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Abstract

Background: Studies involving organ transplant recipients (OTRs) are often limited to the variables collected in the national
Scientific Registry of Transplant Recipients database. Electronic health records contain additional variables that can augment
this data source if OTRs can be identified accurately.

Objective: The aim of this study was to develop phenotyping algorithms to identify OTRs from electronic health records.

Methods: We used Vanderbilt’s deidentified version of its electronic health record database, which contains nearly 3 million
subjects, to develop algorithms to identify OTRs. We identified all 19,817 individuals with at least one International Classification
of Diseases (ICD) or Current Procedural Terminology (CPT) code for organ transplantation. We performed a chart review on
1350 randomly selected individuals to determine the transplant status. We constructed machine learning models to calculate
positive predictive values and sensitivity for combinations of codes by using classification and regression trees, random forest,
and extreme gradient boosting algorithms.

Results: Of the 1350 reviewed patient charts, 827 were organ transplant recipients while 511 had no record of a transplant, and
12 were equivocal. Most patients with only 1 or 2 transplant codes did not have a transplant. The most common reasons for being
labeled a nontransplant patient were the lack of data (229/511, 44.8%) or the patient being evaluated for an organ transplant
(174/511, 34.1%). All 3 machine learning algorithms identified OTRs with overall >90% positive predictive value and >88%
sensitivity.

Conclusions: Electronic health records linked to biobanks are increasingly used to conduct large-scale studies but have not
been well-utilized in organ transplantation research. We present rigorously evaluated methods for phenotyping OTRs from
electronic health records that will enable the use of the full spectrum of clinical data in transplant research. Using several different
machine learning algorithms, we were able to identify transplant cases with high accuracy by using only ICD and CPT codes.

(JMIR Med Inform 2020;8(12):e18001)   doi:10.2196/18001

KEYWORDS

phenotyping; electronic health record; organ transplant recipients

Introduction

The Scientific Registry for Transplant Recipients (SRTR) is an
outstanding resource for studies of organ transplant recipients

(OTRs). The SRTR has incomplete data on important variables
such as cancers in transplant patients and lacks a common data
model [1-3]. Linking records to cancer registries has greatly
aided in the collection of these data, but not all outcomes can
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be measured in this way [4]. Moreover, the regulations regarding
linking these identified data sets to DNA biobanks can be
burdensome and limit the scale of genetic studies that can be
conducted in OTRs. To address these limitations, other resources
that contain a more robust record of patients’ health, such as
the electronic health record (EHR), can be used [5]. The use of
different types of data contained in the EHR to phenotype
disease states has gained broad acceptance [6-8]. Most studies
seeking broader data have attempted to link EHR data to the
SRTR [9-11]. This approach can be problematic because to
protect patient privacy according to the Health Insurance
Portability and Accountability Act, the linkage is done by the
SRTR management team, with new identifiers returned to the
investigator. These new identifiers preclude linkage back for
updating or correcting records or linking to deidentified genetic
databases.

To avoid this issue, several studies have used the presence of
an International Classification of Diseases (ICD)-9 or ICD-10
code or Current Procedural Terminology (CPT) code for
transplantation to identify transplant patients, although this
practice is known to have poor performance [9-11]. ICD codes
are used as a means of providing distinct diagnoses for billing
purposes. ICD version 9 was first used in 1979 and it ran until
October 1, 2014 in the United States, at which time ICD-10 was
adopted. Patients whose records span this timepoint thus can
contain both ICD-9 and ICD-10 codes in their records, whereas
patients seen only prior to then would have exclusively ICD-9
codes. CPT codes designate specific surgeries and procedures.
A thorough investigation of the accuracy of using ICD and CPT
codes to phenotype OTRs has not been performed nor have
formal phenotyping algorithms for identifying transplant patients
from the EHR been developed. We therefore conducted this
study to develop rigorously evaluated phenotyping algorithms
for the identification of transplant patients from EHRs.

Methods

Cohort Assembly
This study used deidentified patient-level data and was
designated as an exempt nonhuman subjects research study by
the institutional review board at the Vanderbilt University
Medical Center (VUMC). We identified all possible OTRs from
the Synthetic Derivative [12]. The Synthetic Derivative contains
over 2.9 million subjects with deidentified clinical data from
the EHR collected longitudinally over several decades since
VUMC began using an EHR. The Synthetic Derivative is linked
to a large DNA biobank called BioVU [12]. Similar to the entire
patient population seen at VUMC, patients are predominantly
Caucasian, and there are approximately equal numbers of males
and females. The Synthetic Derivative includes all information

available in the EHR, incorporating diagnostic codes (ICD-9
and ICD-10), CPT codes, demographics, text from inpatient
and outpatient notes (including both subspecialty and primary
care), laboratory values, radiology reports, and medication
orders. However, records scanned into the EHR are not available
in the Synthetic Derivative. Users can perform text-based
searches of the entire clinical record within seconds to increase
the efficiency and accuracy of data extraction. To identify
possible OTRs within the Synthetic Derivative, we used ICD-9
and ICD-10 codes as well as CPT codes specific to each organ
(Table 1). We excluded codes for bone, cornea, and skin
transplants, as these are uncommon. Although bone marrow
and stem cell transplants are not included in SRTR, we included
these, given the large number of transplants performed every
year and the need to be able to identify these patients.

We randomly selected 1350 patients for chart review to confirm
organ transplant status and to serve as training and testing sets
(Figure 1). A preliminary analysis of the first 750 charts showed
difficulty in the models correctly identifying OTRs with a low
number of codes. Overall, there was a bimodal distribution of
code count frequencies, with high numbers of patients having
only 1 or 2 and >50% having 10 or more codes (Figure 2).
Therefore, we reviewed an additional 500 charts with
oversampling of those with 1 or 2 codes. There were only 31
lung transplant cases included in the initial sample; therefore,
we reviewed an additional 100 charts that had at least one code
for lung transplant to increase the sample size. Chart review
was performed by 3 authors (LW, LXW, NA) with 20% overlap
to determine interrater reliability. Disagreements were settled
by reviewers examining the record in question together to make
a final determination. The time of possible transplant was
defined as the date of the first CPT code for transplant or the
earliest transplant code in the chart. Transplant patients were
defined as those with any definitive evidence of having a
transplant (eg, transplant procedure note, transplant biopsy
pathology report, documentation in the chart of having a
transplant). Equivocal cases were defined as those with an
absence of definitive evidence but with factors potentially
related to transplantation (eg, subsequent immunosuppressant
use, laboratories measuring tacrolimus levels, multiple
cytomegalovirus titers). Patients without documentation of a
transplant were defined as those with definitive evidence of
having not received a transplant (eg, organ donation, denied
listing for transplantation). Patients whose charts contained only
ICD and CPT codes but lacking any documentation of notes,
pathology records, radiology records, laboratory records, or
medications were classified as not having evidence of a
transplant unless there were multiple transplant codes at different
time points.
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Table 1. List of the International Classification of Diseases and Current Procedural Terminology codes used to identify possible organ transplant
recipients from the electronic health record.

Current Procedural Termi-
nology codes

ICD-10 codesICDa-9 codesTransplanted organ

33935, 33945Z94.1, Z94.3, T86.2, T86.3, 02YA0ZbV42.1, 996.83, 37.51Heart

32851, 32852, 32853,
32854

Z94.2, Z94.3, T86.3, T86.81, 0BYbV42.6, 996.84Lung

50340, 50370, 50380,
50360, 50365

Z94.0, T86.1, 0TYbV42.0, 996.81Kidney

47135, 47136Z94.4, T86.4, 0FY00bV42.7, 996.82Liver

38242, 38240, 38241,
38243

Z94.81, Z94.84, T86.0, T86.5, 30230Ab, 30230Gb, 30230Xb,

30230Yb, 30233Ab, 30233Gb, 30233Xb, 30233Yb, 30240Ab,

30240Gb, 30240Xb, 30240Yb, 30243Ab, 30243Gb, 30243Xb,

30243Yb, 30250Gb, 30250Xb, 30250Yb, 30253Gb, 30253Xb,

30253Yb, 30260Gb, 30260Xb, 30260Yb, 30263Gb, 30263Xb,

30263Yb

V42.81, V42.82, 996.85,
996.88, 41.0, 41.00, 41.01,
41.02, 41.03, 41.04, 41.05,
41.06, 41.07, 41.08, 41.09

Bone marrow or stem
cell

48554, 48556Z94.82, Z94.83, Z94.89, Z94.9, T86.85, T86.89, T86.90,

T86.91, T86.92, T86.93, T86.99, 0FYG0Zb
V42.83, V42.84, V42.89,
V42.8, V42.83, V42.9,
996.86, 996.87, 996.89,
996.80

Pancreas, intestine, or
other

aInternational Classification of Diseases.
bMeans all values under this subheading, eg, “0FYG0Z*” includes 0FYG0Z0, 0FYG0Z1, and 0FYG0Z2.

Figure 1. Selection of patients. From the full electronic health record, we identified 19,817 individuals with at least one transplant code, and from
these, we selected a random sample of 1350 individuals for chart review and model building. EHR: electronic health record.
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Figure 2. Frequencies of total transplant code counts among those 19,817 individuals with at least one transplant code.

Algorithm Development
We split the population of 1350 into a training set of 1080
individuals (80.0%) and a testing set of the remaining 270
individuals (20.0%). We calculated the positive predictive value
(PPV), sensitivity, and F-score at each sequential cut point from
each sequential cut point (>1, >2, >3…>10) of the total ICD-9,
ICD-10, and CPT transplant codes, labeling those below the
cut point as nontransplant patients and those above the cut point
as transplant patients. We selected the cut point with the highest
F-score in the training set and calculated these values in the test
set by using the same cut point. We considered several different
models, starting with classification and regression trees (CART),
which is perhaps the most approachable to clinicians without
any formal training in bioinformatics and then expanding to
ensemble methods of random forest (RF) and extreme gradient
boosting (XGB). The variables used in the models included age
at transplant, race, gender, year of transplant, duration of
follow-up, vital status, the codes listed in Table 1, total number
of transplant codes, total number of transplant status codes, total
number of transplant procedure codes, total number of transplant
complications codes, and total number of transplant aftercare
codes. Machine learning models were constructed using the
training set with 5-fold cross validation and were tuned using
the caret package in R 3.5.1 [13,14]. The final tuning parameters
for each model are presented in Table S1 of Multimedia
Appendix 1. The rpart package was used for CART models
[15], the ranger package was used for RF models [16], and the
xgboost package was used for XGB models by using method
= “xgbTree” in the caret framework [17]. Sensitivity was defined
as the number of those predicted as having a transplant divided
by the total number of transplant patients. PPV was the number
of transplant patients correctly predicted to have a transplant
divided by the total number of patients predicted to be transplant

patients. Sensitivity and PPV were calculated overall and for
each organ type. All models were compared using the F-score,
which is calculated as 2*(sensitivity*PPV)/(sensitivity + PPV).
An F-score of 1.0 represents perfect classification. Because all
charts were selected based on the presence of a transplant code,
specificity could not be calculated.

Alternative Search Strategies
Preliminary models suggested difficulty in discriminating
between transplant recipients and nontransplant recipients with
fewer than 4 transplant codes. We therefore considered the
addition of medication and laboratory data. However, among
these subjects with few codes, we found that nearly all of them
had data for only ICD and CPT codes and not medications;
therefore, this strategy was abandoned. We also considered the
addition of natural language processing (NLP) methods to
augment the search algorithms. While this 2-step process has
shown better performance than using codes alone, we observed
that the model had excellent performance in patients with
unstructured data sources and poor performance in those without
unstructured data [18]. As such, the addition of NLP would
have improved our classification only minimally, while greatly
increasing the complexity of the algorithm. All the algorithms
were therefore constructed using the structured data only.

Results

Cohort Assembly
Among patients in the Synthetic Derivative with at least one
transplant code, there were 7751 potential renal transplant
patients, 3240 potential cardiac transplant patients, 1506
potential lung transplant patients, 3648 potential liver transplant
patients, 6401 potential stem cell or bone marrow transplant
patients, and 3845 patients potentially with a transplanted
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pancreas, small intestine, or other organs besides skin, bone, or
eye. Accounting for patients with codes for multiple transplanted
organs, there were 19,817 unique individuals.

The mean number of codes per individual was 52.6 and the
median count was 6. Many of the individuals had only 1
(4439/19,817, 22.3%) or 2 (2243/19,817, 11.3%) transplant
codes (Figure 2). A chart review of 1350 subjects revealed 827
(61.3%) transplant patients, 12 (0.9%) equivocal cases, and 511
(37.9%) patients without documentation of a transplant.
Individuals with a greater number of codes were more likely to
be OTRs (Table 2). Interrater reliability was extremely high

(247/250, 98.8% concordance), and all 3 discrepancies involved
patients being labeled as OTRs versus equivocal. The most
common reasons for being labeled as not having documentation
of a transplant were the lack of adequate data (229/511, 44.8%)
or the patient currently or formerly being evaluated for an organ
transplant (174/511, 34.1%). Other reasons included coding
errors identified during the chart review, such as the patient
receiving blood products or tagged red blood cell scans. In
preliminary analyses, we considered models excluding the 12
equivocal cases or categorizing them as OTRs or non-OTRs.
There were no material differences among the models; therefore,
these 12 were labeled as cases in the final models presented.

Table 2. Frequencies, positive predictive value, sensitivity, and F-score by code counts of organ transplant recipients and nonorgan transplant recipients.

10987654321Transplant codes

9212881227173269Non-OTRa, n

60716467821249551OTR, n

0.9850.9830.9810.9780.9670.9560.9410.9090.7650.621PPVb

0.7230.7430.7470.7540.7630.7720.7970.8790.9391.000Sensitivity

0.8340.8460.8480.8520.8530.8540.8630.8940.8430.767F-score

aOTR: organ transplant recipient.
bPPV: positive predictive value.

Models for Overall Transplant Status
Using 3 or more codes as the cut point for calling a patient a
transplant recipient had the highest F-score (Table 2). The
sensitivity and PPV of the code counts and the CART, RF, and
XGB models for identifying OTRs are shown in Table 3. CART,
RF, and XGB all performed comparably, with RF having the

highest F-score in the testing set. Applying the overall RF model
to the full study population yielded a final sample size of 13,445
OTRs. For comparison, VUMC has performed 7671 solid organ
transplants between January 1, 1988 and February 28, 2019,
and 1323 bone marrow and stem cell transplants from 2015 to
2018 [19,20].

Table 3. Positive predictive value, sensitivity, and F-scores for each model to identify individuals with any organ transplant in the training and testing
sets.

Testing setTraining setModel

F-scoreSensitivityPPVF-scoreSensitivityPPVa

0.9110.9110.9110.8920.8760.909>3 codes

0.8980.8920.9030.8910.8720.911CARTb

0.9090.9090.9090.8980.8870.909RFc

0.8680.8920.8460.9030.8820.925XGBd

aPPV: positive predictive value.
bCART: classification and regression tree.
cRF: random forest.
dXGB: extreme gradient boosting.

Organ-Specific Models
Many patients had codes for >1 organ type; therefore, we
included all of the codes in organ-specific models. The 2 most
important variables in these models in all 3 algorithms included
codes for either the correct organ transplant status (V42 and

Z94 codes, with decimals specifying organ type), complications
of the correct transplanted organ (996 or T86 codes, with
decimals specifying organ type), or procedural codes specifying
the correct organ type (Table S2 of Multimedia Appendix 1).
The PPV, sensitivity, and F-scores for the training and testing
sets for each organ type are presented in Table 4.

JMIR Med Inform 2020 | vol. 8 | iss. 12 |e18001 | p.7http://medinform.jmir.org/2020/12/e18001/
(page number not for citation purposes)

Wheless et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 4. Positive predictive value, sensitivity, and F-score for each machine learning model to identify individuals with specific organ transplant types
in the training and testing sets.

Testing setTraining setOrgan, model

F-scoreSensitivityPPVF-scoreSensitivityPPVa

Heart

0.8890.810.8790.80.974>5 codes

0.8280.9230.750.8240.7320.94CARTb

0.93310.8750.8860.8140.972RFc

0.8750.8750.8750.8860.8140.972XGBd

Lung

1110.8950.8720.919>4 codes

0.92710.8640.8210.780.868CART

0.92710.8640.9560.9151RF

0.92710.8640.9380.8980.981XGB

Kidney

0.8780.8180.9470.8490.7890.918>4 codes

0.9130.940.8870.8320.840.824CART

0.9170.8930.9430.8690.840.901RF

0.9060.9060.9060.8680.850.888XGB

Liver

1110.9250.890.963>6 codes

0.8640.7920.950.8960.8650.928CART

1110.9350.8940.979RF

0.9760.95210.940.9040.979XGB

Bone marrow

0.9030.8750.9330.7880.690.918>6 codes

0.8330.7890.8820.8730.8840.862CART

0.880.8980.8630.8770.8280.932RF

0.8540.8460.8630.8830.8590.909XGB

aPPV: positive predictive value.
bCART: classification and regression tree.
cRF: random forest.
dXGB: extreme gradient boosting.

Sensitivity Analyses
The United States transitioned from ICD-9 to ICD-10 coding
on October 1, 2014. We examined if the model performance
differed before or after this time point and found good stability
overall. For example, the XGB model for overall transplant
status had an F-score of 0.92 before and 0.89 after October 1,
2014. We also noted that the majority of our cases underwent
a transplant after the year 2000. We examined model
performance before and after January 1, 2000 and found very
stable F-scores (0.91 before and 0.92 after in the XGB model
for overall transplant status), suggesting little impact on the
model based on this imbalance.

Discussion

In this study, we developed and validated phenotyping
algorithms for identifying OTRs from the EHR. Using several
different rule-based and machine learning methods, we were
able to identify OTRs overall with 90% PPV and sensitivity
and higher values for several individual organ types. The
algorithms all performed comparably well, although RF tended
to be the most consistent. The development of these phenotyping
algorithms was necessary as the PPV for using at least one
transplant code to identify OTRs was only 60%, indicating that
studies based on the presence of only one of these codes may
have biased results.
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The SRTR of the United Network for Organ Sharing and the
Organ Procurement and Transplant Network is the primary
national database for transplant recipient outcomes research.
Because the SRTR is not linked directly to patient records in
EHRs, it is not possible to collect data on additional variables
not captured by the data entry forms. As a result, many important
variables and outcomes are completely omitted. Indeed, a recent
study of cardiac transplants using SRTR data found that
advanced machine learning methods did not outperform the
more traditional prediction models for 1-year survival, with the
authors concluding that the methods were hindered by limited
data in the registry [21]. By developing validated algorithms to
identify OTRs from the EHR, a broader range of studies can be
conducted using the data in the full clinical record.

Large reviews of the accuracy of diagnostic and procedural
codes show <90% concordance with true diagnoses in inpatient
and outpatient settings, both in the United States and other
countries [9,22,23]. In a study from Canada, the use of ICD
codes alone to identify kidney donors had only 60% sensitivity
and 78% PPV, which were similar to our findings for transplant
recipients [9]. While the primary diagnosis for a visit is less
likely to be missed, secondary diagnoses were more likely to
be omitted from the coding. In the United States, up to 12
diagnoses can be entered for an encounter, though only 4 are
allowed to be linked to an individual service, with the codes
generating the highest reimbursements being prioritized by the
medical coders. As a result, transplant patients seen for critical
illnesses or procedures may have been less likely to have a
transplant code listed.

