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Abstract

Background: Studies involving organ transplant recipients (OTRs) are often limited to the variables collected in the national
Scientific Registry of Transplant Recipients database. Electronic health records contain additional variables that can augment
this data source if OTRs can be identified accurately.

Objective: The aim of this study was to develop phenotyping algorithms to identify OTRs from electronic health records.

Methods: We used Vanderbilt’s deidentified version of its electronic health record database, which contains nearly 3 million
subjects, to develop algorithms to identify OTRs. We identified all 19,817 individuals with at least one International Classification
of Diseases (ICD) or Current Procedural Terminology (CPT) code for organ transplantation. We performed a chart review on
1350 randomly selected individuals to determine the transplant status. We constructed machine learning models to calculate
positive predictive values and sensitivity for combinations of codes by using classification and regression trees, random forest,
and extreme gradient boosting algorithms.

Results: Of the 1350 reviewed patient charts, 827 were organ transplant recipients while 511 had no record of a transplant, and
12 were equivocal. Most patients with only 1 or 2 transplant codes did not have a transplant. The most common reasons for being
labeled a nontransplant patient were the lack of data (229/511, 44.8%) or the patient being evaluated for an organ transplant
(174/511, 34.1%). All 3 machine learning algorithms identified OTRs with overall >90% positive predictive value and >88%
sensitivity.

Conclusions: Electronic health records linked to biobanks are increasingly used to conduct large-scale studies but have not
been well-utilized in organ transplantation research. We present rigorously evaluated methods for phenotyping OTRs from
electronic health records that will enable the use of the full spectrum of clinical data in transplant research. Using several different
machine learning algorithms, we were able to identify transplant cases with high accuracy by using only ICD and CPT codes.

(JMIR Med Inform 2020;8(12):e18001) doi: 10.2196/18001
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Introduction

The Scientific Registry for Transplant Recipients (SRTR) is an
outstanding resource for studies of organ transplant recipients

(OTRs). The SRTR has incomplete data on important variables
such as cancers in transplant patients and lacks a common data
model [1-3]. Linking records to cancer registries has greatly
aided in the collection of these data, but not all outcomes can
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be measured in this way [4]. Moreover, the regulations regarding
linking these identified data sets to DNA biobanks can be
burdensome and limit the scale of genetic studies that can be
conducted in OTRs. To address these limitations, other resources
that contain a more robust record of patients’ health, such as
the electronic health record (EHR), can be used [5]. The use of
different types of data contained in the EHR to phenotype
disease states has gained broad acceptance [6-8]. Most studies
seeking broader data have attempted to link EHR data to the
SRTR [9-11]. This approach can be problematic because to
protect patient privacy according to the Health Insurance
Portability and Accountability Act, the linkage is done by the
SRTR management team, with new identifiers returned to the
investigator. These new identifiers preclude linkage back for
updating or correcting records or linking to deidentified genetic
databases.

To avoid this issue, several studies have used the presence of
an International Classification of Diseases (ICD)-9 or ICD-10
code or Current Procedural Terminology (CPT) code for
transplantation to identify transplant patients, although this
practice is known to have poor performance [9-11]. ICD codes
are used as a means of providing distinct diagnoses for billing
purposes. ICD version 9 was first used in 1979 and it ran until
October 1, 2014 in the United States, at which time ICD-10 was
adopted. Patients whose records span this timepoint thus can
contain both ICD-9 and ICD-10 codes in their records, whereas
patients seen only prior to then would have exclusively ICD-9
codes. CPT codes designate specific surgeries and procedures.
A thorough investigation of the accuracy of using ICD and CPT
codes to phenotype OTRs has not been performed nor have
formal phenotyping algorithms for identifying transplant patients
from the EHR been developed. We therefore conducted this
study to develop rigorously evaluated phenotyping algorithms
for the identification of transplant patients from EHRs.

