11https://medinform.jmir.org/2020/12/e18352
(page number not for citation purposes)

Sakib et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


(among 4C4+4C3+4C2=11 possibilities), resulting in this trio
as the most prevalent sepsis (SIRS) scenario in the ICU. It is
important to consider that there are 6 possible pairs of
combinations, 4 possible trios of combinations, and 1
combination considering all of the parameters as the possible

sepsis scenarios in the ICU, and that no sepsis is another possible
scenario. Determining the most prevalent SIRS criterion and
sepsis scenario at the first observation upon hospitalization can
help practitioners and researchers in diagnosis, treatment, and
further factorial experiments.

Figure 9. Kernel density estimation distribution of systemic inflammatory response syndrome (SIRS) parameters for both safe and sepsis criterion–met
patients at first observations to identify the prevalent SIRS parameters.

Figure 10 shows the facet grid illustration for SIRS parameters
at the first observation. The insignificant absolute Pearson
correlation coefficients invalidate the possibility of any
correlation among the critical parameters, thereby ensuring that
multicollinearity does not exist between the parameters and

further bolsters the dichotomy among them. However, similar
to the case for all observations, the absolute correlation
coefficients were not negligible in the case of heart
rate-respiratory rate and heart rate-temperature pairs.

Figure 10. Facet grid illustration of sepsis-2 (SIRS) parameters to capture the underlying relationship between parameters and the most prevalent sepsis
scenario of patients at first observations in the intensive care unit. SIRS: systemic inflammatory response syndrome.

Discussion

Theoretical Reasoning
This study reveals that altered mental status and systolic arterial
blood pressure are the most and least prevalent qSOFA criteria,
respectively, observed in the ICU. Mathematically, blood
pressure is the product of systemic vascular resistance and

cardiac output. Hence, with the decrease in systemic vascular
resistance due to vasodilation, blood pressure will drop down
if the cardiac output remains the same. However, in practice,
when the systemic vascular resistance drops down, the human
body immediately tries to maintain the equilibrium for a few
moments and compensates with the cardiac output. Cardiac
output depends on the respiratory rate in a nonlinear and
proportionate manner; hence, the increase in the respiratory rate
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increases the cardiac output and maintains the equilibrium of
the blood pressure initially. However, over time, that equilibrium
breaks down, although the cardiac output (and consequently
respiratory rate) continually tries to reach a stable state. This
fact advocates the possibility of respiratory rate to be a more
prevalent criterion compared to systolic arterial blood pressure
as a symptom. From the aspect of SIRS criteria, the reason for
the white blood cell count to emerge as the most prevalent
criterion is intuitive. When a microorganism invades, the body’s
immune response is triggered and white blood cells appear
immediately. Heart rate, respiratory rate, and temperature are
consequential symptoms associated with an increase in white
blood cells and the immune response. As sepsis is a spectrum
disease, one predictor may influence another during disease
development and progression to septic shock, although they are
not linearly correlated. The findings of this observational study
support the established pathophysiology of sepsis described in
the literature.

Research Opportunities
Although MIMIC-III is an extensive critical care database, it is
a single-center database comprising critical care unit electronic
health record data of Beth Israel Deaconess Medical Center in
Boston. Regardless of the myriad amount of patient data, the
findings that are valid for the Beth Israel Deaconess Medical
Center in Boston may not be useful for other medical centers
and critical care units. The epidemiology and treatment facilities
vary among the hospitals, states, and infrastructures of countries.
Epidemiology and treatment facilities have a significant impact
on patient outcome, as well as on patients’ symptom
distributives. On the flip side, this observational study entirely
relied on passive retrospective observation, and the dynamics
of the treatment and medicine advance with time and research.
In addition, the prevalence of the physiological parameters,
along with time and resource variability, may also affect the
interrelation nature among parameters. The results may also
vary if considering the analysis from an individual aspect.
Although a collective analysis infers the dichotomy among
parameters, there may be a possibility that data from even one
patient show strong multicollinearity. Again, the parameters
measured may vary according to the therapeutics undertaken

in the ICU. For instance, the Glasgow Coma Scale score may
become low due to sedation, catecholamines may be responsible
for healthy blood pressure, or mechanical ventilation may affect
the respiratory rate. Any predictive modeling and treatment plan
should take this variability and uncertainty into account.

This uncertainty around generalizability opens up new research
opportunities in the health informatics domain in three possible
directions: (1) Does this finding hold its generalizability while
integrating data from multiple electronic health records? (2)
How can we study confounding variables induced by numerous
groups of people with different characteristics? (3) How can
these findings address the confounding medical interventions
in sepsis treatment?

Moreover, the comparison between qSOFA and SIRS can be
extended to comparing SOFA and qSOFA, SIRS and SOFA,
or all the three criteria available to better understand the
underlying interrelations between the parameters.

Conclusion
This study indicates that altered mental status (as assessed with
the Glasgow Coma Scale) is the most prevalent qSOFA criterion
and white blood cell count is the most prevalent SIRS criterion
for patients in the ICU. Besides, two-factored sepsis comprising
altered mental status and high respiratory rate (≥22
breaths/minute) is the most prevalent sepsis-3 (qSOFA) scenario,
and two-factored sepsis of white blood cells and tachypnea is
the most prevalent sepsis-2 (SIRS) scenario confronted in the
ICU among patients screened for sepsis. In addition, the Pearson
correlation coefficients advocate for the dichotomy among the
sepsis parameters (for both qSOFA and SIRS). This study
implies that sepsis diagnosis and treatment should be pertinent
to its type, and in this regard, these multifactored attributes
should be taken into account. Machine-learning predictive
models should consider the most prevalent criterion pair, which
would allow for a faster diagnosis. Moreover, the reasoning
backed by the sepsis pathophysiology assures the interpretability
that these results require. These findings can help obtain a better
understanding of the algorithmic, as well as contextual
challenges that influence predictive decisions in the ICU.
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