Many of the charts we reviewed contained only 1 or 2 transplant
codes. In addition, these charts often had only ICD and CPT
codes but no documents, medications, or laboratory data. Two
possible explanations for this lack of data are that handwritten
notes and outside records are not scanned into the Synthetic
Derivative, and patients with sparse data that could make them
potentially identifiable are redacted more often than those with
deeper coverage of their records. Regardless of the reason for
lack of data, these patients were all called nontransplant patients,
and therefore, our algorithm might underestimate the PPV for
those with few codes. We attempted to improve our accuracy
in classifying these individuals with few transplant codes. First,
after identifying this problem in our preliminary analyses, we
increased our initial sample by 67% with oversampling of those
with only 1 or 2 codes to provide the models with more data
points with which to learn to classify them. We also considered
adding medications to our algorithms as well as applying NLP
to the documents in the EHR. Although these strategies might
have augmented the PPV and sensitivity, the gains would have
been minimal as those individuals with data besides ICD and
CPT codes tended to have a higher number of transplant codes,
and therefore, the algorithms had more accurate classification
of these patients without the extra data. Moreover, classifying
individuals with sparse data as non-OTRs eliminates even those
true OTRs who would be excluded from later analyses due to
missing data. The true transplant cases that were misclassified
were almost exclusively those who had only a single
presentation to VUMC with no additional follow-up. Thus, they
tended to have only 1 or 2 diagnostic or procedural codes. From

a broader standpoint, these were patients who also had little
data to contribute to any downstream analyses of the cohort.
Therefore, while the models excluded some cases, the overall
information loss was low.

There was notable variation in the model metrics both within
and between organ types. The reason for the different
performance was likely 2-fold. First, there were low numbers
for lung transplant recipients (n=81) compared to kidney
transplant recipients (n=259); therefore, it is not surprising that
the kidney models performed better. Second, the number of
different codes contributing to a specific organ type also played
a role. For example, although there were 249 stem cell or bone
marrow transplant patients, there were 50 different ICD and
CPT codes for this type of transplant. Therefore, it is not
surprising that the bone marrow models tended to perform worse
than the other organ types that had far fewer codes associated,
as there were likely subsets within the cross-validations that did
not include certain codes. Each code is used in different clinical
settings and can be subject to individual coding preferences;
therefore, this variability would be expected across institutions.

This study had several limitations. All the data were from a
single medical center and coding practices may differ among
institutions. Any center wishing to use this approach would
need to perform a validation step to confirm the models’
performance, although EHR algorithms have been shown to
have good portability between populations [24]. VUMC is a
high-volume transplant center, and as a result, many patients
are seen there for either transplant surgery alone or for follow-up
after receiving a transplant elsewhere. This fragmentation of
care can limit the available data. Our models consistently
predicted slightly greater numbers of OTRs than the number of
transplant procedures that have been performed at VUMC.
These numbers suggest that we are in fact correctly labeling the
majority of those transplants performed at VUMC, while also
capturing those whose transplants were performed elsewhere
but have been seen in follow-up at VUMC. More than half of
the possible OTRs in our EHR had >10 transplant codes,
indicating high-density data for these individuals. If we had
used >10 transplant codes as our cutoff for OTR determination,
the PPV would be 98.5% and the sensitivity would still be
72.3%. Conversely, a large proportion of our cohort had low
numbers of transplant codes, which can correlate with the
duration of the follow-up. Although the cases identified with
low numbers of codes could have easily been excluded a priori
by requiring a set number of total codes, doing so would falsely
inflate our sensitivity measures, as many true cases would not
have been investigated and confirmed on chart review. Our goal
was to provide accurate estimates of the algorithm’s overall
performance, even if many of the identified cases would
ultimately be excluded due to missing data in subsequent
analyses. Many patients had no available text data from notes.
This deficiency likely was the outcome of handwritten notes
not being included in the Synthetic Derivative. Thus, we were
not able to add NLP to our algorithms, which potentially could
have improved our models. EHRs can be a powerful tool for
investigating outcomes not captured by large registries.

In this study, we have validated algorithms for identifying OTR
overall and OTRs receiving specific organs by using only ICD
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and CPT codes. Single variable phenotyping algorithms based
on code counts alone perform well but can be improved by using
RFs. These algorithms can be used to construct EHR-based

cohorts to broaden the range of clinical and translational studies
conducted on organ transplants.
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Abstract

Background: Identifying and extracting family history information (FHI) from clinical reports are significant for recognizing
disease susceptibility. However, FHI is usually described in a narrative manner within patients’ electronic health records, which
requires the application of natural language processing technologies to automatically extract such information to provide more
comprehensive patient-centered information to physicians.

Objective: This study aimed to overcome the 2 main challenges observed in previous research focusing on FHI extraction. One
is the requirement to develop postprocessing rules to infer the member and side information of family mentions. The other is to
efficiently utilize intrasentence and intersentence information to assist FHI extraction.

Methods: We formulated the task as a sequential labeling problem and propose an enhanced relation-side scheme that encodes
the required family member properties to not only eliminate the need for postprocessing rules but also relieve the insufficient
training instance issues. Moreover, an attention-based neural network structure was proposed to exploit cross-sentence information
to identify FHI and its attributes requiring cross-sentence inference.

Results: The dataset released by the 2019 n2c2/OHNLP family history extraction task was used to evaluate the performance
of the proposed methods. We started by comparing the performance of the traditional neural sequence models with the ordinary
scheme and enhanced scheme. Next, we studied the effectiveness of the proposed attention-enhanced neural networks by comparing
their performance with that of the traditional networks. It was observed that, with the enhanced scheme, the recall of the neural
network can be improved, leading to an increase in the F score of 0.024. The proposed neural attention mechanism enhanced
both the recall and precision and resulted in an improved F score of 0.807, which was ranked fourth in the shared task.

Conclusions: We presented an attention-based neural network along with an enhanced tag scheme that enables the neural
network model to learn and interpret the implicit relationship and side information of the recognized family members across
sentences without relying on heuristic rules.

(JMIR Med Inform 2020;8(12):e21750)   doi:10.2196/21750
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Introduction

Family history information (FHI), such as a patient’s family
members and their corresponding side of the family (ie, maternal
or paternal), health-related problems like medical histories and
current disorders, and habits of substance use, is not only an
essential risk factor for many chronic and hereditary diseases
such as cardiovascular diseases, diabetes, and cancers [1] but
also an important clue for individualized disease diagnosis,
treatment, prediction, and prevention [2-6]. FHI is usually
described in an unstructured free-text format within a patient’s
electronic health record, and its content depends on pieces of
information provided by patients about the health situation of
their relatives during clinical visits. Therefore, it will be
beneficial if natural language processing (NLP) can be employed
to identify FHI to provide a more comprehensive view of
patient-centered information for physicians.

In general, FHI consists of 3 essential factors, including the
relationship between family members, side of the members, and
associated observations. Early studies working on the
identification of FHI [7,8] relied on the Unified Medical
Language System to extract FHI and applied rules to associate
the relations. The release of available FHI training corpora such
as the BioCreative/OHNLP challenge 2018 [9] and the 2019
n2c2/OHNLP shared tasks prompted the advancement of NLP
for automatically extracting FHI. Researchers currently apply
a variety of approaches to tackle the task of FHI extraction. For
example, Dai [10] introduced 3 inside, outside, beginning
(IOB)2-based tag sets that can be utilized to identify family
members and their observations along with the bidirectional
long short-term memory (BiLSTM)-conditional random field
(CRF) model. The first was the standard IOB-2 scheme, which
only captures the spans of the mentioned family members and
observations. Therefore, 5 tags including B/I-FM, B/I-Ob, and
O were used. The second scheme further encodes the family
side information in the tag set for family members. For example,
“Mother” is not associated with any family side values, so its
mention is assigned with the B/I-FM-NA tag, while other tag
sets include the B/I-FM-Paternal and B/I-FM-Maternal tags.
The relation-side scheme was the last proposed tag scheme in
which both the type and side properties are encoded.
Consequently, all possible combinations of the 2 properties that
appeared in the training set were represented by the tag scheme.

Without encoding both the side and relationship information in
tag sets like the relation-side scheme for model training,
previous work had to develop sophisticated postprocessing rules

that relied on commonsense knowledge and surrounding text
to infer the 2 properties of family members and integrate
handcrafted rules with deep learning models in a pipeline
structure. In addition to the challenge of optimizing both
submodules separately, there are at least two other known
limitations of applying postprocessing rules. One is the inability
to determine cases like indirect relatives as pointed out by Dai
[10] and Shi et al [11], and the other is the general ability to
classify FHIs represented in different writing styles.
Unfortunately, although the aforementioned relation-side scheme
is expected to facilitate the development of a single end-to-end
model to conquer the task of FHI extraction, the experiment
results by Dai [10] revealed issues of insufficient and
imbalanced training instances. In light of these constraints, we
eliminated the postprocessing rules and managed the issue of
training instances by proposing an enhanced relation-side tag
scheme. Moreover, we introduced the attention-based neural
network structure to better exploit intrasentence and
intersentence information to determine the FHIs requiring
cross-sentence inference.

Methods

We preprocessed medical notes to generate sentences and the
corresponding tokens associated with their part-of-speech
information via our clinical toolkit [12]. By formulating the
FHI extraction task as a sequential labelling problem, we applied
the proposed tag scheme to encode the gold annotations to
generate the datasets for training the proposed network models.
In the following subsections, we first introduce the relation-side
scheme proposed by Dai [10] and the enhanced version proposed
in this work, followed by descriptions of the architecture of the
developed model that can utilize cross-sentence information
via the sentence-level and document-level neural attentions.

Tag Scheme Design
In order to exclude the need for postprocessing steps, Dai [10]
presented the relation-side scheme in which both the side and
family relationship properties are encoded within the IOB tag
sets for family member entities. Table 1 displays an example
of the encoded annotations. Taking the first family member
mention “two paternal aunts” as an example, we included the
side and relationship information (“paternal” and “aunt,”
respectively, in this case) in the tag set. Since both side and
relationship attributes were encoded and later learned by the
machine learning model, it is not necessary to apply
postprocessing algorithms to infer the 2 properties.
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Table 1. An example sentence encoded with the relation-side scheme and enhanced version: “The patient has two paternal aunts and one paternal
half–brother, all were diagnosed with type-2 diabetes.”

Enhanced relation-side schemeRelation-side schemeWord

OOhas

I-FMB-Aunt-Paternaltwo

I-FMI-Aunt-Paternalpaternal

E-Aunt-PaternalI-Aunt-Paternalaunts

OOand

I-FMB-Brother-NAone

I-FMI-Brother-NApaternal

E-Brother-NAI-Brother-NAhalf-brother

OO,

………

B-OBB-OBtype-2

I-OBI-OBdiabetes

The drawback of the relation-side scheme is that the tag scheme
combines all required information in its encoding, which is too
specific and may result in problems of insufficient training
instances. Take the annotations of the n2c2/OHNLP shared task
as an example. In their annotations, the first-degree relatives,
which include 8 types of family members (ie, Father, Mother,
Parent, Sister, Brother, Daughter, Son, and Child), do not have
the value of the family side property (refer to the tags ending
with “NA” in Table 1). However, annotations of the other 7
family members (ie, Grandmother, Grandfather, Grandparent,
Cousin, Sibling, Aunt, and Uncle) contain both properties.
Therefore, we have at most 8 x 2 x 1 + 7 x 2 x 3 = 58 tags for
family members. Consequently, we proposed the enhanced
relation-side scheme in which only the I (inner) and E (end)
tags were used and the relationship and side properties were
only encoded in the E tag. For example, in Table 1, we can see
that the word “paternal” of the 2 family member mentions was
encoded by I-FM, which implies that the word is a part of a
family mention. The annotations for the last words of the 2
mentions were encoded by including their relationship and side
information. The number of possible tags was reduced to 1 + 8
x 1 + 7 x 3 = 30. On the other hand, for observations like “type-2
diabetes” in Table 1, both schemes used the ordinary IOB tag
set to encode the annotations. The enhanced tag scheme is
preferred because it greatly reduced the size of the tag sets and
transition matrix used later in the CRF layer of the developed
model.

Baseline Network Architecture
We used the network architecture developed by Dai [10] as a
baseline. The network architecture is very similar to the entity
recognition part of the network developed by Shi et al [11], with
the major difference being that the latter further extended the
network with an additional BiLSTM to create a joint learning
model. Both were top-ranked systems in the
BioCreative/OHNLP challenge.

In our implementation, the baseline architecture consists of 2
core parts, with the first being the representation layer in which
the sequence of tokens t = {t1,t2,…,tn} was represented as a
vector by concatenating the character-level representation based
on convolutional neural networks, pre-trained word
representations, the randomly initialized part-of-speech
embedding, and the pre-trained Unified Medical Language
System embedding [13]. Based on the investigation by Dai [10]
on the effectiveness of applying different pretrained word
embeddings to the task of FHI extraction and the effectiveness
of the recent advancement of contextualized word
representations, global vectors for word representation (GloVe)
[14] and the embeddings from language models (ELMo) [15]
were used to represent the tokens. The concatenated
representation was then inputted to a BiLSTM network with
CRF as the output layer to infer predictions for each token.

The BiLSTM CRF networks have been shown to be able to
efficiently model contextual information and label dependencies
[16] and is currently a strong baseline. However, one major
constraint is that the networks can only exploit contexts within
individual sequences but cannot digest cross-sentence
information. To overcome this limitation, we enhanced the
baseline model by introducing the neural attentions described
in the next subsection.

Attention-Enhanced BiLSTM-CRF Network
Architecture
Figure 1 illustrates the network architecture of the proposed
attention-enhanced network. In the network, for each token ti,j
in a given sentence sj, we applied the attention mechanism to
make it attend to certain tokens among all sentences
{s1,s2,…,sm} of the document d to allow the model to determine
the type and the attributes of the token ti,j by considering
information at the sentence and document levels. Each sentence
sj in the input document d is expressed as tj = {t1,j,t2,j,…,tn,j}
where n is the number of tokens in sj.

JMIR Med Inform 2020 | vol. 8 | iss. 12 |e21750 | p.15https://medinform.jmir.org/2020/12/e21750
(page number not for citation purposes)

Dai et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 1. Proposed attention-enhanced bidirectional long short-term memory (BiLSTM)-conditional random field (CRF) network architecture. ⊕
indicates a concatenation of two vectors. BiGRU: bidirectional gated recurrent unit; UMLS: Unified Medical Language System.

Like our baseline model, each token ti,j in the sequence of tokens
tj was represented as a vector vi,j by concatenating the
embeddings described in the previous subsection. Before
sending the vector to the BiLSTM-CRF layer as an input, a
hierarchical attention layer is introduced to enrich the vector to
enable the model in utilizing cross-sentence information. In the
attention layer, the attention score, which conveys the
associations between the current token’s representation vi,j and
all tokens’ representations in d, was hierarchically calculated
using the following content-based function adapted from Luong
et al [17] where Wt and Wt’ are learned parameters and hi’,j’ is
the hidden state of the bidirectional gated recurrent unit at the
token ti’,j’ from another sentence:

sj’: q(vi,j) = Wtvi,j + bq(1)

t_w(hi’,j’) = tanh(Wt’hi’,j’ + bt_s) (2)

The score was calculated sentence-wise for the token ti,j to derive
its attention weight αi,(i’,j’) for the token ti’,j’ in the sentence sj’:

score(vi,j,hi’,j’) = q(vi,j)
Tt_w(hi’,j’) (3)

The aggregated score si,j’ for all tokens in sj’ was calculated as
follows:

Given the aggregated sentence scores si = {si,1,si,2,…si,m} for
the token ti,j, we derived a document vector di in a similar way
to summarize the information from all sentences. First, a
bidirectional gated recurrent unit was used to encode si, which

can generate the hidden state hk for the kth vector in si.
Analogous to the hierarchical attention networks proposed by
Yang et al [18], we rewarded sentences that provide clues to
infer the type and attribute information of the target token ti,j
using the following attention mechanism:

t_s(hk) = tanh(Wshk + bt_s) (6)

score(vi,j,hk) = q(vi,j)
Tt_s(hk) (7)

The output of the hierarchical attention layer di can be
considered as a document-level vector that summarizes
information across sentences in d for token ti,j, which provides
clues for determining FHI. Finally, the document vector was
treated as an additional feature vector and concatenated with
the original token representations to form the input of the
BiLSTM-CRF model.

Experiment Configurations
The dataset released by the 2019 n2c2/OHNLP shared task was
used to evaluate the performance of the proposed network
architecture along with the designed tag scheme. The training
and test sets consist of 99 and 117 unstructured clinical notes,
respectively. We randomly selected 83 of the 99 notes as the
final training set, with the remaining 16 notes as the validation
set in the training process. The validation set was not used in
training but was used to determine the optimum parameters
without overfitting the training set. We configured 3 runs for
the participation of the n2c2/OHNLP family history extraction
track. Both the first and second configurations were based on
the proposed neural attention network along with the enhanced
relation-side scheme. The only difference is that when
processing a given sentence, the first configuration took all
sentences in the note into consideration, while the second only
examined sentences before the current one. The last run was
based on the baseline BiLSTM-CRF network described in the
previous subsection.

In addition to the submitted runs, we studied the effectiveness
of the proposed tag scheme by training the baseline and
attention-enhanced networks with different schemas and
reported their performance on the test set. Table 2 summarizes
all the configurations studied in this work. All the networks
were implemented using CUDA 10.1 and PyTorch libraries
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trained on machines equipped with NVIDIA Tesla P100
graphics cards. The mini-batch gradient descent along with
Adam [19] was used for optimizing the parameters. The epoch
was set to 200, and the early stopping strategy (a patience value

of 50) was used if no improvement in the F score or loss was
observed or the loss became zero on the validation set. The same
set of hyperparameters and a fixed random seed were used to
train all the configurations shown in Table 2.

Table 2. Summary of the configurations studied in this work.

NotationDescriptionConfiguration

B-RSBiLSTM-CRFa with relation-side schemeBaseline + relation-side scheme

B-ERSBiLSTM-CRF with enhanced relation-side schemeBaseline + enhanced relation-side scheme

A-RSAttention-enhanced BiLSTM-CRF with relation-side schemeAttention + relation-side scheme

A-ERSAttention-enhanced BiLSTM-CRF with enhanced relation-side scheme paying
attention to limited sentences

Attention + enhanced relation-side scheme

A-ERS+Attention-enhanced BiLSTM-CRF with enhanced relation-side scheme paying
attention to all sentences

Attention + enhanced relation-side scheme (+)

aBiLSTM-CRF: bidirectional long short-term memory-conditional random field.

The official evaluation script [20] released by the organizers
was used to report the performance of the developed models.
The performance for the recognized family member mentions
including their family side attributes and observations were
reported in terms of the standard precision (P), recall (R), and
F1-measure (F) defined as follows at the article level:

Precision = TP/TP + FP (10)

Recall = TP/TP + FN (11)

F1 = 2 x P x R/(P + R) (12)

For each recognized family member mention, the 15 types of
relatives described in the previous subsections were considered
for evaluation. For each correctly recognized family member
mention, its side of the family (ie, paternal, maternal, or not
available) must also be correctly classified so that a true positive
can be counted, else both the false positive and false negative
are increased by one.

Results

In the following subsections, we first compare the performance
of the baseline model with the enhanced relation-side scheme

to that of the model with the original scheme. Subsequently,
we investigate the effect of the proposed attention-enhanced
network architectures.

Effect of the Enhanced Relation-Side Scheme
Table 3 outlines the performance of the baseline models with
the original relation-side scheme (B-RS) and the proposed
enhanced version (B-ERS). The last column of the table also
shows the F scores for both models on the validation set and
the number of executed epochs before terminating. With the
early stopping strategy described in the previous section, both
models terminated their training phase in advance and achieved
F scores larger than 0.94 on the training set. The B-ERS model
generally outperformed the B-RS model on the validation and
test sets. It can be observed that the recalls of the B-ERS model
for both family member mention and observation were better
than those of the B-RS model by 0.061 and 0.117, respectively,
which led to an increase in the overall F score of 0.024. These
results demonstrated that the proposed enhanced scheme
provides a better representation and facilitates a better learning
process for the model.