Methods

Cohort Assembly
This study used deidentified patient-level data and was
designated as an exempt nonhuman subjects research study by
the institutional review board at the Vanderbilt University
Medical Center (VUMC). We identified all possible OTRs from
the Synthetic Derivative [12]. The Synthetic Derivative contains
over 2.9 million subjects with deidentified clinical data from
the EHR collected longitudinally over several decades since
VUMC began using an EHR. The Synthetic Derivative is linked
to a large DNA biobank called BioVU [12]. Similar to the entire
patient population seen at VUMC, patients are predominantly
Caucasian, and there are approximately equal numbers of males
and females. The Synthetic Derivative includes all information

available in the EHR, incorporating diagnostic codes (ICD-9
and ICD-10), CPT codes, demographics, text from inpatient
and outpatient notes (including both subspecialty and primary
care), laboratory values, radiology reports, and medication
orders. However, records scanned into the EHR are not available
in the Synthetic Derivative. Users can perform text-based
searches of the entire clinical record within seconds to increase
the efficiency and accuracy of data extraction. To identify
possible OTRs within the Synthetic Derivative, we used ICD-9
and ICD-10 codes as well as CPT codes specific to each organ
(Table 1). We excluded codes for bone, cornea, and skin
transplants, as these are uncommon. Although bone marrow
and stem cell transplants are not included in SRTR, we included
these, given the large number of transplants performed every
year and the need to be able to identify these patients.

We randomly selected 1350 patients for chart review to confirm
organ transplant status and to serve as training and testing sets
(Figure 1). A preliminary analysis of the first 750 charts showed
difficulty in the models correctly identifying OTRs with a low
number of codes. Overall, there was a bimodal distribution of
code count frequencies, with high numbers of patients having
only 1 or 2 and >50% having 10 or more codes (Figure 2).
Therefore, we reviewed an additional 500 charts with
oversampling of those with 1 or 2 codes. There were only 31
lung transplant cases included in the initial sample; therefore,
we reviewed an additional 100 charts that had at least one code
for lung transplant to increase the sample size. Chart review
was performed by 3 authors (LW, LXW, NA) with 20% overlap
to determine interrater reliability. Disagreements were settled
by reviewers examining the record in question together to make
a final determination. The time of possible transplant was
defined as the date of the first CPT code for transplant or the
earliest transplant code in the chart. Transplant patients were
defined as those with any definitive evidence of having a
transplant (eg, transplant procedure note, transplant biopsy
pathology report, documentation in the chart of having a
transplant). Equivocal cases were defined as those with an
absence of definitive evidence but with factors potentially
related to transplantation (eg, subsequent immunosuppressant
use, laboratories measuring tacrolimus levels, multiple
cytomegalovirus titers). Patients without documentation of a
transplant were defined as those with definitive evidence of
having not received a transplant (eg, organ donation, denied
listing for transplantation). Patients whose charts contained only
ICD and CPT codes but lacking any documentation of notes,
pathology records, radiology records, laboratory records, or
medications were classified as not having evidence of a
transplant unless there were multiple transplant codes at different
time points.
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Table 1. List of the International Classification of Diseases and Current Procedural Terminology codes used to identify possible organ transplant
recipients from the electronic health record.