Table 3. Effect of the proposed enhanced relation-side scheme on the test and validation sets.

Number of epochsF on the validation setOverallObservationFamily memberConfiguration

FFRPFRbPa

880.7950.7610.7620.8130.7180.7590.6580.896B-RSc

1240.8220.7850.7810.9280.6740.7920.7190.882B-ERSd

aP: precision.
bR: recall.
cB-RS: bidirectional long short-term memory-conditional random field with relation-side scheme.
dB-ERS: bidirectional long short-term memory-conditional random field with enhanced relation-side scheme.

Effect of the Cross-Sentence Attention
Table 4 provides the results of the comparative evaluation in
accordance with the P, R, and F scores of the B-RS model. All
proposed attention-enhanced BiLSTM-CRF models obtained
better P, R, and F scores than those of the baseline model

(B-RS). Among them, A-ERS+, our best submitted run during
the 2019 n2c2/OHNLP shared task, had the best performance
with improvements of 0.034, 0.058, and 0.046 in terms of P, R,
and F scores, respectively. It is noted that the proposed attention
mechanism apparently improved the recall of family member
mention for all 3 models. In particular, the recall of A-ERS+
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can be boosted by 0.118, resulting in a better F score of 0.807.
Furthermore, the F scores of observations among the

attention-enhanced models were also improved by at least 0.022.

Table 4. Comparison of the performance of the different attention-enhanced bidirectional long short-term memory-conditional random field
(BiLSTM-CRF) models.

A-ERS+cA-ERSbA-RSaPerformance measures

Family member

–0.046–0.008–0.031Precision

+0.118+0.092+0.053Recall

+0.052+0.054+0.022F score

Observation

+0.061+0.011–0.031Precision

+0.018+0.074+0.053Recall

+0.042+0.038+0.022F score

+0.046+0.044+0.007Overall F score

aA-RS: attention-enhanced BiLSTM-CRF with relation-side scheme.
bA-ERS: attention-enhanced BiLSTM-CRF with enhanced relation-side scheme paying attention to limited sentences.
cA-ERS+: attention-enhanced BiLSTM-CRF with enhanced relation-side scheme paying attention to all sentences.

Discussion

Principal Findings
Dai [10] provided an intensive analysis of the effectiveness of
applying different tag schemes to the task of FHI extraction. In
short, the advantage of applying the relation-side scheme is that
we can eliminate the creation of heuristic rules for determining
the relationship and side information of the recognized family
member mentions, which is a major issue experienced by using
standard tag schemes. Nevertheless, Dai [10] also pointed out
that employing the scheme could lead to sparse and imbalanced
training instances if the released dataset was small, which
hinders the construction of a reliable model for identifying the
desired properties of recognized mentions.

In this study, we addressed these issues by developing an
enhanced relation-side scheme that achieved promising results,
as shown in Table 4. We believe that the performance gain
comes from the refined tag set distribution, where the enhanced
scheme has significantly fewer tag types (30 vs 66). The tag
with the highest distribution in the enhanced scheme is I-FM,
which indicates that 35% of family member mentions in the
training set consist of more than 1 token after tokenization,
followed by E-FM-Mother-Na (7%), E-FM-Sister-NA (6%),
E-FM-Father-NA (6%), E-FM-Brother-NA (6%),
E-FM-Aunt-Maternal (5%), E-FM-Son-NA (4%),
E-FM-Aunt-Paternal (4%), E-FM-Daughter-NA (3%), and
E-FM-Uncle-Paternal (3%; Multimedia Appendix 1).

By contrast, no tags occupied more than 10% of the overall
distribution in the original relation-side scheme. The top 10 tag
types are as follows: B-FM-Mother-NA (7%), B-FM-Father-NA
(6%), B-FM-Sister-NA (6%), B-FM-Brother-NA (5%),
B-FM-Aunt-Maternal (5%), I-FM-Aunt-Maternal (4%),
B-FM-Son-NA (4%), B-FM-Aunt-Paternal (4%),
B-FM-Daughter-NA (4%), and I-FM-Grandmother-Maternal
(3%; Multimedia Appendix 1). It is also worth noting that some

family member types possessed frequent inner tags. For
example, there are more instances of the inner tag for
“Aunt-Maternal” (I-FM-Aunt-Maternal) than other members
such as son and daughter, and the inner tag of
“Grandmother-Maternal” (I-FM-Grandmother-Maternal) appears
more frequently than its beginning tag. A scrutiny of the
example shown in Table 1 revealed that the use of the tag
scheme increased the degree of lexical ambiguity. For instance,
the word “paternal” in Table 1 is assigned with 2 different tags
(“I-Brother-NA” and “I-Aunt-Paternal”) although it is just a
hint for the mention of family members. This observation also
leads to the issue of imbalanced training samples because the
word “paternal” could be a beginning or inner word for several
types of family members. However, the distribution of those
member types is skewed in the training set.

On the other hand, the enhanced relation-side scheme uses I-FM
to capture clues that enable the model to learn and make final
classifications based on the word with the most informative
representation, which is usually the last word in terms of the
family member entities. The scheme also resolves the problem
of insufficient training samples. By considering Table 1 as an
example, the traditional IOB2 scheme encodes all properties in
its tag set. As a result, the token “aunts” can be associated with
6 different kinds of tags (B/I-Aunt-Paternal/Maternal/NA). With
respect to the enhanced scheme, the token can only be associated
with one of the E-Aunt-Paternal/Materal/NA tags, regardless
of it being a single or compound noun. Examination of this
problem from a different perspective is displayed in Table 5,
which shows an evidently higher level of ambiguity in the
relation scheme against the enhanced version. It was also found
that even with the final CRF layer, the model with the original
relation-side scheme could generate illegal tag sequences in the
decoding phase, for instance a B-Aunt-Paternal followed by an
I-Brother-Paternal, which was not observed in the model with
the enhanced scheme.
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Table 5. Comparison of the degrees of ambiguity between the relation-side scheme and enhanced relation-side scheme. Note that the tokens that were
only associated with the “O” tag were excluded.

Number of possible tags associated with a tokenScheme type

201710987654321

11151583341174535Relation-side scheme

000000151138188535Enhanced relation-side scheme

Another challenge that was brought up in Dai [10] is that the
perception of the member type and its side property may require
cross-sentence inference. In light of this issue, we proposed
using the attention mechanism to enhance the ability of the
model for identifying these 2 properties. As shown in Table 4,
the F scores of not only the family members but also the
observations were improved by implementing the attention
mechanism, with the improvement particularly due to a boost
in the recall. After comparing the results of the models with and
without the attention mechanism, we confirmed that the
attention-enhanced networks can better exploit the intrasentence
and intersentence information to successfully determine the
type and side information of family member mentions in which
the traditional model failed. Take the following 2 sentences as
an example:

The father of the baby has a maternal uncle with a
repaired cleft lip. His uncle is otherwise said to be
healthy.

The attention-enhanced model can correctly assign the side
attribute (ie, maternal) for the “uncle” mentioned in the second
sentence, while this could not be accomplished by the baseline
model. We identified several similar cases on the test set,
although these correct assignments could not be captured by
the applied article level evaluation metrics.

Furthermore, we observed that the enhanced model can learn
better from the implicit dispersed second-degree relative
descriptions without interfering with rules created based on
human knowledge. Some examples that can be correctly inferred
are as follows.

The enhanced model can correctly assign the “Cousin_Paternal”
tag to the children of the patient’s aunt even when the mentions
are dispersed away from each other:

The paternal aunt died in her late 57s due to heart
complications. She had five children. One of these
children is a daughter who was diagnosed with breast
cancer at the age of 42...

Another similar example would be the sentence, where the
enhanced model can correctly determine the side and member
type of the mention “son”:

Mrs. Lucas has another paternal uncle who has a
son with mental retardation of unknown cause.

For the following sentence, the mentions “sisters” and “brother”
within the sentence located in the later part of the document can
be correctly recognized by the enhanced model as
“Aunt_Paternal” and “Uncle_Paternal,” respectively:

Ms. James AJ Benjamin’s father, 55s, is reportedly
in good health. ... He has two sisters and a brother,
63s–71s, who are reportedly in good health.

In the following description, the second mention of “mother”
is successfully assigned with “Grandmother_Maternal”:

She is 5 feet 6-8 inches tall and the patient's mother
resembles her own mother in facial appearance.

For the following narrative, the model learned to assign the
mention “daughter” with “Sister_NA”:

The father has a 9-year-old daughter with another
partner who is healthy.

We also noted that the enhanced networks can acknowledge
negative clues and avoid false positive cases of observations:

She has no history of joint hypermobility, easy
bruising, or problems with healing.

They do not look different than other members of the
family, and do not have any major internal birth
defects.

Error Analysis
Although models with neural attentions learned to infer implicit
relationships among recognized family member mentions by
interpreting the contextual expressions with weighted attentions,
ambiguity of the context can still occasionally confuse the model
in making incorrect classifications. Some examples as such are
listed.

In the following example, while the patient is Mrs. William,
the attention-enhanced model focused on the terms “He,”
“sister,” and “his father” and mistakenly assigned the mention
“son” with the “Cousin_Paternal” tag:

... William's husband is healthy at age 38 with a
history of melanoma ... He also has a 39-year-old
sister who is healthy with a healthy 10-year-old son.
... His father is alive at age 59 with coronary disease,
...

In the following example, even with the proposed methods, the
developed models could not recognize “mother’s mother’s
brothers” in the second sentence as a family mention.
Nevertheless, the attention-enhanced model was able to classify
the first mention “brother” as the patient’s uncle and the mention
“children” as the patient’s cousin. On the contrary, the baseline
model classified the first and the second mentions as “brother”
and “son,” respectively:

A brother is the father of two children, a male with
mental retardation and a daughter with bicuspid
mitral valve stenosis and aortic stenosis. Another of
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Benjamin's mother’s mother’s brothers is the father
of two girls, one of whom ...

Based on the description, the attention-enhanced model
incorrectly considered the mention “father” to be referring to
the father of the patient (ie, Mrs. Henrietta):

Mrs. Henrietta is of Indian descent. The father of the
baby is of Indonesian descent.

For the following sentence, the attention-enhanced model failed
to ignore the in-law relationships:

Her husband has an identical twin brother who is
healthy with fraternal twin daughters, ...

Some annotation errors or biases in the corpus were identified
during the error analysis. First, we found that not all instances
of the same family member in a given electronic health record
were annotated, which means that some mentions may only be
annotated once even if they refer to the same entity. In general,
more cases as such occurred in the annotation of first-degree
relatives rather than those of the second-degree relatives (0.586
vs 0.839) based on our estimation on the training set. One
conspicuous example of this error can be found in the sentence
“The patient's mother is 54 now,” where the mention “mother”
was not annotated. We also noticed that the spans of some
family member annotations were incorrect, which may lead to
a decrease in performance. For instance, the two annotations in
the sentences “His only [child,] a daughter ...” and “This aunt
has five healthy sons and one [daughter,] age 67, ...” will
instruct the models to accept commas to be the last token of a
family mention.

Comparison With Prior Work
Several research projects have previously worked on the FHI
extraction task. Shi et al [11] developed a neural network model
based on BiLSTM networks for joint learning of FHIs and the
relations among them. Zhan et al [21] fine-tuned the

bidirectional encoder representations from transformers [22]
by including an additional Biaffine classifier adapted from the
dependency parsing to extract FHIs. Most researchers considered
the extraction of FHIs as a sequential labelling task and
exploited sequential labelling models to address it. For instance,
Kim et al [23] established an ensemble of 10 BiLSTM-CRF
models along with ELMo representations to identify FHIs. Later,
Wu and Verspoor [24] and Ambalavanan and Devarakonda [25]
implemented similar strategies to encode the side information
in their tag sets. The former applied a BiLSTM model with
ELMo and a tag set that allow the model to recognize mentions
of family members and determine their side information at the
same time, while the latter further contained family relationship
information in their tag set. Similar to this work, the attempt of
these 2 works is to eliminate the application of postprocessing
rules to infer the required properties of family members.

Conclusions
In this paper, we considered the problem of FHI extraction as
a sequential labelling task and presented an attention-based
neural network approach to handle this problem. The main
contribution of our work is that we presented an improved tag
scheme that enables the model to learn and interpret the implicit
relationships and side information of the recognized family
members without relying on heuristic rules. Moreover, a network
structure with neural attentions was proposed to exploit
intrasentence and intersentence information to determine the
family member mentions and side attributes requiring
cross-sentence inference. The feasibility of the proposed method
was assessed on the dataset released by the 2019 n2c2/OHNLP
shared task on family history extraction and was officially
ranked 4th among 17 teams. Although the proposed methods
addressed the limitations raised, our error analysis revealed
challenges including annotation bias and the requirement of
common-sense reasoning, which leave room for further
improvement in the future.
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Multimedia Appendix 1
Comparison of the tag set distributions on the training set between the relation-side scheme and its enhanced version. Only the
tag names within the top 10 of the distribution are shown in the figure.
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Abstract

Background: Negation and speculation are critical elements in natural language processing (NLP)-related tasks, such as
information extraction, as these phenomena change the truth value of a proposition. In the clinical narrative that is informal, these
linguistic facts are used extensively with the objective of indicating hypotheses, impressions, or negative findings. Previous
state-of-the-art approaches addressed negation and speculation detection tasks using rule-based methods, but in the last few years,
models based on machine learning and deep learning exploiting morphological, syntactic, and semantic features represented as
spare and dense vectors have emerged. However, although such methods of named entity recognition (NER) employ a broad set
of features, they are limited to existing pretrained models for a specific domain or language.

Objective: As a fundamental subsystem of any information extraction pipeline, a system for cross-lingual and domain-independent
negation and speculation detection was introduced with special focus on the biomedical scientific literature and clinical narrative.
In this work, detection of negation and speculation was considered as a sequence-labeling task where cues and the scopes of both
phenomena are recognized as a sequence of nested labels recognized in a single step.

Methods: We proposed the following two approaches for negation and speculation detection: (1) bidirectional long short-term
memory (Bi-LSTM) and conditional random field using character, word, and sense embeddings to deal with the extraction of
semantic, syntactic, and contextual patterns and (2) bidirectional encoder representations for transformers (BERT) with fine
tuning for NER.

Results: The approach was evaluated for English and Spanish languages on biomedical and review text, particularly with the
BioScope corpus, IULA corpus, and SFU Spanish Review corpus, with F-measures of 86.6%, 85.0%, and 88.1%, respectively,
for NeuroNER and 86.4%, 80.8%, and 91.7%, respectively, for BERT.

Conclusions: These results show that these architectures perform considerably better than the previous rule-based and conventional
machine learning–based systems. Moreover, our analysis results show that pretrained word embedding and particularly
contextualized embedding for biomedical corpora help to understand complexities inherent to biomedical text.

(JMIR Med Inform 2020;8(12):e18953)   doi:10.2196/18953
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Introduction

A part of clinical data is often described in unstructured free
text, such as that recorded in electronic health records (EHRs),
medical records, and clinical narrative, which is not analyzed.
Besides, scientific literature databases collect valuable
publications necessary to extract biomedical data, such as drug
or protein interactions, adverse drug effects, disabilities,
diseases, treatments, detection of cancer symptoms, and suicide
prevention. Biomedical experts and clinicians need to access
information and knowledge in their different research areas,
convert research results into clinical practice, accelerate
biomedical research, provide clinical decision support, and
generate data and information in a structured way for
downstream processing and applications, such as those specified
previously [1]. However, identifying all the data in unstructured
documents and translating these data to structured data can be
a complex and time-consuming task. It is impossible for experts
to process all the documents without tools that filter, classify,
and extract information. That is why new techniques are
necessary for the extraction of useful knowledge in a precise
and efficient way.

One of the main tools currently used for text mining is natural
language processing (NLP) and specifically an information
extraction system. Information extraction is devoted to
processing text and detecting relevant information about specific
subjects (for instance, a disease of a patient in a clinical note or
a carcinoma in a radiologic report). In information extraction,
we can identify low-level tasks and high-level tasks (Figure 1).
Low-level tasks are more feasible and affordable processing
tasks, such as sentence segmentation, tokenization, and word
decomposition. High-level tasks are more complex tasks because
they require semantic and contextual knowledge that is provided
by domain-specific resources, such as ontologies, and they
involve disambiguating terms (such as abbreviations that are
highly ambiguous terms) and making inferences with the
extracted knowledge. These high-level tasks are named entity
recognition (NER), relation extraction, and negation and
speculation detection, among others (Tables 1 and 2). For
example, extracting a patient’s current diagnostic information
involves NER, disambiguation, negation and speculation
detection, relation extraction, and temporal inference. Figure 2
provides an example of an annotation generated by a medical
information extraction system [2].

Figure 1. Typical information extraction pipeline. NLP: natural language processing; PoS: part of speech.
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Table 1. Natural language processing low-level tasks.

ChallengeObjectiveTask

High use of abbreviations and titles such as “mg” and “Dr” makes
this task difficult.

Detection limit of a sentence.Sentence segmentation

Terms combining different types of alphanumeric characters and
other signs, such as hyphens, slash, and separators (“10 mg/day”
and “N-acetylcysteine”).

Detection of words and punctuation marks.Tokenization

Use of homographs and gerunds.Assigns a PoS tag to a term.Part-of-speech (PoS) tagging

Many medical terms, such as “nasogastric,” need decomposition
to understand the meaning of the term.

Word stemming by removing suffixes. Very
important for concept normalization.

Decomposition/lemmatization

Inherent complexities from the language (for instance, prepositional
attachment).

Identification of the phrases of a sentence.Shallow parsing

In a clinical report, identify sections, such as patient’s history, di-
agnosis, treatment, etc.

Division of the text into relevant parts, such
as paragraphs, sections, and others.

Text segmentation

Table 2. Natural language processing high-level tasks.

ChallengeObjectiveTask

Multitoken concepts (“acute rhinovirus bronchitis”) and short
concepts (“mg”).

Identification and classification of concepts
of interest, such as diseases, drugs, and
genes.

Named entity recognition

A considerable number of abbreviations with several senses, such
as Pt (patient/physiotherapy) and LFT (liver function test/lung
function test).

Identification of the correct sense of a term
given a specific context.

Disambiguation

They are commonly marked in the clinical narrative by words such
as “not” and “without.”

Inferring whether a named entity is present
or absent.

Negation and speculation detection

Relation between a particular disease and a specific symptom or
drug-drug interaction. For example, pharmacodynamic interaction
between aspirin and ibuprofen (antagonistic interaction).

Identification of relationships between
concepts.

Relation extraction

The most complex task in information extraction. For example,
“asbestos exposure and smoking until a particular genetic mutation
occurs causes lung cancer in 1-3 years with a probability of 0.2.”

Given temporal expressions or temporal
relationships, inferences are made about
probable events in another temporal space.

Temporal inferences

Figure 2. Information extraction pipeline annotation result [2].

Consequently, information extraction tools must address many
inherent natural language challenges, such as ambiguity, spelling
variations, abbreviations, speculation, and negation. In this
work, we address the negation and speculation problems.
Negation and speculation expressions are extensively used both
in spoken and written communications. Negation converts a
proposition represented by a linguistic unit (sentence, phrase,
or word) into its opposite, for instance, the existence or absence
of medical conditions in a clinical narrative. It is marked by
words (such as “not” and “without”), suffixes (such as “less”),
or prefixes (such as “a”). Around 10% of the sentences in
MEDLINE abstracts include negation phenomena [3]. The

BioScope corpus contains more than 20,000 sentences, among
which almost 2000 (11.4%) are negated or uncertain sentences
[4]. In the general domain, the SFU ReviewSP-NEG corpus is
composed of approximately 9455 sentences, among which
nearly a third are negated or uncertain sentences [5]. Different
works have shown the importance of dealing with negations,
for instance, during the analysis of EHRs [1] or in information
retrieval tasks on rare disease patient records related to Crohn
disease, lupus, and NPHP1 from a clinical data warehouse [6].
In relation to speculation (or modality), both are referred to as
expressing facts that are not known with certainty (such as
hypotheses and conjectures). There are different types of
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expressions that have speculation meanings as follows: modal
auxiliaries (must/should/might/may/could be), judgment verbs
(suggest), evidential verbs (appear), deductive verbs (conclude),
adjectives (likely), adverbs (perhaps), nouns (there is a
possibility), conditional words, etc.

These phenomena have a scope, that is, affect a part of the text
denoted by the presence of negation or speculation cues. Cues
usually occur in the context of some assumption, which works
to deny or counteract that assumption. These cues can be single
words, simple phrases, or complex verb phrases, which may
precede or succeed the words that are within their scope [7].
According to grammar, the scope of the negation or speculation
corresponds to the totality of words affected by it. In NLP,
negation or speculation cues act as operators that can change
the meaning of the words in their scope. Thus, they establish
what is a fact and what is not, owing to the ability to affect the
truth value of a phrase or sentence [8]. However, negation
detection is a complex task owing to the multiple forms in which
it can appear as follows: (1) syntactic (ie, negation in sentences,
clauses, and phrases that include words expressing negation,
such as no/not, never/ever, and nothing), (2) lexical negation
(eg, “lack of”), and (3) morphological negation (eg, illegal and
impossible) [5].

Negation processing can be divided into two phases. First,
keywords/cues indicating negation or speculation are detected,
and second, definition of the linguistic scope of these cues is
made at the sentence level. In English, negation and speculation
detection is a well-studied phenomenon. However, in other
languages, such as Spanish, it is an underaddressed and even
more complicated task owing to the limited number of annotated
corpora and the inherent complexities of the language, such as
double negation (eg, the hospital will not allow no more
visitors). NegEx [9], one of the most popular rule-based
algorithms for negation detection in English, is a simple regular
expression-based algorithm that uses negation cue words without
considering the semantics of a sentence. Some recent works
also exploit this algorithm for negation detection in other
languages, such as French, German, and Swedish [10], Swedish
[11], and Spanish [12]. Machine learning methods have been
applied to cope with the negation detection task, using mainly
a conditional random field (CRF) algorithm with dense vector
features, such as character or word embedding [13,14]. More
recently, deep learning approaches using recurrent neural
networks (RNNs), convolutional neuronal networks (CNNs),
and encoder-decoder models have also been exploited to solve
this task [15-17].

In this work, we addressed the negation and speculation
detection tasks as named entity recognition (NER) tasks that
solve the identification of cues and scope of this phenomena in
a single step. We present two deep learning approaches. First,
we implemented two bidirectional long short-term memory
(Bi-LSTM) layers with a CRF layer based on the NeuroNER
model proposed previously [18]. Specifically, we extended
NeuroNER by adding context information to the character and
word-level information, such as part-of-speech (PoS) tags and
information about overlapping or nested entities. Moreover, in
this work, we used several pretrained word-embedding models
as follows: (1) word2vec model (Spanish Billion Word

Embeddings [19]), which was trained on the 2014 dump of
Wikipedia, (2) pretrained word2vec model of word embedding
trained with PubMed and PubMed Central articles [20], and (3)
sense-disambiguation embedding model [21], where different
word senses are represented with different sense vectors. To
the best of our knowledge, no previous work has exploited a
sense embedding model for the negation detection task. Finally,
we implemented the bidirectional encoder representations for
transformers (BERT) model with fine tuning using a BERT
multilingual pretrained model.

Since the health care system has started adopting cutting-edge
technologies, there is a vast amount of data collected mainly in
unstructured formats, such as clinical narratives, electronic
reports, and EHRs. Therefore, there is a high amount of
unstructured data. All of these data involve relevant challenges
for information extraction and utilization in the health care
domain through various applications of NLP in health care,
such as clinical trial matching [22], automated registry reporting,
clinical decision support [23], and predicting health care
utilization [24]. However, all these applications must deal with
inherent NLP challenges, with negation and speculation
detection being highly crucial owing to the abuse of negation
and speculation particles in the clinical narrative and clinical
records.

Work in negation detection has focused on the following two
subtasks: (1) cue detection to identify negation terms and (2)
scope resolution to determine the coverage of a cue in a phrase
or sentence. However, in previous research, negation detection
has focused on the straight detection of negated entities [17].
Early negation detection work has relied on rule-based
approaches. Rule-based approaches have been shown to be
effective in NLP challenges. They use hand-crafted rules based
on grammatical patterns and keyword matching. Some
token-based systems are NegEx [25], NegFinder [26],
NegHunter [27], and NegExpander [28]. DepNeg [29] uses
syntactic parsing. Among rule-based approaches, the most used
negation detection tool in English is NegEx [13], which employs
an exact match to a list of medical entities and negation triggers
(eg, “NO history of exposure” and “DENIES any nausea”).
NegEx was adapted to address negation detection for other
languages, such as Swedish [11], French [30], German [12],
and Spanish [31]. Light et al [3] used a hand-crafted list of
negation cues to identify speculation sentences in MEDLINE
abstracts. Likewise, several biomedical NLP studies have used
rules to identify the speculation of extracted information [32-35].
An analysis of a set of Spanish clinical notes from a hospital
[36] reported some statistics of several groups of patterns
considering the groups defined in the NegEx algorithm [25] as
follows: morphologically negates, adverbs, prenegative phrases,
postnegative phrases, and pseudonegative phrases. These
patterns were applied to the data set, and only the more frequent
patterns were inspected (about 100 contexts per pattern). Figure
3 shows the frequencies of the set of negation patterns in the
studied corpus, where negation patterns using adverbs (“no,”
“ni,” and “sin”) are the more productive patterns, followed by
adverbs together with evidential and perception verbs (eg, “no
se evidencia” + symptom). There are other negation words, such
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as “nadie” (nobody) and “negative” (negative), which do not appear in the data set.

Figure 3. Statistics of the set of negation patterns [30].

Approaches to speculation and negation detection that exploit
semisupervised or supervised machine learning models require
manually labeled corpora. Medlock [37] used spare word
representation features as inputs to classify sentences from
biological articles (included in the molecular biology database
FlyBase) as certain or uncertain based on semiautomatically
collected training examples. Vincze et al [4] extended this
approach [37] incorporating n-gram features and a
semisupervised selection of keyword features. Morante and
Daelemans [38] created a negation cue and scope detection
system in biomedical text. This system identifies negation cues
using the compressed decision tree (IGTREE) algorithm. It uses
a meta-learner based on memory-based learning, a support
vector machine, and conditional random fields (CRFs) for
determining the scope of the negation. The system was evaluated
on the BioScope data set [4], with an F-measure of 98.74% for
cue detection and 89.15% for scope determination. Cruz et al
[39] focused on negation cue detection in the BioScope corpus
using the C4.5 and naive bayes algorithms, with the top
F-measure of 86.8% for biomedical articles. Other studies have
incorporated POS tag information [40] or different classifiers
[41] that followed the two-step approach. Zou et al [42]
proposed a tree kernel–based method for scope identification,
based on structured syntactic parse features. The system was
evaluated on the BioScope corpus, achieving a valuable
improvement compared with the state-of-the-art approach, with
an F-measure of 92.8% for negation detection.

In previous years, negation and speculation detection was being
addressed as a sequence-labeling task. One of the most used
algorithms for negation detection is CRF. White et al [43]
proposed a CRF-based model with a set of lexical, structural,
and syntactic features for scope detection. Kang et al [14]
incorporated character-level and word-level dense
representations (embeddings) in a CRF algorithm. The best

F-measure was 99% for cue detection and 94% for scope
detection in Chinese text, and it was concluded that embedding
features can help to achieve better performance. Santiso et al
[13] proposed a similar system using spare and dense word
feature representations and a CRF algorithm to detect only
negated entities in Spanish clinical text. The system obtained
F-measures of 45.8% and 81.2% for the IxaMed-GS corpus [44]
and the IULA corpus [45], respectively.

However, more recently, deep learning approaches are getting
more attention, specifically RNNs and CNNs. Lazib et al [46]
proposed a hybrid RNN and CNN system with a feature set of
word embedding and a syntactic path (the shortest syntactic
path from the candidate token to the cue in both constituency
and dependency parse trees) to treat this task, and it proved to
be very powerful in capturing the potential relationship between
the token and the cue. Later, Lazib et al [47] proposed various
RNN models to automatically find the part of the sentence
affected by a negation cue. They used an automatically extracted
word embedding representation of the terms as the only feature.
Their Bi-LSTM model achieved an F-measure of 89.38% for
the SFU review corpus [48], outperforming all previous
hand-encoded feature-based approaches.

Similarly, Fancellu et al [49] used a Bi-LSTM model to solve
the task of negation scope detection, and it outperformed the
best result of Sem shared task 2012 [50]. Some approaches were
proposed to rely on syntactic parse information to automatically
extract the most relevant features [51]. Qian et al [15] designed
a CNN-based model with probabilistic weighted average pooling
to address speculation and negation scope detection. Evaluation
of the BioScope corpus showed that their approach achieved
substantial improvement. Finally, Bathia et al [17] proposed an
end-to-end neural model to jointly extract entities and negations
based on the hierarchical encoder-decoder NER model. The
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system was evaluated on the 2010 i2b2/VA challenge data set,
obtaining an F-score of 90.5% for negation detection.

Motivated by the recent success of machine learning and deep
learning approaches in solving various NLP issues, in this paper,
we proposed the following two methods: (1) a machine and
deep learning model combining two Bi-LSTM networks and a
last CRF network, and (2) a BERT model with fine tuning to
solve negation and speculation detection issues in multidomain
text in both English and Spanish. Negation processing in the
Spanish clinical narrative has been little addressed in previous
years. Moreover, to the best of our knowledge, sense or context
embedding has not been exploited for the negation detection
task.

Methods

Overview
We addressed the task of negation and speculation detection as
a sequence-labeling task, where we classified each token in a
sentence as being part of the negation or speculation cue or

negation scope. We have presented the data sets used for
training, validating, and evaluating our systems. We have
presented a deep network with a preprocessing step, a learning
transfer phase, two recurrent neural network layers, and the last
layer with a CRF classifier. Moreover, to compare our system
performance, we used a baseline model based on a multilayer
bidirectional transformer encoder.

NER Architecture
We have address the NER task as a sequence-labeling task. In
order to train our model, first, text must be preprocessed to
create the input for the deep network. Sentences were split and
tokenized using Spacy [52], an open-source library for advanced
NLP with support for 26 languages. The output from the
previous process was formatted to BRAT format [53]. BRAT
is a standoff format where each line represents an annotation
(such as entity, relation, and event). We used the information
from the BRAT format (example in Figure 4) to annotate each
token in a sentence using BMEWO-V extended tag encoding
(entity tags used in Table 3), which allowed us to capture
information about the sequence of tokens in the sentence.

Figure 4. Examples of annotations in BRAT format over a sentence extracted from the IULA Spanish Clinical Record corpus (translation to English:
soft, depressible abdomen, no masses or megalias, not painful).

Table 3. Entity tags for BMEWO-V tag encoding in the IULA Spanish Clinical Record corpus.

TagsEntity

B/M/E/W/V-NegMarkerNegMarkera

B/M/E/W/V-NegPolItemNegPolItemb

B/M/E/W/V-NegPredMarkerNegPredMarkerc

B/M/E/W/V-PROCPROCd

B/M/E/W/V-DISODISOe

B/M/E/W/V-PHRASEPHRASEf

B/M/E/W/V-BODYBODYg

B/M/E/W/V-SUBSSUBSh

OOthers

aNegMarker: no, tampoco, sin [4].
bNegPolItem: ni, ninguno, ... [4].
cNegPredMarker: negative verbs, nouns, and adjectives [4].
dPROC: procedure.
eDISO: clinical finding.
fPHRASE: nonmedical text spans.
gBODY: body structure.
hSUBS: substance pharmacological/biological product.
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In BMEWO-V encoding, the B tag indicates the start of an
entity, the M tag represents the continuity of an entity, the E
tag indicates the end of an entity, the W tag indicates a single
entity, and the O tag represents other tokens that do not belong
to any entity. The V tag allows representation of overlapping

entities. BMEWO-V is similar to other previous encodings [54];
however, it also allows the representation of discontinuous
entities and overlapping or nested entities. As a result, we
obtained the sentences annotated in CoNLL-2003 format (Table
4).

Table 4. Tokens annotated in the ConLL-2003 format.

TagTagEnd offsetStart offsetFileToken

OOa70negation_iac_3_corrAbdomen

OO148negation_iac_3_corrblando

OO1514negation_iac_3_corr,

OO2616negation_iac_3_corrdepresible

OO2726negation_iac_3_corr,

W-NegMarkerW-NegMarkerb3028negation_iac_3_corrno

W-DISOdV-Phrasec3631negation_iac_3_corrmasas

W-NegPolIteneV-Phrase3937negation_iac_3_corrni

W-DISOV-Phrase4840negation_iac_3_corrmegalias

OO4948negation_iac_3_corr,

W-NegMarkerW-NegMarker5250negation_iac_3_corrno

W-DISOW-DISO6153negation_iac_3_corrdoloroso

OO6261negation_iac_3_corr.

aO: other (no entity annotation).
bNegMarker: no, tampoco, sin [4].
cPhrase: nonmedical text spans.
dDISO: clinical finding.
eNegPolItem: ni, ninguno, ... [4].

Unlike other detection approaches that detect negation or
speculation cues in the first stage and recognize the scope of
both of them in the second stage (two-stage system), we
proposed a one-stage approach (threaten cue entities within
scope entities as nested entities, recognizing both entities [cues
and scopes] in a single stage).

Bi-LSTM CRF Model: NeuroNER Extended
Our proposal involves the adaption of a state-of-the-art NER
model named NeuroNER [18] based on deep learning to identify

entities as negation and speculation. The architecture of our
model consists of an initial Bi-LSTM layer for character
embedding. In the second layer, we concatenate the output of
the first layer with word embedding and sense-disambiguate
embedding for the second Bi-LSTM layer. Finally, the last layer
uses a CRF to obtain the most suitable labels for each token.
An overview of the system architecture can be seen in Figure
5.
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Figure 5. The architecture of the hybrid Bi-LSTM CRF model for negation and speculation recognition. Bi-LSTM: bidirectional long short-term
memory; CRF: conditional random field.

To facilitate training of our model, we first performed a learning
transfer step. Learning transfer aims to perform a task on a data
set using knowledge learned from a previous data set [55]. As
is shown in many studies, speech recognition [56], sentence
classification [57], and NER [58] learning transfer improves
generalization of the model, reduces training time on the target
data set, and reduces the amount of labeled data needed to obtain
high performance. We propose learning transfer as input for
our model using the following two different pretrained
embedding models: (1) word embedding and (2)
sense-disambiguation embedding. Word embedding is an
approach to represent words as vectors of real numbers, which
has gained much popularity among the NLP community because
it is able to capture syntactic and semantic information among
words.

Although word embedding models are able to capture syntactic
and semantic information, other linguistic information, such as
morphological information, orthographic transcription, and POS
tags, are not exploited in these models. According to a previous
report [59], the use of character embedding improves learning

for specific domains and is useful for morphologically rich
languages (as is the case of the Spanish language). For this
reason, we decided to consider the character embedding
representation in our system to obtain morphological and
orthographic information from words. We used a 25-feature
vector to represent each character. In this way, tokens in
sentences are represented by their corresponding character
embeddings, which are the inputs for our Bi-LSTM network.

We used the Spanish Billion Words model [19], which is a
pretrained model of word embedding trained on different text
corpora written in Spanish (such as Ancora Corpus [60] and
Wikipedia). Furthermore, we used a pretrained word embedding
model induced from PubMed and PubMed Central texts and
their combination using the word2vec tool [20]. PubMed text
considers abstracts of scientific articles as of the end of
September 2013, with a total of 22 million records. PubMed
Central text considers full-text articles as of the end of
September 2013 and constitutes a total of 600,000 articles. These
resources were derived from the combination of abstracts from
PubMed and full-text documents from the PubMed Central
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Open Access subset written in English. We also experimented
with Google word2vec embedding [61] trained on 100 billion
words from Google News [62].

We also integrated the sense2vec [21] model, which provides
multiple embeddings for each word based on the sense of the
word. This model is able to analyze the context of a word and

then assign a more adequate vector for the meaning of the word.
In particular, we used the Reddit Vector, a pretrained model of
sense-disambiguation representation vectors introduced
previously [21]. This model was trained on a collection of
comments published on Reddit (corresponding to the year 2015).
The details of pretrained embedding models are shown in Table
5.

Table 5. Details of the pretrained embedding models.

RedditPubMed and PubMed CentralGoogle NewsSpanish Billion WordsDetail

MultilingualEnglishEnglishSpanishLanguage

2 billion6 trillion100 billion1.5 billionCorpus size

1 million2 million3 million1 millionVocab size

128200300300Array size

Sense2VecSkip-gram BOWSkip-gram BOWSkip-gram BOWAlgorithm

The output of the first layer was concatenated with word
embedding and sense-disambiguation embedding obtained from
pretrained models for each token in a given input sentence. This
concatenation of features was the input for the second Bi-LSTM
layer. The goal of the second layer was to obtain a sequence of
probabilities corresponding to each label of the BMEWO-V
encoding format. In this way, for each input token, this layer
returned six probabilities (one for each tag in BMEWO-V). The
final tag should be with the highest probability for each token.

To improve the accuracy of predictions, we also used a CRF
[63] model, which takes as input the label probability for each
independent token from the previous layer and obtains the most
probable sequence of predicted labels based on the correlations
between labels and their context. Handling independent labels
for each word shows sequence limitations. For example,
considering the drug sequence-labeling problem, an
“I-NEGATION” tag cannot be found before a “B-NEGATION”
tag or an “I- NEGATION” tag cannot be found after a
“B-NEGATION” tag. Finally, once tokens have been annotated
with their corresponding labels in the BMEWO-V encoding
format, the entity mentions must be transformed into the BRAT
format. V tags, which identify nested or overlapping entities,
are generated as new annotations within the scope of other
mentions.

Multilayer Bidirectional Transformer Encoder: BERT
The use of word representations from pretrained unsupervised
methods is a crucial step in NER pipelines. Previous models,
such as word2vec [62], Glove [64], and FastText [65], focused

on context-independent word representations or word
embedding. However, in the last few years, models have focused
on learning context-dependent word representations, such as
ELMo [66], CoVe [67], and the state-of-the-art BERT model
[68], and then fine tuning these pretrained models on
downstream tasks.

BERT is a context-dependent word representation model that
is based on a masked language model and is pretrained using
the transformer architecture [69]. BERT replaces the sequential
nature of language modeling. Previous models, such as RNN
(LSTM & GRU), combine two unidirectional layers (ie,
Bi-LSTM), and as a replacement for the sequential approach,
the BERT model employs a much faster attention-based
approach. BERT is pretrained in the following two unsupervised
tasks: (1) masked language modeling that predicts randomly
masked words in a sequence and hence can be used for learning
bidirectional representations by jointly conditioning both left
and right contexts in all layers and (2) next sentence prediction
to train a model that understands sentence relationships. A
previous report [70] provides a detailed description of BERT.