Current Procedural Termi-
nology codes

ICD-10 codesICDa-9 codesTransplanted organ

33935, 33945Z94.1, Z94.3, T86.2, T86.3, 02YA0ZbV42.1, 996.83, 37.51Heart

32851, 32852, 32853,
32854

Z94.2, Z94.3, T86.3, T86.81, 0BYbV42.6, 996.84Lung

50340, 50370, 50380,
50360, 50365

Z94.0, T86.1, 0TYbV42.0, 996.81Kidney

47135, 47136Z94.4, T86.4, 0FY00bV42.7, 996.82Liver

38242, 38240, 38241,
38243

Z94.81, Z94.84, T86.0, T86.5, 30230Ab, 30230Gb, 30230Xb,

30230Yb, 30233Ab, 30233Gb, 30233Xb, 30233Yb, 30240Ab,

30240Gb, 30240Xb, 30240Yb, 30243Ab, 30243Gb, 30243Xb,

30243Yb, 30250Gb, 30250Xb, 30250Yb, 30253Gb, 30253Xb,

30253Yb, 30260Gb, 30260Xb, 30260Yb, 30263Gb, 30263Xb,

30263Yb

V42.81, V42.82, 996.85,
996.88, 41.0, 41.00, 41.01,
41.02, 41.03, 41.04, 41.05,
41.06, 41.07, 41.08, 41.09

Bone marrow or stem
cell

48554, 48556Z94.82, Z94.83, Z94.89, Z94.9, T86.85, T86.89, T86.90,

T86.91, T86.92, T86.93, T86.99, 0FYG0Zb
V42.83, V42.84, V42.89,
V42.8, V42.83, V42.9,
996.86, 996.87, 996.89,
996.80

Pancreas, intestine, or
other

aInternational Classification of Diseases.
bMeans all values under this subheading, eg, “0FYG0Z*” includes 0FYG0Z0, 0FYG0Z1, and 0FYG0Z2.

Figure 1. Selection of patients. From the full electronic health record, we identified 19,817 individuals with at least one transplant code, and from
these, we selected a random sample of 1350 individuals for chart review and model building. EHR: electronic health record.
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Figure 2. Frequencies of total transplant code counts among those 19,817 individuals with at least one transplant code.

Algorithm Development
We split the population of 1350 into a training set of 1080
individuals (80.0%) and a testing set of the remaining 270
individuals (20.0%). We calculated the positive predictive value
(PPV), sensitivity, and F-score at each sequential cut point from
each sequential cut point (>1, >2, >3…>10) of the total ICD-9,
ICD-10, and CPT transplant codes, labeling those below the
cut point as nontransplant patients and those above the cut point
as transplant patients. We selected the cut point with the highest
F-score in the training set and calculated these values in the test
set by using the same cut point. We considered several different
models, starting with classification and regression trees (CART),
which is perhaps the most approachable to clinicians without
any formal training in bioinformatics and then expanding to
ensemble methods of random forest (RF) and extreme gradient
boosting (XGB). The variables used in the models included age
at transplant, race, gender, year of transplant, duration of
follow-up, vital status, the codes listed in Table 1, total number
of transplant codes, total number of transplant status codes, total
number of transplant procedure codes, total number of transplant
complications codes, and total number of transplant aftercare
codes. Machine learning models were constructed using the
training set with 5-fold cross validation and were tuned using
the caret package in R 3.5.1 [13,14]. The final tuning parameters
for each model are presented in Table S1 of Multimedia
Appendix 1. The rpart package was used for CART models
[15], the ranger package was used for RF models [16], and the
xgboost package was used for XGB models by using method
= “xgbTree” in the caret framework [17]. Sensitivity was defined
as the number of those predicted as having a transplant divided
by the total number of transplant patients. PPV was the number
of transplant patients correctly predicted to have a transplant
divided by the total number of patients predicted to be transplant

patients. Sensitivity and PPV were calculated overall and for
each organ type. All models were compared using the F-score,
which is calculated as 2*(sensitivity*PPV)/(sensitivity + PPV).
An F-score of 1.0 represents perfect classification. Because all
charts were selected based on the presence of a transplant code,
specificity could not be calculated.

Alternative Search Strategies
Preliminary models suggested difficulty in discriminating
between transplant recipients and nontransplant recipients with
fewer than 4 transplant codes. We therefore considered the
addition of medication and laboratory data. However, among
these subjects with few codes, we found that nearly all of them
had data for only ICD and CPT codes and not medications;
therefore, this strategy was abandoned. We also considered the
addition of natural language processing (NLP) methods to
augment the search algorithms. While this 2-step process has
shown better performance than using codes alone, we observed
that the model had excellent performance in patients with
unstructured data sources and poor performance in those without
unstructured data [18]. As such, the addition of NLP would
have improved our classification only minimally, while greatly
increasing the complexity of the algorithm. All the algorithms
were therefore constructed using the structured data only.