Owing to the benefits of the BERT model, we adopted a
pretrained BERT model with 12 transformer layers (12 layers,
768 hidden, 12 heads, 110 million parameters) and an output
layer with SoftMax to perform the NER task. The transformer
layer has the following two sublayers: a multihead self-attention
mechanism, and a position-wise, fully connected, feed-forward
network, followed by a normalization layer. An overview of
the BERT architecture is presented in Figure 6.
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Figure 6. BERT pretraining and fine-tuning architecture overview [62]. BERT: bidirectional encoder representations from transformers.

Data Sets
The proposed systems are evaluated for the following three data
sets: (1) the BioScope corpus introduced in the CoNLL-2010
Shared Task [7] for the detection of speculation cues and their
linguistic scope [4], (2) the SFU ReviewSP-NEG corpus used
in Task 2 in the 2018 edition of the Workshop on Negation in
Spanish (NEGES 2018) [71], and (3) the IULA Spanish Clinical
Record corpus [72]. Therefore, we evaluated the proposed
system in two different languages (English and Spanish) and
different text types (clinical narrative, biomedical literature, and
user reviews). Spanish, contrary to other languages such as
English, does not have enough corpora, data sets, pretrained
models, and resources. Furthermore, research on Spanish

negation and speculation detection is insufficient, and this is
even more in the biomedical domain. Being aware of this
setback, in this particular study, we used the scarce Spanish
resources available.

The BioScope corpus is a widely used and freely available
resource consisting of medical and biological texts written in
English annotated with speculative and negative cues and their
scopes. BioScope includes the following three different
subcorpora: (1) clinical free texts (clinical radiology records),
(2) full biological papers from Flybase and the BMC
Bioinformatics website, and (3) biological abstracts from the
GENIA corpus [73]. The corpus statistics are shown in Table
6.

Table 6. BioScope corpus details.

Clinical narrativesFull papersAbstractsVariable

Total

127391954Number of documents

11,87226246383Number of sentences

Speculation

8555192101Number of sentences

11126722659Number of scopes

Negation

8653391597Number of sentences

8703761719Number of scopes

Concerning negation and speculation, the CoNNLL-2010 Shared
Tasks divide the BioScope data set into three subtasks. The first
two subtasks are as follows: (1) Task 1B sentence speculation
detection for biological abstracts and full articles and (2) Task
1W sentence speculation detection for paragraphs from
Wikipedia, possibly containing weasel information. Both tasks
consist of a binary classification problem for detecting

speculation cues and speculation at the sentence level and the
final task (Task 2), which aims the in-sentence hedge scope to
distinguish uncertain information from facts in general and
biomedical domains. The BioScope corpus includes a different
data set for each subtask. Detailed information about these data
sets can be seen in Table 7.
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Table 7. BioScope subtask data sets.

Number of scopesNumber of cuesNumber of sentencesNumber of documentsTask and subset

Task 1B

N/Aa254010,806966Training

N/A8363735316Validation

N/AN/A500315Testing

Task 1W

N/A236383431646Training

N/A7702768540Validation

N/AN/A96342346Testing

Task 2

2519255611,009966Training

8088203533316Validation

N/AN/A500315Testing

aN/A: not applicable.

The IULA Spanish Clinical Record corpus consists of 300
manually annotated and anonymized clinical records from
several services of one of the main hospitals in Barcelona. These
clinical records are written in Spanish. The corpus contains
annotations on syntactic and lexical negation markers and their

respective scopes. Morphological negation was excluded. There
are 3194 sentences, and of these, 1093 (34.22%) were annotated
with negation cues. IULA Spanish Clinical Record corpus details
and its entity distribution can be found in Tables 8 and 9,
respectively.

Table 8. IULA Spanish Clinical Record corpus details.

Clinical narrative, nItem

300Documents

3194Sentences

1093Annotated sentences

1456Negated entities
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Table 9. IULA Spanish Clinical Record corpus entity distribution.

Total, nEntity

1007NegMarkera

86NegPredMarkerb

114NegPolItemc

7BODYd

14SUBSe

1064DISOf

93PROCg

278Phraseh

aNegMarker: no, tampoco, sin [4].
bNegPredMarker: negative verbs, nouns, and adjectives [4].
cNegPolItem: ni, ninguno, ... [4].
dBODY: body structure.
eSUBS: substance pharmacological/biological product.
fDISO: clinical finding.
gPROC: procedure.
hPHRASE: nonmedical text spans.

To the best of our knowledge, the IULA Spanish Clinical Record
corpus has not been used in any task or challenge. Therefore,
we randomly split the data set into training, validation, and

testing data sets. Details about the data sets can be seen in Table
10.

Table 10. IULA Spanish Clinical Record data sets.

Number of entitiesNumber of sentencesSubset

28391774Training

924701Validation

920719Testing

The SFU ReviewSP-NEG corpus is the first Spanish corpus
that includes event negation as part of the annotation scheme,
as well as the annotation of discontinuous negation markers.
Moreover, it is the first corpus where the negation scope is
annotated. The corpus also includes syntactic negation, scope,
and focus. However, neither lexical nor morphological negation
is included. Annotations on the event and on how negation
affects the polarity of the words within its scope are also
included. The Spanish SFU Review corpus consists of 400
reviews from the Ciao website [74] from the following eight

different domains: cars, hotels, washing machines, books,
phones, music, computers, and movies. It is composed of 9455
sentences, and of these, 3022 (31.97%) contain at least one
negation cue. SFU ReviewSP-NEG corpus text distribution can
be found in Table 11. The SFU ReviewSP-NEG corpus was
used in Task 2 of NEGES 2018 for identifying negation cues
in Spanish. The data set was randomly divided into training,
validation, and testing data sets. Details about the data sets can
be seen in Table 12.

Table 11. SFU ReviewSP-NEG corpus details.

Reviews, nItem

400Comments

9455Sentences

3022Annotated sentences

3941Negated entities
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Table 12. SFU ReviewSP-NEG data sets.

Negated entities, nSentences, nReviews, nSubset

6061774264Training

20970156Validation

28571980Testing

Negation cues and scope are annotated in each corpus (the IULA
corpus does not include the subject within the scope). Regarding
the negation in coordinated structures, the corpora also show
differences. In the SFU ReviewSP-NEG corpus, a distinction
is made between the coordinated negative structures. Each
negation cue is independent and has its own scope. Moreover,
the scopes of those negative structures with discontinuous
negation cues consider the whole coordination. The IULA
Spanish Clinical Record always includes coordination within
the scope. Furthermore, we found that double negation (eg, “No
síntoma de disnea NI dolor torácico” [No symptoms of dyspnea
or chest pain]) and negation locutions, which are multiword
expressions that express negation (eg, “con AUSENCIA DE
vasoespasmo” [with absence of vasospasm]) were only
addressed in the SFU ReviewSP-NEG corpus. Additionally,
speculative expressions and uncertain annotations (eg, “Earths
and clays MAY have provided prehistoric peoples”) were only
addressed in the BioScope corpus.

Results

We evaluated the negation detection system using the training,
validation, and testing data sets provided by the task organizers
for the CoNLL-2010 Shared Task (BioScope) and for Task 2
of NEGES 2018 (SFU ReviewSP-NEG). The IULA Spanish

Clinical Record corpus has not been previously applied to any
task or competition. Therefore, we split the corpus randomly
into training and testing data sets to evaluate the proposal in the
clinical domain.

The Bi-LSTM CRF model was trained using available pretrained
word and sense embedding models on general and biomedical
domains for Spanish, English, and multilingual texts. We
evaluated the use of multidomain and multilanguage pretrained
embedding models (general domain word and sense embeddings
and multilanguage NLP tools) on the BioScope Task 1W data
sets (biomedical domain and English text), with a precision,
recall, and F-score of 86.2%, 87%, and 86.6%, respectively.
Based on our experiments, we found that the use of specific
domain (biomedical) and specific language (English)
embeddings highly improved the negation and speculation
detection task (Table 13). Moreover, to evaluate the performance
impact, we evaluated each of our proposed features and made
comparisons with base NeuroNER implementation with PubMed
and PubMed Central word embeddings on the BioScope Task
1W test data set. As shown in Table 14, sense feature
representation and the BIOES-V tag encoding format improved
each token representation, which implies that features play
different roles in capturing token-level features for NER tasks,
thus making improvements in their combination.

Table 13. Pretrained word embedding model evaluation on the BioScope Task 1W test data set.

F-score (%)Recall (%)Precision (%)Name–embedding

79.380.478.3NeuroNER–Google News

81.482.180.8NeuroNER–PubMed and PubMed Central

81.783.280.2NeuroNER Extended–Google News

86.687.086.2NeuroNER Extended–PubMed and PubMed Central

Table 14. Feature evaluation on the BioScope Task 1W test data set.

F-score (%)Recall (%)Precision (%)Name–feature

81.480.478.3NeuroNER–Base

85.486.284.7NeuroNER–Sense

82.683.581.7NeuroNER–BIOES-V

86.687.086.2NeuroNER–Sense and BIOES-V

Moreover, we used the pretrained BERT multilingual general
domain model with 12 transformer layers (12 layers, 768 hidden,
12 heads, 110 million parameters) trained on the general domain
Wikipedia and Bookcorpus corpora, and fine-tuned for NER
using a single output layer based on the representations from
its last layer to compute only token-level BIOES-V probabilities.

BERT directly learns WordPiece embeddings during the
pretraining and fine-tuning steps.

Precision, recall, and the F-score were used to evaluate the
performance of our system. The parameters of the sets and the
hyperparameters for our Bi-LSTM CRF model are summarized
in Table 15. The hyperparameters were optimized on each
validation data set.
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Table 15. NeuroNER system hyperparameters for each task.

SFU ReviewSP-NEGIULABioScopeParameter

SpanishSpanishEnglishLanguage

Spanish Billion Words + RedditSpanish Billion Words + RedditPubMed and PubMed Central +
Reddit

Pretrained word embedding

128128128Sense-disambiguation embedding
dimension

300300200Word embedding dimension

505050Character embedding dimension

100100100Hidden layers dimension (for each
LSTM)

Stochastic gradient descentStochastic gradient descentStochastic gradient descentLearning method

0.50.50.5Dropout rate

0.0050.0050.005Learning rate

100100100Epochs

The CoNLL-2010 Shared Task [75] considers two different
evaluation criteria. Task 1 is made at the sentence level, and
cue annotations in the sentence are not considered. However,
it is optionally evaluated. The F-measure of the speculation
class is employed as the chief evaluation metric. Task 2 involves
the annotation of “cue” + “xcope” tags in sentences. The
scope-level F-measure is used as the chief metric where true
positives are scopes that match the gold standard clue words
and gold standard scope boundaries assigned to the clue words.

Tables 16 to 20 compare the results obtained by the participating
systems in the CoNLL-2010 Shared Task and our deep learning
approach using pretrained embedding models and the
BMEWO-V encoding format. Our extended version of
NeuroNER achieved similar results to the best work presented
in this task. In particular, our system achieved the highest
precision (83.2%), with lower recall.

For subtask 1 (identification speculation at the sentence level
and cue annotations), our system obtained the top F-score for
speculation and cue detection (see Tables 16 to 18).

Table 16. Task 1B Wikipedia sentence-level speculation detection (BioScope).

F-score (%)Recall (%)Precision (%)Name

60.251.772.0Georgescul [76]

58.755.362.7Ji et al [77]

57.449.768.0Chen et al [78]

61.448.583.7BERT

54.941.083.2NeuroNER Extended

Table 17. Task 1B Wikipedia cue-level detection (BioScope).

F-score (%)Recall (%)Precision (%)Name

36.525.763.0Tang et al [79]

33.721.676.1Li et al [80]

19.514.728.9Özgür et al [81]

43.633.263.7BERT

36.525.763.0NeuroNER Extended
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Table 18. Task 1W biological sentence-level speculation detection (BioScope).

F-score (%)Recall (%)Precision (%)Name

86.487.785.0Tang et al [79]

85.885.186.5Zhou et al [82]

85.481.090.4Li et al [80]

86.487.385.5BERT

86.687.086.2NeuroNER Extended

Table 19. Task 1W biological cue-level detection (BioScope).

F-score (%)Recall (%)Precision (%)Name

81.381.081.7Tang et al [79]

80.978.883.1Zhou et al [82]

79.873.487.4Li et al [80]

80.179.580.7BERT

80.379.281.4NeuroNER Extended

Table 20. Task 2 cue-level detection and scope determination (BioScope).

F-score (%)Recall (%)Precision (%)Name

57.355.259.6Morante et al [83]

55.654.656.7Rei et al [6]

55.354.056.7Velldal et al [84]

50.455.646.1BERT

44.840.350.4NeuroNER Extended

Table 21 shows the results for the IULA corpus. Furthermore,
we compared our results with the work presented previously
[85]. We used the evaluation criteria presented in this work;

however, the subsets were different. As can be seen, our system
outperformed the results obtained previously [85], with a
difference of nearly 4 points for the F-measure.

Table 21. Results of cue level and scope detection for the IULA Clinical Record data set.

F-score (%)Recall (%)Precision (%)Name

81.283.579.1Santiso et al [85]

80.884.377.8BERT

85.085.984.2NeuroNER Extended

The NEGES 2018 Task 2 negation cue detection uses the
evaluation script proposed in the SEM 2012 Shared
Task–Resolving the Scope and Focus of Negation [50]. Table
22 shows the results for the different domains included in the
data set. It can be observed that the F-score was always over
80%. We compared our results with the participating systems
presented in this task. A detailed description of the evaluation
has been provided previously [71]. As can be seen in Table 23,
our system outperformed the rest of the participating systems.

Furthermore, we compared NeuroNER Extended and BERT
implementations in terms of resources and time consumption
on the IULA Clinical Record training and validation subsets.
As shown in Table 24, the training time was slightly higher in
NeuroNER Extended. However, training implies the generation
of character and token level embeddings, unlike the BERT
implementation that obtains word vector representations directly
from the pretrained model. In terms of hardware resource
consumption, we found that BERT implementation had a high
use of resources, especially RAM and GPU.
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Table 22. NeuroNER Extended results of negation detection for the SFU ReviewSP-NEG data set.

F-score (%)Recall (%)Precision (%)Domain

80.4674.4787.5Cars

85.4677.0595.92Hotels

83.9575.5694.44Washing machines

91.387.595.45Books

93.8490.8397.06Phones

92.3192.3192.31Music

87.580.7795.45Computers

89.8684.5595.88Movies

Table 23. Results of negation cues and scope detection for the SFU ReviewSP-NEG data set.

F-score (%)Recall (%)Precision (%)Name

68.059.679.5Fabregat et al [86]

81.283.579.1Loharja et al [87]

91.790.892.6BERT

88.182.994.3NeuroNER Extended

Table 24. Training parameters for the deep learning models.

BERTNeuroNER ExtendedSpecificationsTraining parameter

30%50%Intel Core i7 7700 at 3.60 GHzCPU

80%40%16 GB DDR4RAM

80%40%GeForce RTX 2060 SUPER 16 RAMGPU

13 min15 minMinutesTraining time

Discussion

Principal Findings
We used different pretrained models and investigated their
effects on performance. For NeuroNER Extended, we used
general and domain-specific pretrained word embedding models,
and likewise, we used pretrained multilanguage and
language-specific models. We found that the use of specific
domain (biomedical) and specific language pretrained models
highly improved the negation and speculation detection.
Moreover, to the best of our knowledge, there is no pretrained
biomedical Spanish model for context-dependent word
representations (pretrained BERT). The low performance of the
BERT model is mainly attributed to the use of a general domain
and multilingual pretrained model. However, the BERT model
outperformed the NeuroNER Extended model and other
state-of-the-art approaches in general domain data sets, such as
SFU ReviewSP-NEG, and the specific domain BioScope (Task
1B data set corpus obtained from Wikipedia text).

Moreover, we presented the analysis of the most frequent false
negatives and false positives for negation and speculation cues
and scope detection. Negation and speculation cues, such as
“would,” “apenas” (“barely”), “ni” (“neither” or “nor”),
“except,” “could,” “idea,” “notion,” and “may,” are half of the
time labeled as negation and speculation cues. This ambiguity

led our system to classify some tokens as false positive or
inversely as false negative, causing a drop in performance.
Furthermore, some multitoken negation and speculation cues,
such as “ni siquiera” (“not even”), “ni tan siquiera” (“not even”),
“ni si quiera” (“not even”), and “en ningún momento” (“not at
any moment”), are sometimes labeled as a single token word
(ie, “ni_siquiera,” “ni_tan_siquiera,” “ni_si_quiera,” and
“en_ningún_momento”), and some others are labeled as
multitoken cues. Long multitoken negation and speculation
cues, such as “remains to be determined” and “raising the
intriguing possibility,” are not detected or partially matched.
This proves that shorter sentences, with shorter scopes and
shorter negation and speculation cues, are easier to process. A
longer sentence has a more complex syntactic structure and is
tougher to be processed by the system. It should be noted that
clinical text is undoubtedly distinct from biomedical text. It is
characterized by short sentences (usually phrases) and
misspellings, with abuse of negation particles and abbreviations,
among other important features.

Furthermore, in the context of real medical applications,
negation and speculation detection is a fundamental task in any
information extraction system. For instance, in cohort selections
for a clinical trial, patients with a specific condition are required,
and it is essential to know if a term representing a disease or
any other feature is negated or not in a clinical note in order to
get the right answer to the query (Is the variable V valid for
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patient P?). An additional example would be the detection of
adverse drug reactions, that is, the extraction of causal relations
between drugs and diseases. It is a crucial step to discard the
absence of adverse drug reactions early and thus prevent medical
applications from analyzing them or providing wrong
information.

Conclusions
In this work, we proposed a system for the detection of negated
entities, negation cues, negation scope, and speculation in
multidomain text in English and Spanish. We addressed the
speculation and negation detection task as a sequence-labeling
task. Although previous studies have already applied deep
learning to this task, our approach is the first to exploit sense
embedding as the input of the deep network. In a sense
embedding model, each meaning word is represented with a
different vector. Therefore, sense embedding models can help
to solve ambiguity, which is one of the most critical challenges
in NLP.

Our experiments show that the use of dense representation of
words (word-level embedding, character-level embedding, and
sense embedding) provides good results in detecting negated

entities, negation cues, and negation scope determination.
Compared with previous work, our system achieved an F-score
performance of over 85%, outperforming most current
state-of-the-art methods for negation and speculation detection.
Moreover, our work is one of the few that addressed the task
for Spanish text and different domains using
context-independent and context-dependent pretrained models.

In future work, we plan to test whether other supervised
classifiers, such as Markov random fields and optimum path
forest, would obtain more benefits from dense vector
representation. That is to say, we would use the same continuous
representations with the Markov random fields and optimum
path forest classifiers. Moreover, we plan to train word
context-dependent and independent embeddings obtained from
multiple Spanish biomedical corpora to enhance word
representations using different models, such as FastText and
pretrained BERT. Furthermore, we plan to explore different
models for embeddings that combine in a single representation
not only words but also semantic information contained in
domain-specific resources, such as UMLS [88] and
SNOMED-CT [89].
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Abstract

Background: Integrative medicine is a form of medicine that combines practices and treatments from alternative medicine with
conventional medicine. The diagnosis in integrative medicine involves the clinical diagnosis based on modern medicine and
syndrome pattern diagnosis. Electronic medical records (EMRs) are the systematized collection of patients health information
stored in a digital format that can be shared across different health care settings. Although syndrome and sign information or
relative information can be extracted from the EMR and content texts can be mapped to computability vectors using natural
language processing techniques, application of artificial intelligence techniques to support physicians in medical practices remains
a major challenge.

Objective: The purpose of this study was to investigate model-based reasoning (MBR) algorithms for the clinical diagnosis in
integrative medicine based on EMRs and natural language processing. We also estimated the associations among the factors of
sample size, number of syndrome pattern type, and diagnosis in modern medicine using the MBR algorithms.

Methods: A total of 14,075 medical records of clinical cases were extracted from the EMRs as the development data set, and
an external test data set consisting of 1000 medical records of clinical cases was extracted from independent EMRs. MBR methods
based on word embedding, machine learning, and deep learning algorithms were developed for the automatic diagnosis of
syndrome pattern in integrative medicine. MBR algorithms combining rule-based reasoning (RBR) were also developed. A
standard evaluation metrics consisting of accuracy, precision, recall, and F1 score was used for the performance estimation of
the methods. The association analyses were conducted on the sample size, number of syndrome pattern type, and diagnosis of
lung diseases with the best algorithms.

Results: The Word2Vec convolutional neural network (CNN) MBR algorithms showed high performance (accuracy of 0.9586
in the test data set) in the syndrome pattern diagnosis of lung diseases. The Word2Vec CNN MBR combined with RBR also
showed high performance (accuracy of 0.9229 in the test data set). The diagnosis of lung diseases could enhance the performance
of the Word2Vec CNN MBR algorithms. Each group sample size and syndrome pattern type affected the performance of these
algorithms.
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Conclusions: The MBR methods based on Word2Vec and CNN showed high performance in the syndrome pattern diagnosis
of lung diseases in integrative medicine. The parameters of each group’s sample size, syndrome pattern type, and diagnosis of
lung diseases were associated with the performance of the methods.

Trial Registration: ClinicalTrials.gov NCT03274908; https://clinicaltrials.gov/ct2/show/NCT03274908

(JMIR Med Inform 2020;8(12):e23082)   doi:10.2196/23082
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model-based reasoning; integrative medicine; electronic medical records; natural language processing

Introduction

Integrative medicine is a form of medicine that combines
practices and treatments from alternative medicine with
conventional medicine [1-3]. In China, integrative medicine
combines traditional Chinese medicine (TCM) and modern
medicine for clinical practice [1-3]. The diagnosis in integrative
medicine comprises the clinical diagnosis based on modern
medicine and syndrome pattern diagnosis [4]. Syndrome pattern
based on TCM theory is an outcome of the analysis of TCM
information by the TCM practitioner, and TCM treatments rely
on this concept [4]. A syndrome pattern can be defined as a
categorized pattern of symptoms and signs in a patient at a
specific stage during the course of a disease. Syndrome elements
are the smaller units of syndrome classification and the basic
elements of a syndrome pattern [5]. The correct combination
of syndrome elements can infer an appropriate syndrome pattern.
Syndrome elements are also derived from the syndrome and
signs from the patient [5,6]. Generally, practitioners of
integrative medicine making diagnosis decisions need to
combine syndrome pattern diagnosis and the diagnosis in
modern medicine [5,6]. As TCM treatments rely on syndrome
pattern diagnosis, the treatment combined with the therapies of
TCM and modern medicine is expected to be more efficient for
patients. Therefore, syndrome pattern for the diagnosis in
integrative medicine is an essential part of diagnosis.

Electronic medical records (EMRs) are the systematized
collection of patients’ and the population’s electronically stored
health information in a digital format that can be shared across
different health care settings [7,8]. In China, EMRs are a
collection of diagnoses of syndrome patterns and model
medicine as well as syndromes and signs with the TCM format
[7,8]. Natural language processing (NLP) is a field of artificial
intelligence and computational linguistics concerned with the
interactions between computers and human natural languages
[9,10]. Currently, NLP techniques combining EMRs have been
comprehensively applied to medical data mining and medical
decision support system [9,10]. Word embedding, as one of the
techniques in NLP, attempted to map a word using a dictionary
to a vector of real numbers in a low-dimensional space [11,12].
It is important in EMR data mining or artificial intelligence
application in medicine for medical texts to be transferred to
vectors because computers can handle or understand medical
texts through computability vectors.

Applying artificial intelligence techniques to support physicians
in medical practices is a major challenge. The processing of
uncertainty information mainly contributes to the challenge.
Syndrome and sign information is under the classic uncertainty

information. The artificial neural network (ANN) can
successfully and efficiently handle syndrome and sign
information with uncertainty [13]. ANN is a computational
model based on the structure and functions of biological neural
networks [14]. The remarkable information processing
characteristics of the ANN in terms of nonlinearity, fault and
noise tolerance, high parallelism, and learning and generalization
capabilities contribute to uncertain information processing and
quantitative analysis. Furthermore, model-based reasoning
(MBR) methods based on machine learning or ANN can
successfully process syndrome and sign information with
uncertainty to make a precise and accurate diagnosis in
integrative medicine.

As mentioned previously, syndrome and sign information or
relative information can be extracted from the EMRs, and
content texts can be mapped to computability vectors using
NLP techniques. Furthermore, MBR methods can be used to
create a computer-aided system to support the diagnosis in
integrative medicine. However, only a few studies have been
conducted on MBR methods with EMRs and NLP to support
the diagnosis in integrative medicine. Fortunately, our previous
work was carried out to analyze syndrome patterns and
syndrome elements in lung diseases based on real-world EMR
data [5]. This study aimed to explore MBR algorithms in the
diagnosis in integrative medicine based on EMRs and NLP
techniques applied on lung disease data sets. We also estimated
the associations among the factors of sample size, number of
syndrome pattern type, and diagnosis in modern medicine using
the MBR algorithms.

Methods

Analysis of Workflow
The workflow of the analysis of the MBR methods in the
diagnosis in integrative medicine based on EMRs and NLP is
illustrated in Figure 1. The EMRs on lung diseases were
exported from the hospital information system, and the
syndrome and sign information and relative information were
extracted as a text format. The corresponding syndrome pattern
diagnosis, clinical diagnosis in modern medicine, and syndrome
elements were extracted and saved to the database with the
structure data according to the unique code of patients. The
content texts of the syndrome and sign information were mapped
to the computability vectors through word embedding. The
classification models that include the vectors of syndrome and
sign information and syndrome patterns or syndrome elements
were developed using machine learning or neural network
methods. MBR algorithms were developed on the basis of
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classification models concerning the syndrome pattern, and the
model-based and rule reasoning algorithms were developed
using the classification models and rule knowledge based on
the combination of syndrome elements and syndrome patterns.

The performances of the MBR methods in the diagnosis of lung
diseases in integrative medicine have been evaluated and
compared (for the main program codes for the module, please
see [15]).

Figure 1. Workflow of the analysis of MBR methods in the diagnosis in integrative medicine based on EMRs and NLP. EMR: electronic medical
record; MBR: model-based reasoning; ML: machine learning; NLP: natural language processing.

Data Collection and Processing
In our previous real-world study on the syndrome pattern and
syndrome element of lung disease, EMRs were collected from
lung disease wards in 5 hospitals [5]. A data set consisting of
14,075 medical records of clinical cases from 4 hospitals was
assigned as the development data set, and it was divided into
the train data set and the test data set at a ratio of 4:1. Another
independent data set comprising 1000 medical records of clinical
cases from a hospital was set as the external test data set. The
information comprised patients’ identity number, ward number,
admission time, admission notes, first medical records, general
medical records, discharge note, diagnosis of syndrome pattern,
and diagnosis in modern medicine. In this work, we selected
10 common syndrome pattern types and 8 common lung diseases
in the lung disease wards. Nine syndrome element types were

generated and combined with the corresponding 10 syndrome
pattern types.

Medical Information Extraction
The Chinese text information on the chief complaints,
syndromes, and positive signs in the chest, tongue, and pulse
was extracted from the admission notes, first medical records,
and discharge records (Figure 2). The extracted Chinese text
information was combined into contexts called “four diagnoses
in TCM.” The contexts of the syndromes and signs underwent
word-cutting process to split them into tokens. In this work, the
first corpus included the context of syndrome and sign
information. In the analysis of the diagnosis in modern medicine
and syndrome pattern diagnosis, another corpus included an
additional token of diagnosis in modern medicine.
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Figure 2. The Chinese text information on the chief complaints, syndromes, and positive signs in the chest, tongue, and pulse that was extracted from
the admission notes, first medical records, and discharge records. TCM: traditional Chinese medicine.

Word2Vec
Word embedding is an NLP feature-learning technique in which
words are mapped to vectors of real numbers [16]. Word
embedding involves mathematical embedding from a space
with 1 dimension per word to a continuous vector space with a
much lower number of dimensions. The Word2Vec model is
an NLP system that is used to produce word embedding, which
takes a large corpus of text as its input and produces a vector
space, and each unique word in the corpus is assigned a
corresponding vector in the space [16]. The Word2Vec model
generates vectors for each word present in a document. In this
study, the corpus from a Chinese language Wikipedia dump,
which is available at [17], was used to pretrain the word vector
model. The parameters utilized with the Word2Vec model were
developed for dimension reduction into 256 dimension vectors,
5 context windows, and a minimum sentence word count of 10.
The Word2Vec model was implemented using the Gensim
Python library [18].

Doc2Vec
The Doc2Vec model is an extension of Word2Vec that
constructs embeddings from entire documents or sentences
(instead of individual words) to learn a randomly initialized
vector for the document (or sentence) along with the words [19].
The Doc2Vec model modifies the Word2Vec algorithm into an
unsupervised learning algorithm that produces continuous
representations for large blocks of texts, such as sentences,
paragraphs, or entire documents. In this work, Doc2Vec was

used to produce vectors for texts. The corpus from a Chinese
language Wikipedia dump was again used to pretrain the
Doc2Vec model. The parameters utilized with the Doc2Vec
model were developed in the dimension reduction into 192
dimension vectors, 5 context windows, and a minimum sentence
word count of 10. The Doc2Vec model was also implemented
using the Gensim Python library.

Machine Learning
In this work, the 4 different machine learning classifiers
algorithms, namely, random forest (RF), extreme gradient
boosting (XGBoost), support vector machines (SVMs), and
K-nearest neighbor (KNN), were used to develop MBR [20-22].
The 4 algorithms were the classic machine leaning algorithms,
which were the best algorithms suitable for classification tasks.

RF, a classic machine learning classifier, is composed of tree
predictors, with each tree depending on the values of a random
vector sampled independently and having the same distribution
for all trees in the forest [23]. RF aims to reduce the tree
correlation issue by choosing only a subsample of the feature
space at each split. In this work, RF was used on 1000 trees in
the forest, and it was implemented using the scikit-learn Python
library.

XGBoost is an optimized distributed gradient-boosting system
designed to be highly efficient, flexible, and portable [24]. It
implements machine learning algorithms under the gradient
boosting framework, which attempts to accurately predict a
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target variable by combining an ensemble of estimates from a
set of simpler, weaker models. XGBoost can also be
implemented using the scikit-learn Python library.

SVM is a well-known supervised learning model associated
with learning algorithms that analyze data used for classification
and regression analysis [25]. SVM was useful in text-based
classification tasks and is not prone to errors in high-dimensional
data sets. In this work, SVM was used with a linear kernel and
implemented using the scikit-learn Python library.

The KNN classifier, one of the most popular machine learning
algorithms, is based on the Euclidean distance between a test
sample and the specified training samples [26]. It is used for
data classification that attempts to determine in which group a
data point is included by examining the data points around it.
In this study, KNN was implemented using the scikit-learn
Python library.

Artificial Neural Network
ANNs, one of the main tools used in machine learning, are a
group of models inspired by biological neural networks used
for estimating functions that depend on a large number of inputs
[13]. ANN algorithms have 2 different classifiers: multilayer
perceptron (MLP) and convolutional neural network (CNN).
MLP is a feed-forward ANN model that maps sets of input data
onto a set of appropriate outputs [27]. It consists of multiple
layers of nodes with a nonlinear activation function in a directed
graph, with each layer fully connected to the next one.
Back-propagation is used as a supervised learning technique in
MLP. In this work, MLP was performed with 6 hidden layers,
with the nodes per layer varying from 64 to 1024. It was also
implemented using the scikit-learn Python library.

CNN is one of the most popular algorithms for deep learning
[28]. It is a category of ANN in which a model learns to perform
classification tasks directly from images, text, or sound, and it
has been proven effective in the areas of text classification and
image recognition. CNN comprises one or more convolutional
layers with a subsampling step, followed by one or more fully
connected layers as in a standard multilayer neural network
[29]. In this work, CNN consisted of an embedding layer, a
convolutional layer, a max pooling layer, and 2 fully connected
layers, and it was implemented using the Keras Python library.

MBR
In this study, the development of MBR was based on word
embedding and machine learning classifiers for syndrome
pattern [30,31]. A total of 11 MBR algorithms were used:
Word2Vec RF, Word2Vec XGBoost, Word2Vec SVM,
Word2Vec KNN, Word2Vec MLP, Word2Vec CNN, Doc2Vec
RF, Doc2Vec XGBoost, Doc2Vec SVM, Doc2Vec KNN, and
Doc2Vec MLP. These models with multiclass outputs were
consistent with the syndrome pattern types. A comparison of
the performance of the 11 MBR algorithms was conducted.

MBR Combined With Rule-Based Reasoning
MBR was based on word embedding and machine learning
classifiers for syndrome elements. Nine MBR algorithms were
used: Word2Vec RF, Word2Vec XGBoost, Word2Vec KNN,
Word2Vec MLP, Word2Vec CNN, Doc2Vec RF, Doc2Vec

XGBoost, Doc2Vec KNN, and Doc2Vec MLP. These models
with multilabel outputs were consistent with the syndrome
element types. The syndrome patterns were generated by
combining the syndrome elements, which follow the rule
knowledge base of the syndrome elements, with the syndrome
pattern. A comparison of the performance of the 9 MBR
combined with rule-based reasoning (RBR) algorithms was
performed. The rules of combination of TCM elements for TCM
syndrome are presented in Multimedia Appendix 1.

Evaluation
The performances of the MBR algorithms in syndrome pattern
were evaluated in the test data set and the external data set using
standard metrics, which included accuracy, precision, recall,
and F1 score [32]. Moreover, the performances of the Word2Vec
CNN MBR algorithms in each syndrome pattern and each
syndrome element were evaluated in the test data set using
standard metrics. A fivefold cross validation was conducted 20
times on the train data set for each algorithm to estimate the
95% CI for the performance parameters.

The accuracy comparison analysis of the Word2Vec CNN MBR
algorithms in corpus 1 and corpus 2 was conducted in different
proportions of the sample size of the development data set. In
the accuracy analysis of the data set, each group sample size
was set as a proportion of total sample size and the number of
syndrome pattern type was selected randomly. The linear
regression analyses were conducted to evaluate the associations
between each group sample size and the number of syndrome
pattern type at accuracies of 0.90% and 0.95% of the methods.

Ethics Approval and Consent to Participate
The study was approved by the Ethics Committee of the
Huashan Hospital and performed in accordance with the
Declaration of Helsinki.

Availability of Data and Material
The data sets generated or analyzed during this study are not
publicly available due to private information but are available
from the corresponding author on reasonable request. Data sets
are from the study whose authors may be contacted at the Center
of Bioinformatics and Biostatistics, Institutes of Integrative
Medicine, Fudan University. The data concerning external test
data set and an example of development data set are available
online [15].

Results

Development and External Data Sets
The characteristics of the data set are shown in Figure 3. The
development data set consisted of 14,075 medical records of
clinical cases, and the external data set had 1000 medical records
of clinical cases. Eight common lung diseases were found in
the development data set: lung cancer (18.42%), pulmonary
infection (18.59%), acute bronchitis (8.39%), interstitial
pneumonia (1.66%), chronic bronchitis (9.78%), chronic
obstructive pulmonary disease (25.98%), bronchiectasis (4.31%),
and asthma (12.88%; Figure 3A). The same common lung
diseases with the same proportions were also found in the
external data set (Figure 3B). Ten common syndrome pattern

JMIR Med Inform 2020 | vol. 8 | iss. 12 |e23082 | p.48http://medinform.jmir.org/2020/12/e23082/
(page number not for citation purposes)

Geng et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


types were found in the development data set: qi-deficiency of
lung and spleen, qi-deficiency of lung and kidney, yin-deficiency
of lung, wind-cold attacking lung, wind-heat attacking lung,
cold wheezing, deficiency of qi and yin, hot wheezing,
phlegm-heat obstruction in lung, and phlegm obstruction in
lung (Figure 3C). The same 10 syndrome pattern types with the
same proportions were also found in the external data set (Figure

3D). The development data set had 35,992 syndrome elements
for 14,075 syndrome patterns, and a syndrome pattern consisted
of 2.56 syndrome elements on average. The development data
set included 9 syndrome element types: phlegm, wind, cold,
heat, qi-deficiency, yin-deficiency, lung, spleen, and kidney
(Figure 3E). A total of 2602 syndrome elements with the same
9 types were found in 1000 syndrome patterns (Figure 3F).

Figure 3. The characteristics of the data set. COPD: chronic obstructive pulmonary disease.

MBR
In the test data set, the performance analysis of the MBR based
on Word2Vec to identify syndrome patterns showed an average
accuracy of 0.9397 (95% CI 0.9312-0.9468) in the Word2Vec
RF model and 0.9323 (95% CI 0.9213-0.9443) in the Word2Vec
ANN model (Table 1). The highest average accuracy was 0.9471

(95% CI 0.9382-0.9549) in the Word2Vec CNN model. The
parameters of precision, recall, and F1 score were 0.9478 (95%
CI 0.9393-0.9557), 0.9471 (95% CI 0.9382-0.9549), and 0.9470
(95% CI 0.9383-0.9550) in the Word2Vec CNN model,
respectively. Similar performance values were found in the
corresponding external data set.
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Table 1. Performance analysis of model-based reasoning methods applied for syndrome pattern diagnosis of lung disease based on Word2Vec in the
test and external data sets.

F1 score, mean (95% CI)Recall, mean (95% CI)Precision, mean (95% CI)Accuracy, mean (95% CI)Model and data set

Word2Vec + RFa

0.9396 (0.9311-0.9468)0.9397 (0.9312-0.9468)0.9411 (0.9331-0.9481)0.9397 (0.9312-0.9468)Test

0.9118 (0.8988-0.9208)0.9120 (0.9030-0.9220)0.9125 (0.8985-0.9189)0.9121 (0.9001-0.9251)External

Word2Vec + XGBoostb

0.8832 (0.8742-0.8972)0.8832 (0.8722-0.8932)0.8844 (0.8714-0.8954)0.8832 (0.8732-0.8942)Test

0.8728 (0.8598-0.8838)0.8720 (0.8630-0.8860)0.8753 (0.8643-0.8893)0.8720 (0.8641-0.8842)External

Word2Vec + KNNc

0.8478 (0.8398-0.8598)0.8485 (0.8355-0.8575)0.8489 (0.8349-0.8569)0.8485 (0.8355-0.8605)Test

0.8481 (0.8351-0.8591)0.8481 (0.8351-0.8561)0.8514 (0.8404-0.8624)0.8481 (0.8371-0.8611)External

Word2Vec + SVMd

0.8161 (0.8071-0.8251)0.8172 (0.8052-0.8312)0.8245 (0.8135-0.8325)0.8172 (0.8062-0.8252)Test

0.7826 (0.7706-0.7956)0.7791 (0.7681-0.7881)0.8047 (0.7957-0.8177)0.7791 (0.7711-0.7931)External

Word2Vec + MLPe

0.9319 (0.9229-0.9409)0.9323 (0.9243-0.9403)0.9326 (0.9226-0.9436)0.9323 (0.9213-0.9443)Test

0.9193 (0.9063-0.9293)0.9201 (0.9090-0.9340)0.9211 (0.9101-0.9341)0.9203 (0.9101-0.9302)External

Word2Vec + CNNf

0.9470 (0.9383-0.9550)0.9471 (0.9382-0.9549)0.9478 (0.9393-0.9557)0.9471 (0.9382-0.9549)Test

0.9250 (0.9114-0.9362)0.9250 (0.9110-0.9360)0.9277 (0.9153-0.9382)0.9250 (0.9110-0.9360)External

aRF: random forest.
bXGBoost: extreme gradient boosting.
cKNN: K nearest neighbor.
dSVM: support vector machine.
eMLP: multilayer perceptron.
fCNN: convolutional neural network.