Results

Cohort Assembly
Among patients in the Synthetic Derivative with at least one
transplant code, there were 7751 potential renal transplant
patients, 3240 potential cardiac transplant patients, 1506
potential lung transplant patients, 3648 potential liver transplant
patients, 6401 potential stem cell or bone marrow transplant
patients, and 3845 patients potentially with a transplanted
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pancreas, small intestine, or other organs besides skin, bone, or
eye. Accounting for patients with codes for multiple transplanted
organs, there were 19,817 unique individuals.

The mean number of codes per individual was 52.6 and the
median count was 6. Many of the individuals had only 1
(4439/19,817, 22.3%) or 2 (2243/19,817, 11.3%) transplant
codes (Figure 2). A chart review of 1350 subjects revealed 827
(61.3%) transplant patients, 12 (0.9%) equivocal cases, and 511
(37.9%) patients without documentation of a transplant.
Individuals with a greater number of codes were more likely to
be OTRs (Table 2). Interrater reliability was extremely high

(247/250, 98.8% concordance), and all 3 discrepancies involved
patients being labeled as OTRs versus equivocal. The most
common reasons for being labeled as not having documentation
of a transplant were the lack of adequate data (229/511, 44.8%)
or the patient currently or formerly being evaluated for an organ
transplant (174/511, 34.1%). Other reasons included coding
errors identified during the chart review, such as the patient
receiving blood products or tagged red blood cell scans. In
preliminary analyses, we considered models excluding the 12
equivocal cases or categorizing them as OTRs or non-OTRs.
There were no material differences among the models; therefore,
these 12 were labeled as cases in the final models presented.

Table 2. Frequencies, positive predictive value, sensitivity, and F-score by code counts of organ transplant recipients and nonorgan transplant recipients.

10987654321Transplant codes

9212881227173269Non-OTRa, n

60716467821249551OTR, n

0.9850.9830.9810.9780.9670.9560.9410.9090.7650.621PPVb

0.7230.7430.7470.7540.7630.7720.7970.8790.9391.000Sensitivity

0.8340.8460.8480.8520.8530.8540.8630.8940.8430.767F-score

aOTR: organ transplant recipient.
bPPV: positive predictive value.

Models for Overall Transplant Status
Using 3 or more codes as the cut point for calling a patient a
transplant recipient had the highest F-score (Table 2). The
sensitivity and PPV of the code counts and the CART, RF, and
XGB models for identifying OTRs are shown in Table 3. CART,
RF, and XGB all performed comparably, with RF having the

highest F-score in the testing set. Applying the overall RF model
to the full study population yielded a final sample size of 13,445
OTRs. For comparison, VUMC has performed 7671 solid organ
transplants between January 1, 1988 and February 28, 2019,
and 1323 bone marrow and stem cell transplants from 2015 to
2018 [19,20].

Table 3. Positive predictive value, sensitivity, and F-scores for each model to identify individuals with any organ transplant in the training and testing
sets.

Testing setTraining setModel

F-scoreSensitivityPPVF-scoreSensitivityPPVa

0.9110.9110.9110.8920.8760.909>3 codes

0.8980.8920.9030.8910.8720.911CARTb

0.9090.9090.9090.8980.8870.909RFc

0.8680.8920.8460.9030.8820.925XGBd

aPPV: positive predictive value.
bCART: classification and regression tree.
cRF: random forest.
dXGB: extreme gradient boosting.

Organ-Specific Models
Many patients had codes for >1 organ type; therefore, we
included all of the codes in organ-specific models. The 2 most
important variables in these models in all 3 algorithms included
codes for either the correct organ transplant status (V42 and

Z94 codes, with decimals specifying organ type), complications
of the correct transplanted organ (996 or T86 codes, with
decimals specifying organ type), or procedural codes specifying
the correct organ type (Table S2 of Multimedia Appendix 1).
The PPV, sensitivity, and F-scores for the training and testing
sets for each organ type are presented in Table 4.
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Table 4. Positive predictive value, sensitivity, and F-score for each machine learning model to identify individuals with specific organ transplant types
in the training and testing sets.