The performance analysis of the MBR based on Doc2Vec to
identify syndrome patterns in the test data set showed the highest
average accuracy of 0.8840 (95% CI 0.8730-0.8970) in the
Doc2Vec CNN model (Table 2). The parameters of precision,
recall, and F1 score were 0.8876 (95% CI 0.8776-0.8976),

0.8840 (95% CI 0.8710-0.8932), and 0.8843 (95% CI
0.8753-0.8973) in the Doc2Vec CNN model, respectively.
Similar performance values were found in the corresponding
external data set.
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Table 2. Performance analysis of model-based reasoning methods applied for syndrome pattern diagnosis of lung disease based on Doc2Vec in the
test and external data sets.

F1 score, mean (95% CI)Recall, mean (95% CI)Precision, mean (95% CI)Accuracy, mean (95% CI)Model and data set

Doc2Vec + RFa

0.8337 (0.8217-0.8458)0.8320 (0.8198-0.8442)0.8457 (0.8345-0.8567)0.8320 (0.8198-0.8442)Test

0.8267 (0.8147-0.8397)0.8190 (0.8110-0.8323)0.8506 (0.8366-0.8610)0.8190 (0.8090-0.8310)External

Doc2Vec + XGBoostb

0.7589 (0.7499-0.7719)0.7584 (0.7504-0.7704)0.7682 (0.7602-0.7812)0.7584 (0.7444-0.7724)Test

0.7391 (0.7261-0.7501)0.7270 (0.7130-0.7390)0.7735 (0.7645-0.7835)0.7270 (0.719-0.7400)External

Doc2Vec + KNNc

0.8535 (0.8425-0.8665)0.8527 (0.8407-0.8627)0.8588 (0.8488-0.8668)0.8527 (0.8407-0.8637)Test

0.8215 (0.8105-0.8295)0.8220 (0.8090-0.8331)0.8246 (0.8116-0.8326)0.8202 (0.8092-0.8282)External

Doc2Vec +SVMd

0.7577 (0.7467-0.7667)0.6748 (0.6668-0.6858)0.7424 (0.7334-0.7504)0.6748 (0.6628-0.6848)Test

0.5288 (0.5168-0.5388)0.5920 (0.5830-0.6033)0.5743 (0.5663-0.5883)0.5820 (0.5700-0.5950)External

Doc2Vec + MLPe

0.8843 (0.8753-0.8973)0.8840 (0.8710-0.8932)0.8876 (0.8776-0.8976)0.8840 (0.8730-0.8970)Test

0.8791 (0.8701-0.8921)0.8760 (0.8630-0.8851)0.8897 (0.8757-0.9027)0.8760 (0.8620-0.8890)External

aRF: random forest.
bXGBoost: extreme gradient boosting.
cKNN: K nearest neighbor.
dSVM: support vector machine.
eMLP: multilayer perceptron.

MBR Combined With RBR
The performance analysis of the MBR combined with RBR
based on Word2Vec in the test data set indicated that the highest
average accuracy was 0.9229 (95% CI 0.9099-0.9319) in the
Word2Vec CNN model (Table 3). The parameters of precision,

recall, and F1 score were 0.9884 (95% CI 0.9744-0.9964),
0.9679 (95% CI 0.9589-0.9809), and 0.9778 (95% CI
0.9698-0.9888) in the Word2Vec CNN model, respectively.
Similar performance values were found in the corresponding
external data set.
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Table 3. Performance analysis of model-based reasoning methods in combination with rule-based reasoning methods applied for syndrome pattern
diagnosis of lung disease based on Word2Vec in the test and external data sets.

F1 score, mean (95% CI)Recall, mean (95% CI)Precision, mean (95% CI)Accuracy, mean (95% CI)Model and data set

Word2Vec + RFa

0.9774 (0.9644-0.9864)0.9628 (0.9538-0.9748)0.9934 (0.9814-0.9983)0.9131 (0.8990-0.9261)Test

0.9617 (0.9477-0.9697)0.9580 (0.9501-0.9721)0.9657 (0.9547-0.9747)0.9040 (0.8903-0.9180)External

Word2Vec + XGBoostb

0.9333 (0.9233-0.9433)0.9044 (0.8924-0.9144)0.9666 (0.9556-0.9786)0.7703 (0.7583-0.7803)Test

0.9444 (0.9364-0.9544)0.9227 (0.9137-0.9337)0.9702 (0.9582-0.9812)0.7980 (0.7871-0.8112)External

Word2Vec + KNNc

0.9312 (0.9202-0.9432)0.9254 (0.9164-0.9334)0.9380 (0.9270-0.9502)0.8414 (0.8324-0.8534)Test

0.9446 (0.9306-0.9556)0.9373 (0.9263-0.9473)0.9441 (0.9321-0.9571)0.8521 (0.8403-0.8612)External

Word2Vec + MLPd

0.9752 (0.9652-0.9862)0.9758 (0.9678-0.9858)0.9751 (0.9621-0.9830)0.9052 (0.8930-0.9181)Test

0.9784 (0.9704-0.9904)0.9780 (0.9660-0.9904)0.9791 (0.9671-0.9911)0.9021 (0.8940-0.9151)External

Word2Vec + CNNe

0.9778 (0.9698-0.9888)0.9679 (0.9589-0.9809)0.9884 (0.9744-0.9964)0.9229 (0.9099-0.9319)Test

0.9698 (0.9608-0.9778)0.9662 (0.9582-0.9782)0.9765 (0.9655-0.9885)0.9160 (0.9030-0.9261)External

aRF: random forest.
bXGBoost: extreme gradient boosting.
cKNN: K nearest neighbor.
dMLP: multilayer perceptron.
eCNN: convolutional neural network.

The performance analysis of the MBR combined with RBR
based on Doc2Vec showed that the highest average accuracy
was 0.8190 (95% CI 0.8082-0.8281) in the Doc2Vec CNN
model (Table 4). The parameters of precision, recall, and F1

score were 0.9550 (95% CI 0.9441-0.9673), 0.9507 (95% CI
0.9387-0.9597), and 0.9524 (95% CI 0.9444-0.9654) in the
Doc2Vec CNN model, respectively. Similar performance values
were found in the corresponding external data set.
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Table 4. Performance analysis of model-based reasoning methods in combination with rule-based reasoning methods applied for syndrome pattern
diagnosis of lung disease based on Doc2Vec in the test and external data sets.

F1 score, mean (95% CI)Recall, mean (95% CI)Precision, mean (95% CI)Accuracy, mean (95% CI)Model and data set

Doc2Vec + RFa

0.9049 (0.8939-0.9139)0.9745 (0.9635-0.9865)0.8586 (0.8496-0.8698)0.6410 (0.6281-0.6520)Test

0.8642 (0.8542-0.8762)0.8002 (0.7892-0.8112)0.9728 (0.9648-0.9828)0.5940 (0.5810-0.6061)External

Doc2Vec + XGBoostb

0.8891 (0.8771-0.8981)0.9413 (0.9273-0.9513)0.8525 (0.8415-0.8625)0.6177 (0.6087-0.6307)Test

0.8401 (0.8301-0.8531)0.7863 (0.7763-0.7953)0.9346 (0.9266-0.9486)0.536 (0.5272-0.5440)External

Doc2Vec + KNNc

0.9440 (0.9331-0.9582)0.9503 (0.9383-0.9613)0.9393 (0.9283-0.9523)0.8488 (0.8358-0.8618)Test

0.9301 (0.9211-0.9401)0.9415 (0.9275-0.9535)0.9203 (0.9073-0.9323)0.8260 (0.8174-0.8383)External

Doc2Vec + MLPd

0.9524 (0.9444-0.9654)0.9507 (0.9387-0.9597)0.9550 (0.9441-0.9673)0.8190 (0.8082-0.828)1Test

0.9444 (0.9314-0.9544)0.9446 (0.9316-0.9546)0.9478 (0.9398-0.9618)0.8031 (0.7911-0.8111)External

aRF: random forest.
bXGBoost: extreme gradient boosting.
cKNN: K nearest neighbor.
dMLP: multilayer perceptron.

Word2Vec CNN MBR in Corpus 1 and Corpus 2
Corpus 1 included the syndrome and sign information without
a clinical diagnosis of lung disease, whereas corpus 2 included
the syndrome and sign information with a clinical diagnosis of
lung disease. A higher average accuracy (0.9584; 95% CI
0.9510-0.9655) was found in the Word2Vec CNN model for
syndrome pattern diagnosis in corpus 2 than in corpus 1 (0.9471;
95% CI 0.9382-0.9549) in the test data set (Table 5). Moreover,
higher performance parameter values of precision, recall, and

F1 score were found in the Word2Vec CNN model for each
syndrome pattern diagnosis in corpus 2 than in corpus 1 (Table
5). Similar results were found in the Word2Vec CNN method
combined with the RBR model for syndrome pattern diagnosis
in corpus 2 in comparison with the model in corpus 1 in the test
data set with a full sample size (Table 6). A higher average
accuracy of the Word2Vec CNN model was found for syndrome
pattern diagnosis in the test data set with different sample sizes
in corpus 2 than in corpus 1 (Figure 4).

Table 5. Performance analysis of model-based reasoning methods for each syndrome pattern in the test data set with corpus 1 and corpus 2.a

Corpus 2Corpus 1Syndrome pattern

SupportF1 scoreRecallPrecisionSupportF1 scoreRecallPrecision

2390.98090.96650.99572470.94380.95140.9363Qi-deficiency of lung and spleen

1790.98610.99440.97811760.96700.99990.9362Qi-deficiency of lung and kidney

2030.99510.99990.99022250.97550.97330.9777Yin-deficiency of lung

1620.99390.99990.98781760.99560.99430.9943Wind-cold attacking lung

2300.94760.98260.91502160.94940.91200.9899Wind-heat attacking lung

2020.97010.96530.97501790.97780.98320.9724Cold wheezing

1470.99450.99320.99321530.98680.98040.9934Deficiency of qi and yin

1560.96840.98080.95631440.9470.99310.9051Hot wheezing

6060.92400.91250.93576130.92010.90210.9389Phlegm-heat obstruction in lung

6910.94340.94070.94616860.92630.93440.9183Phlegm obstruction in lung

28150.95840.95840.958628150.94700.94710.9477Average (weighted)

aCorpus 1 consists of syndrome and sign information, and corpus 2 consists of syndrome and sign information plus clinical diagnosis information. The
average accuracy was 0.9471 (95% CI 0.9382-0.9549) for syndrome pattern in the test data set with corpus 1, and 0.9584 (95% CI 0.9510-0.9655) for
syndrome pattern in the test data set with corpus 2.
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Table 6. Performance analysis of model-based reasoning methods in combination with rule-based reasoning methods for each syndrome element in

the test data set with corpus 1 and corpus 2.a

Corpus 2Corpus 1Syndrome element

SupportF1 scoreRecallPrecisionSupportF1 scoreRecallPrecision

12330.99430.99510.993512330.97190.95380.9907Phlegm

4350.98610.97700.99534350.95590.92180.9926Wind

5030.9981.0000.9965030.9760.97220.9800Cold

8110.94180.91740.96758110.92860.89030.9704Heat

6160.99030.99350.98716160.96860.97560.9616Qi-deficiency

4030.98870.98010.99754030.99250.98511.000Yin-deficiency

28151.0001.0001.00028151.0001.0001.000Lung

2580.98460.99220.97712580.9550.94570.9644Spleen

1710.98540.98830.98261710.98530.98250.9882Kidney

72450.98920.98630.992272450.97790.9680.9885Average (weighted)

aCorpus 1 consists of syndrome and sign information, and corpus 2 consists of syndrome and sign information plus clinical diagnosis information. The
average accuracy was 0.9229 (95% CI 0.9099-0.9319) for syndrome pattern in the test data set with corpus 1, and 0.9559 (95% CI 0.9429-0.9699) for
syndrome pattern in the test data set with corpus 2.

Figure 4. Accuracy and sample size proportions in corpus 1 and corpus 2.

Association of Accuracy and Sample Size With
Syndrome Pattern Type
We performed an average accuracy analysis in the development
data set classified by the number of syndrome pattern type and
each group’s sample size. The results showed that the average
accuracy increased with the increase in sample size of each
group and decreased with the increase in number of syndrome

pattern (Table 7). The linear regression analysis showed that
each group’s sample size was significantly associated with the
number of syndrome pattern with an accuracy of 0.90 (Y =
34.39 × X + 109.43, P<.001, where Y is each group’s sample
size and X is the number of syndrome pattern type) and 0.95
(Y = 48.55 × X + 296.78, P<.001, where Y is each group’s
sample size and X is the number of syndrome pattern type),
respectively (Figure 5).
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Table 7. Average accuracy analysis grouped by sample size of each group and number of syndrome pattern type.a

N=10N=9N=8N=7N=6N=5N=4N=3N=2Each group sample size

0.18750.20680.30760.31130.25210.31220.38760.40010.571416

0.22510.29160.37510.37510.29160.35110.43750.50010.657540

0.39210.41270.41740.44440.46360.51250.53840.64120.723864

0.40010.45130.54680.47320.55210.63110.64060.72910.875180

0.73250.75770.76210.79010.83450.84320.84370.85420.9375160

0.80830.84870.85150.84820.89930.90110.90140.90970.9375240

0.85150.88360.89840.89730.92270.91510.90740.91140.9658320

0.89290.90250.90230.92660.93010.92810.93840.94330.9688400

0.91350.92340.94440.94640.94180.94120.94140.95530.9752480

0.93040.93940.94870.94820.95320.95210.95340.95830.9762560

0.93540.94560.96190.95260.96260.96610.96330.96530.9776640

0.93560.95910.96780.96720.97090.97120.96880.97080.9786720

0.94290.95970.97340.97850.97390.97350.97560.97760.9813800

aThe first average accuracy was arrived at 0.90 and 0.95 and corresponding values are presented in italics.

Figure 5. Sample size of each group.

Discussion

Principal Findings
We developed MBR methods for diagnosis of lung diseases in
integrative medicine based on a real-world EMR data set with
NLP. In our previous studies, we accumulated large-scale
real-world data for artificial intelligence on integrative medicine.
In this work, real-world medical records of clinical cases were
used to develop models, and medical texts were mapped to
vectors of real numbers that a computer could process. CNN
approaches can automatically extract features from word vectors,
thus contributing to the high performance of MBR methods in
syndrome pattern diagnosis for diagnosis of lung diseases in
integrative medicine. To the best of our knowledge, this study
is the first to investigate MBR methods for diagnosis in
integrative medicine on a large real-world data set using NLP
and deep learning methods in China. These MBR methods can

be recommended for a clinical decision-making system and can
also provide a novel approach for diagnosis in integrative
medicine. This work would be of significance for applications
of artificial intelligence on integrative medicine.

An interesting finding is the high performance of the MBR
methods for syndrome pattern diagnosis in integrative medicine.
The best Word2Vec CNN MBR method for syndrome pattern
diagnosis in integrative medicine had an accuracy of 0.9471
and 0.9250 in the development and external data sets,
respectively. Word embedding and CNN contributed to the high
performance. Word embedding techniques can map texts to
computability vectors, which can perform text analysis with
quantitative analysis. CNN can automatically extract features
from medical texts, significantly contributing to the performance
of the MBR. Additionally, the diagnosis information of modern
medicine being added to the corpus enhances the accuracy of
the syndrome pattern diagnosis in integrative medicine with
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reasoning, thus indicating that physicians can more efficiently
make a syndrome pattern diagnosis after determining the
diagnosis in modern medicine.

We performed an association analysis to evaluate the
relationship between the number of syndrome pattern type and
each group’s sample size for the accuracy of MBR algorithms.
Moreover, we conducted a linear regression analysis to estimate
the linear function of each group’s sample size and syndrome
pattern type at an accuracy of 0.95. Only a few studies reported
on the quantitative associations. In the Word2Vec CNN MBR
algorithms at an accuracy of 0.95, the smallest group sample
size was 300 for 2 syndrome pattern types, and for each group
the sample size was at least 800 for 10 syndrome pattern types.
According to the linear model, the Word2Vec CNN MBR
method based on each group’s sample size of at least 1200
showed high performance in syndrome pattern with 20 types.
A total of 400 common syndrome pattern types were grouped
into 20 systems in integrative internal medicine. A total of
25,000 medical records of clinical cases could satisfy the
Word2Vec CNN MBR methods in syndrome pattern diagnosis
in an integrative system at an accuracy of 0.95. A total of
500,000 medical records of clinical cases could satisfy the
Word2Vec CNN MBR methods in the diagnosis of 400
syndrome patterns in the entire integrative internal medicine at
an accuracy of 0.95. We could thus combine data-driven
artificial intelligence and knowledge-driven artificial intelligence
for developing an intelligent clinical decision system on
integrative medicine.

Interestingly, the combination of MBR and RBR methods
applied for syndrome pattern diagnosis in integrative medicine
showed high performance. Specifically, Word2Vec CNN MBR
combined with RBR methods had an accuracy of 0.9559 in
syndrome pattern diagnosis in corpus 2 with additional
information on modern medicine diagnosis. This reasoning

method showed a more understandable and clearer knowledge
of lung diseases for physicians in comparison with the
Word2Vec CNN MBR methods. Moreover, it was more suitable
for users of or physicians practicing integrative medicine.
Generally, a hybrid reasoning is more suitable for application
in clinical practice. The data- and knowledge-driven artificial
intelligence contributed to the hybrid reasoning, which has the
advantages of high performance reasoning and being explainable
for clinicians. In clinical practice, the TCM elements reasoning
could be used for TCM diagnosis or differentiation.

Although this study used novel methods to develop MBR in
syndrome pattern diagnosis in integrative medicine, it has
several limitations. First, we selected only 10 of the 20 common
syndrome pattern types in lung diseases, partly because the
other 10 syndrome pattern types did not have enough medical
records of clinical cases. Therefore, future studies should use
comprehensive syndrome patterns in lung diseases or other
systems. Second, the size of the corpus for pretrained word
vectors was not large to cover all Chinese words or special items
on lung diseases.

Conclusion
MBR methods based on Word2Vec CNN showed high
performance in syndrome pattern diagnosis of lung diseases in
integrative medicine. The parameters of each group’s sample
size, syndrome pattern type, and clinical diagnosis of lung
diseases were associated with the performance of the methods.
The hybrid reasoning with data- and knowledge-driven artificial
intelligence could well contribute to the development of medical
artificial intelligence on integrative medicine. We aim to develop
a clinical diagnosis or decision-making model with knowledge
graph and hybrid reasoning to better combine data- and
knowledge-driven artificial intelligence on integrative medicine
in the near future.
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Abstract

Background: As a result of the overwhelming proportion of medication errors occurring each year, there has been an increased
focus on developing medication error prevention strategies. Recent advances in electronic health record (EHR) technologies
allow institutions the opportunity to identify medication administration error events in real time through computerized algorithms.
MED.Safe, a software package comprising medication discrepancy detection algorithms, was developed to meet this need by
performing an automated comparison of medication orders to medication administration records (MARs). In order to demonstrate
generalizability in other care settings, software such as this must be tested and validated in settings distinct from the development
site.