Testing setTraining setOrgan, model

F-scoreSensitivityPPVF-scoreSensitivityPPVa

Heart

0.8890.810.8790.80.974>5 codes

0.8280.9230.750.8240.7320.94CARTb

0.93310.8750.8860.8140.972RFc

0.8750.8750.8750.8860.8140.972XGBd

Lung

1110.8950.8720.919>4 codes

0.92710.8640.8210.780.868CART

0.92710.8640.9560.9151RF

0.92710.8640.9380.8980.981XGB

Kidney

0.8780.8180.9470.8490.7890.918>4 codes

0.9130.940.8870.8320.840.824CART

0.9170.8930.9430.8690.840.901RF

0.9060.9060.9060.8680.850.888XGB

Liver

1110.9250.890.963>6 codes

0.8640.7920.950.8960.8650.928CART

1110.9350.8940.979RF

0.9760.95210.940.9040.979XGB

Bone marrow

0.9030.8750.9330.7880.690.918>6 codes

0.8330.7890.8820.8730.8840.862CART

0.880.8980.8630.8770.8280.932RF

0.8540.8460.8630.8830.8590.909XGB

aPPV: positive predictive value.
bCART: classification and regression tree.
cRF: random forest.
dXGB: extreme gradient boosting.

Sensitivity Analyses
The United States transitioned from ICD-9 to ICD-10 coding
on October 1, 2014. We examined if the model performance
differed before or after this time point and found good stability
overall. For example, the XGB model for overall transplant
status had an F-score of 0.92 before and 0.89 after October 1,
2014. We also noted that the majority of our cases underwent
a transplant after the year 2000. We examined model
performance before and after January 1, 2000 and found very
stable F-scores (0.91 before and 0.92 after in the XGB model
for overall transplant status), suggesting little impact on the
model based on this imbalance.

Discussion

In this study, we developed and validated phenotyping
algorithms for identifying OTRs from the EHR. Using several
different rule-based and machine learning methods, we were
able to identify OTRs overall with 90% PPV and sensitivity
and higher values for several individual organ types. The
algorithms all performed comparably well, although RF tended
to be the most consistent. The development of these phenotyping
algorithms was necessary as the PPV for using at least one
transplant code to identify OTRs was only 60%, indicating that
studies based on the presence of only one of these codes may
have biased results.
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The SRTR of the United Network for Organ Sharing and the
Organ Procurement and Transplant Network is the primary
national database for transplant recipient outcomes research.
Because the SRTR is not linked directly to patient records in
EHRs, it is not possible to collect data on additional variables
not captured by the data entry forms. As a result, many important
variables and outcomes are completely omitted. Indeed, a recent
study of cardiac transplants using SRTR data found that
advanced machine learning methods did not outperform the
more traditional prediction models for 1-year survival, with the
authors concluding that the methods were hindered by limited
data in the registry [21]. By developing validated algorithms to
identify OTRs from the EHR, a broader range of studies can be
conducted using the data in the full clinical record.

Large reviews of the accuracy of diagnostic and procedural
codes show <90% concordance with true diagnoses in inpatient
and outpatient settings, both in the United States and other
countries [9,22,23]. In a study from Canada, the use of ICD
codes alone to identify kidney donors had only 60% sensitivity
and 78% PPV, which were similar to our findings for transplant
recipients [9]. While the primary diagnosis for a visit is less
likely to be missed, secondary diagnoses were more likely to
be omitted from the coding. In the United States, up to 12
diagnoses can be entered for an encounter, though only 4 are
allowed to be linked to an individual service, with the codes
generating the highest reimbursements being prioritized by the
medical coders. As a result, transplant patients seen for critical
illnesses or procedures may have been less likely to have a
transplant code listed.

Many of the charts we reviewed contained only 1 or 2 transplant
codes. In addition, these charts often had only ICD and CPT
codes but no documents, medications, or laboratory data. Two
possible explanations for this lack of data are that handwritten
notes and outside records are not scanned into the Synthetic
Derivative, and patients with sparse data that could make them
potentially identifiable are redacted more often than those with
deeper coverage of their records. Regardless of the reason for
lack of data, these patients were all called nontransplant patients,
and therefore, our algorithm might underestimate the PPV for
those with few codes. We attempted to improve our accuracy
in classifying these individuals with few transplant codes. First,
after identifying this problem in our preliminary analyses, we
increased our initial sample by 67% with oversampling of those
with only 1 or 2 codes to provide the models with more data
points with which to learn to classify them. We also considered
adding medications to our algorithms as well as applying NLP
to the documents in the EHR. Although these strategies might
have augmented the PPV and sensitivity, the gains would have
been minimal as those individuals with data besides ICD and
CPT codes tended to have a higher number of transplant codes,
and therefore, the algorithms had more accurate classification
of these patients without the extra data. Moreover, classifying
individuals with sparse data as non-OTRs eliminates even those
true OTRs who would be excluded from later analyses due to
missing data. The true transplant cases that were misclassified
were almost exclusively those who had only a single
presentation to VUMC with no additional follow-up. Thus, they
tended to have only 1 or 2 diagnostic or procedural codes. From

a broader standpoint, these were patients who also had little
data to contribute to any downstream analyses of the cohort.
Therefore, while the models excluded some cases, the overall
information loss was low.

There was notable variation in the model metrics both within
and between organ types. The reason for the different
performance was likely 2-fold. First, there were low numbers
for lung transplant recipients (n=81) compared to kidney
transplant recipients (n=259); therefore, it is not surprising that
the kidney models performed better. Second, the number of
different codes contributing to a specific organ type also played
a role. For example, although there were 249 stem cell or bone
marrow transplant patients, there were 50 different ICD and
CPT codes for this type of transplant. Therefore, it is not
surprising that the bone marrow models tended to perform worse
than the other organ types that had far fewer codes associated,
as there were likely subsets within the cross-validations that did
not include certain codes. Each code is used in different clinical
settings and can be subject to individual coding preferences;
therefore, this variability would be expected across institutions.

This study had several limitations. All the data were from a
single medical center and coding practices may differ among
institutions. Any center wishing to use this approach would
need to perform a validation step to confirm the models’
performance, although EHR algorithms have been shown to
have good portability between populations [24]. VUMC is a
high-volume transplant center, and as a result, many patients
are seen there for either transplant surgery alone or for follow-up
after receiving a transplant elsewhere. This fragmentation of
care can limit the available data. Our models consistently
predicted slightly greater numbers of OTRs than the number of
transplant procedures that have been performed at VUMC.
These numbers suggest that we are in fact correctly labeling the
majority of those transplants performed at VUMC, while also
capturing those whose transplants were performed elsewhere
but have been seen in follow-up at VUMC. More than half of
the possible OTRs in our EHR had >10 transplant codes,
indicating high-density data for these individuals. If we had
used >10 transplant codes as our cutoff for OTR determination,
the PPV would be 98.5% and the sensitivity would still be
72.3%. Conversely, a large proportion of our cohort had low
numbers of transplant codes, which can correlate with the
duration of the follow-up. Although the cases identified with
low numbers of codes could have easily been excluded a priori
by requiring a set number of total codes, doing so would falsely
inflate our sensitivity measures, as many true cases would not
have been investigated and confirmed on chart review. Our goal
was to provide accurate estimates of the algorithm’s overall
performance, even if many of the identified cases would
ultimately be excluded due to missing data in subsequent
analyses. Many patients had no available text data from notes.
This deficiency likely was the outcome of handwritten notes
not being included in the Synthetic Derivative. Thus, we were
not able to add NLP to our algorithms, which potentially could
have improved our models. EHRs can be a powerful tool for
investigating outcomes not captured by large registries.

In this study, we have validated algorithms for identifying OTR
overall and OTRs receiving specific organs by using only ICD

JMIR Med Inform 2020 | vol. 8 | iss. 12 | e18001 | p. 7http://medinform.jmir.org/2020/12/e18001/
(page number not for citation purposes)

Wheless et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


and CPT codes. Single variable phenotyping algorithms based
on code counts alone perform well but can be improved by using
RFs. These algorithms can be used to construct EHR-based

cohorts to broaden the range of clinical and translational studies
conducted on organ transplants.
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