Objective: The purpose of this study is to determine the portability and generalizability of the MED.Safe software at a second
site by assessing the performance and fit of the algorithms through comparison of discrepancy rates and other metrics across
institutions.

Methods: The MED.Safe software package was executed on medication use data from the implementation site to generate
prescribing ratios and discrepancy rates. A retrospective analysis of medication prescribing and documentation patterns was then
performed on the results and compared to those from the development site to determine the algorithmic performance and fit.
Variance in performance from the development site was further explored and characterized.

Results: Compared to the development site, the implementation site had lower audit/order ratios and higher MAR/(order +
audit) ratios. The discrepancy rates on the implementation site were consistently higher than those from the development site.
Three drivers for the higher discrepancy rates were alternative clinical workflow using orders with dosing ranges; a data extract,
transfer, and load issue causing modified order data to overwrite original order values in the EHRs; and delayed EHR documentation
of verbal orders. Opportunities for improvement were identified and applied using a software update, which decreased false-positive
discrepancies and improved overall fit.

Conclusions: The execution of MED.Safe at a second site was feasible and effective in the detection of medication administration
discrepancies. A comparison of medication ordering, administration, and discrepancy rates identified areas where MED.Safe
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could be improved through customization. One modification of MED.Safe through deployment of a software update improved
the overall algorithmic fit at the implementation site. More flexible customizations to accommodate different clinical practice
patterns could improve MED.Safe’s fit at new sites.

(JMIR Med Inform 2020;8(12):e22031)   doi:10.2196/22031

KEYWORDS

medication administration; error; automated algorithm; generalizability; quantitative comparative analysis; discrepancy; detection;
quantitative analysis; portability; performance algorithm; electronic health record

Introduction

Patient safety is maximized when medical errors are efficiently
detected and mitigated or prevented in the first place. The most
common type of medical errors are medication errors, which
are defined as any preventable event that may cause or lead to
inappropriate medication use or patient harm while the
medication is in the control of the health care professional,
patient, or consumer [1]. Medication errors can occur at all
stages in the patient care process including ordering,
transcribing, dispensing, administration, and monitoring [2-4].
In recent years, medication administration has been identified
as an error-prone stage in the patient care process and comprises
a large percentage of all medical errors [3]. Despite extensive
efforts, medication administration errors (MAEs) continue to
inundate patient care [5,6].

The persistence of medication errors has led to a need for clinical
informatics methods and technological interventions to improve
medication error detection and prevention [7,8]. Common
informatics approaches to prevent errors include the use of
dedicated systems such as clinical decision support during
medication ordering in the electronic health record (EHR) or
drug error reduction systems contained in smart infusion pumps;
both provide overdose and other types of alerts [9,10]. The
former system works to detect errors and reduce the total number
of medication errors early in the medication use process (at the
ordering stage) [11], but does not detect error types that are
introduced downstream in the later phases such as medication
administration. Improved efforts to detect different error types
during the administration and monitoring phases can serve to
capture issues that have propagated from early stages—in the
event they are not already addressed by upstream systems—as
well as detecting errors introduced later in the system [12]. By
effectively detecting and identifying errors at any point of the
medication use life cycle, it is possible to inform intervention
and prevention strategies to prevent future errors of the same
type and possibly mitigate harm [13-17].

The availability of digitized EHRs and medication
administration records (MARs) make it possible to perform
algorithmic analysis of the data to detect MAEs quickly and
efficiently [12,14,18,19]. Furthermore, the EHR and the creation
of care-related data afford the ability to detect MAEs or
discrepancies across entire populations and large data sets. This
is in contrast to current methods of detection, which usually
rely on sampling strategies followed by selective manual review
of records or by reviewing the output from voluntary reporting
[13,15-17]. In our prior work [12,20-22], discrepancies were
identified when an algorithm detected a difference between the

dosage intended to be delivered (prescriber’s orders) and how
it was documented as being delivered (MAR data). A
dosing-related MAE was defined as any discrepancy between
the medication dose or infusion rate administered to a patient
and the dose/rate prescribed by physicians during patient care.
However, a discrepancy only becomes an error when it is
clinically valid and has the potential to cause harm to the patient.
As a result, error rates (ie, clinically valid errors) and
discrepancy rates (ie, algorithm-based detections) are not
completely synonymous; high discrepancy rates do not directly
correspond to high error rates or indicate suboptimal practice
until the discrepancy is investigated and deemed an actual error.
However, discrepancies give reviewers a starting point to
efficiently find actual errors.

In this study, we sought to implement MED.Safe, a software
package of medication discrepancy detection algorithms, and
benchmark the results to our earlier work at the development
site to determine its portability and generalizability. We analyzed
the system outputs at an external site, highlighting where and
in what context the system performed well, and suggested
customizations to further improve its performance. This analysis
will provide the basis for further implementation and scaling
of the current software package into other health care
institutions.

Methods

Study Setting
The study took place at Wake Forest Baptist Medical Center
(WFBMC), a tertiary level 1 trauma center and level 1 pediatric
trauma center with 885 beds in Winston-Salem, North Carolina.
WFBMC implemented an EHR system (Epic Systems) in 2012.
This study focuses on the pediatric intensive care unit (PICU)
with 12 beds, the neonatal ICU (NICU) with 40 beds, and the
adult medical ICU with 172 beds.

Data Sources
Order and MAR data were extracted from the EHR for 11
medications prescribed at WFBMC: dobutamine, dopamine,
epinephrine, fentanyl, insulin, intravenous (IV) fluids, lipids,
milrinone, morphine, total parenteral nutrition (TPN), and
vasopressin. The medications were originally selected by the
investigative team (EK, KM, YN) because they were the
continuously infused medications associated with the highest
harm in the NICU setting. Structural differences in the format
of 2 of the medication orders between the sites were taken into
account during data extraction. At Cincinnati Children’s
Hospital Medical Center (CCHMC), all TPN and IV fluids are
contained in orders under 1 parent order for each
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medication/fluid category. At WFBMC, there is no single parent
order, and additional mapping of the individual fluid and TPN
orders was necessary. After accounting for this difference, the
data from WFBMC were retrospectively extracted for the
calendar year 2018 (January 1, 2018, to December 31, 2018).
To compare system outputs, NICU data from CCHMC were
also retrospectively extracted over the same period.

MED.Safe System
MED.Safe is an automated software package that analyzes
medication use information in EHRs to identify medication
administration discrepancies [12,20,21]. The MED.Safe package
was originally developed by CCHMC with the purpose of
monitoring high-risk IV medications in the NICU setting.

The analyzed information includes (1) medication orders that
document medication doses (or infusion rates) prescribed to the
patients, (2) structured order modifications (audits) that adjust
the original doses/rates via computerized physician order entry,
(3) MARs that document actual doses/rates administered to
patients, and (4) free-text physician to nurse communication
orders that deliver complex dose/rate adjustment during patient
care. The free-text communications were parsed with a set of
regular expression–based natural language processing algorithms
to identify discrete dose/rate changes. The output consists of
matching ordered medication doses with those recorded on the
MAR in chronologic order. Using the extracted information,
the detector module identifies discrepant doses/rates between
MARs and other data sources using a set of logic-based rules.
The detector was built upon our earlier research on MAE

detection, where the logic-based rules were abstracted from
standard care practices, refined by neonatologists, and
implemented by programmers. By analyzing the dynamic EHR
information, the detector determines the latest dose/rate
prescribed to a patient and matches it with an MAR dose/rate
to determine whether a match or discrepancy is present.
MED.Safe allows users to map data elements required by the
computerized algorithms to the site’s EHR instance data model.
Once the mapping is complete, MED.Safe automatically extracts
data from the EHR instance, executes the discrepancy detection
algorithms, and visualizes chronological ordering of the
medication use data and the identified discrepancies (if any). It
also generates descriptive statistics of the medication use data
including numbers of orders, audits, MARs, and discrepancies
for the studied medications.

Study Design
The investigative team (EK, BR, AM) executed the MED.Safe
software package developed at CCHMC on the local WFBMC
EHR data followed by a rigorous analysis of algorithm outputs.
This step was completed entirely at WFBMC with guidance
from the CCHMC study team (KM and YN). Analysis of the
outputs was performed with the intent of learning the context
within which the discrepancy detection algorithms were a good
“fit” and performed accurately, and where they seemed to be
inaccurate and needed customization for the new clinical
environment. Figure 1 presents an overview of the study, and
the individual methodological steps are further described in the
following sections.

Figure 1. The overall processes of the study, for executing MED.Safe at a second site.

Phase 1: Analysis of WFBMC’s Medication Ordering
Environment
To determine the fit and feasibility of MED.Safe at WFBMC,
the investigative team (all study authors) analyzed the quantity
and distribution of medication use data available. Descriptive
statistics on medication orders, order modifications (ie, audits),
and MARs generated by MED.Safe were aggregated by
department (NICU, PICU, and adult medical ICU) and
medication to study prescriber preferences and workflows. The
analyzed MARs were restricted to actions including new bag,
start, restart, rate verify, and rate change, to include
administrations where potential administration errors could
occur. Ratios comparing the numbers of audits, orders, and
MARs were calculated for all ICUs at WFBMC and the NICU
at CCHMC. The audit/order ratio represented the average
number of times an order was modified during its life cycle,
which implied prescribing patterns in a clinical environment (if
prescribers frequently changed an order or kept a more stable
prescribing habit). The MAR/(order + audit) ratio represented

the average number of MARs documented by clinicians for
each order or order modification, which suggested
documentation patterns in a clinical unit.

Phase 2: Analysis of the MED.Safe Outputs to the Data
From Another EHR Instance at WFBMC
After data element configuration, MED.Safe was executed
against WFBMC’s clinical data repository to extract medication
use data retrospectively. MED.Safe’s discrepancy detection
algorithms were then performed for each WFBMC ICU
department. We analyzed the results aggregated across the ICU
departments and for WFBMC NICU solely and compared them
with those from the development site (CCHMC) to determine
specific settings (medications and clinical departments) that
demonstrated the best fit and areas of improvement needed for
the system. Results were visualized numerically and graphically
to compare trends in discrepancy rates between WFBMC and
CCHMC.
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Phase 3: Analysis of System Generalizability and Areas
of Improvement
We assumed that good system generalizability to the WFBMC
data would be expected to yield discrepancy rates similar to the
baseline rates at CCHMC. Discrepancy rates substantially higher
than the baselines were assumed to indicate a poor fit, which
prompted further investigation to confirm this assumption and
suggest areas of improvement.

If the discrepancy rate for a medication was higher than expected
compared to the baseline, the system outputs were inspected
manually to identify potential causes. The numbers of processed
medication orders, audits, and MARs were interrogated to
understand and examine the possible effect of local medication
use patterns. For example, a specific type of order or MAR entry
triggering discrepancies on more than 1 occasion might indicate
a pattern of interest. These patterns were investigated, and the
inspection was completed for each medication.

Phase 4: Suggested Customization of the System to
Enable Better Detection of Medication Administration
Errors
Manual analysis of the patterns identified in phase 3 was
completed by the investigative team (all study authors) to
pinpoint whether the source of discrepancy deviation was
technical (caused by algorithm logic) or a result of clinical
factors (a change of prescribing practices between sites that the
system was not capable of capturing), in order to improve
accuracy in MAE detection.

The technical barriers to good fit that were identified were
addressed through the addition of a software update where
feasible. The updated system was then re-executed on the same
2018 WFBMC data set. The updated system outputs were
compared to the original system outputs in terms of order counts,
order audit counts, MAR counts, and discrepancy rates to
understand the impact of the customizations.

Results

Phase 1: Analysis of WFBMC’s Medication Ordering
Environment
Table 1 presents the distribution of medical use data for each
ICU department at WFBMC. A total of 10,304 orders, 2647
audits, and 268,446 MARs were created during the study period.
The NICU placed the most orders, made the most order
modifications (audits), and created the most MAR entries. By
contrast, the adult medical ICU had the least in all 3 categories,
reflecting the fact that the MED.Safe system was originally
designed for a pediatric population (the CCHMC NICU).
Multimedia Appendices 1 and 2 present more specific
breakdowns by medication and department, which suggested
that IV fluids, TPN, lipids, and fentanyl were the most ordered
medications and had the highest MARs in each of the
investigated departments. The WFBMC NICU was the only
investigated department without use of vasopressin and
morphine; the other departments had orders and subsequent
audits and MARs for all 11 medications studied. Additionally,
the WFBMC NICU had almost 3 times the number of MARs
when compared to the CCHMC NICU despite having only about
half as many orders and audits. This was found to be the result
of a practice of documenting rate verifications on the MAR
much more frequently than the practice in the CCHMC NICU.

The audit/order and MAR/(order + audit) ratios are presented
in Multimedia Appendices 3-5 to compare the differences in
prescribing habits and order fluidity between WFBMC and
CCHMC. Figure 2 compares the audit/order ratios between all
WFBMC ICUs, WFBMC NICU (NICU subset of all WFBMC
ICUs), and CCHMC NICU. The ratios differed substantially
between the 3 data sets across the studied medications. The
CCHMC NICU had higher audit/order ratios for 7 of the 11
medications. For example, dopamine at CCHMC had an
audit/order ratio of 3.0, whereas that medication at WFBMC
had an audit/order ratio of 0.9.

Table 1. Distribution of medication orders, audits, and medication administration records in the WFBMC ICUs compared to the CCHMC NICU.

CCHMCe NICUWFBMC NICUdWFBMC PICUcWFBMCa adult medical ICUbDistribution of data elements

12,603639019641950Number of orders

43861137934576Number of audits

56,715166,87962,78038,787Number of MARsf

aWFBMC: Wake Forest Baptist Medical Center.
bICU: intensive care unit.
cPICU: pediatric intensive care unit.
dNICU: neonatal intensive care unit.
eCCHMC: Cincinnati Children’s Hospital Medical Center.
fMAR: medication administration record.
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Figure 2. Comparison of audit/order ratios between (A) CCHMC NICU, (B) WFBMC NICU, and (C) WFBMC All ICUs. CCHMC: Cincinnati
Children’s Hospital Medical Center; ICU: intensive care unit; NICU: neonatal intensive care unit; WFBMC: Wake Forest Baptist Medical Center.

Figure 3 and Multimedia Appendices 3-5 present MAR/(order
+ audit) ratios between WFBMC departments and CCHMC
NICU. The WFBMC NICU and all ICUs at WFBMC had
comparable ratios. When compared to the CCHMC NICU, the
ratios for WFBMC were higher for each studied medication.
The average ratio for WFBMC NICU was 23.6 and the average

for CCHMC was 4.4. The MAR/(order + audit) ratio for
milrinone in the WFBMC NICU was higher than the other
medications and departments. This is a result of WFBMC
NICU’s practice to verify the rate of milrinone approximately
every hour for the entire duration of the medication.
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Figure 3. Comparison of MAR/(order + audit) ratios between the CCHMC NICU, the WFBMC NICU, and WFBMC All ICUs. CCHMC: Cincinnati
Children’s Hospital Medical Center; ICU: intensive care unit; MAR: medication administration record; NICU: neonatal intensive care unit; WFBMC:
Wake Forest Baptist Medical Center.

Phase 2: Comparison of the MED.Safe Outputs to the
Data From Another EHR Instance at the Second Site
Table 2 presents the discrepancy rate output by MED.Safe for
each studied medication. Compared to the baseline discrepancy
rates from CCHMC NICU, 5 out of 9 medications used at
WFBMC NICU (excluding vasopressin and morphine that did

not have orders) showed close discrepancy rates, with less than
1% difference. Epinephrine had similar discrepancy rates, with
less than 3% difference. However, the discrepancy rates for
insulin, dobutamine, and dopamine were exceptionally large,
with over 5% difference. Compared to WFBMC NICU, the
discrepancy rates at all WFBMC ICUs tended to deviate more
from CCHMC NICU.
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Table 2. A comparison of medication administration discrepancy rates generated by MED.Safe at Wake Forest Baptist Medical Center and Cincinnati
Children’s Hospital Medical Center during the study period.

Discrepancy rate at NICU in

CCHMCd, %
Discrepancy rate at NICUc in
WFBMC, %

Discrepancy rate at all ICUsa in

WFBMCb, %

Medication

0.019.87.9Dobutamine

0.96.06.7Dopamine

2.14.720.9Epinephrine

0.30.55.9Fentanyl

4.359.341.7Insulin

2.51.71.1Intravenous fluids

0.10.00.1Lipids

0.00.31.1Milrinone

0.1N/Ae6.7Morphine

1.31.41.4Total parenteral nutrition

2.3N/A2.1Vasopressin

aICU: intensive care unit.
bWFBMC: Wake Forest Baptist Medical Center.
cNICU: neonatal intensive care unit.
dCCHMC: Cincinnati Children’s Hospital Medical Center.
eN/A: not applicable. In 2018, no orders for continuous morphine or vasopressin were placed in the WFBMC NICU.

Figure 4 further depicts the relationship between site,
discrepancy rate, and medication. A circle size represents the
number of orders for a medication during the study period while
plotting the discrepancy rate by medication and institutional
site. For nearly all medications, the CCHMC NICU had lower
discrepancy rates when compared to WFBMC sites and a larger

number of orders when compared to the WFBMC NICU
specifically. We observed that the outliers in discrepancy rates
(epinephrine, dopamine, dobutamine, and insulin) were often
due to a small number of orders as represented by the small
circle radius.

Figure 4. A comparison of discrepancy rates by medication and number of orders between (A) WFBMC All ICUs, (B) WFBMC NICU, and (C)
CCHMC NICU. Circle radius correlates with the number of medication orders for the sites. CCHMC: Cincinnati Children’s Hospital Medical Center;
ICU: intensive care unit; NICU: neonatal intensive care unit; WFBMC: Wake Forest Baptist Medical Center.
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Phase 3: Analysis of System Generalizability and Areas
of Improvement
We further investigated the medications with discrepancy rates
that substantially deviated from the CCHMC baseline. Three
primary causes for the deviation of discrepancy rates were
identified: (1) range-based dosing (a common prescribing
practice); (2) a data extraction, transforming, and loading issue
causing initial order values to be overwritten in the data (a
technical data processing issue); and (3) verbal ordering
practices (site-specific prescribing practice).

At WFBMC, some medication orders are written as a dosing
range (eg, insulin 1-10 Units/hr, with an associated titration
protocol) rather than as a discrete dose (eg, insulin 1 Units/hr,
titrate by 0.5 Units/hr). Because MED.Safe expects a
determinate dose for high-risk IV medications per guidelines
at CCHMC, the dosing range practice resulted in very high

levels of discrepancies for some medications (eg, insulin) at
WFBMC, as seen in Table 2. Figure 5 demonstrates an example
system output for an order with a dosing range, including the
order, audit, and MARs for a single patient spanning 2 calendar
days. After reviewing the patient chart, it was discovered that
the original order in the EHR was set to a range of 1-10 Units/hr
and was changed to 1-20 Units/hr approximately 6 hours later.
However, the MED.Safe system expected a discrete dose for
insulin and converted the dosing range to a single value,
accepting only the lower-bound range value as an order dose/rate
input despite the original physician order for 1-10 Units/hr.
Consequently, it marked all of the MAR dose/rate values as
causing discrepancies in this single patient. This is a technical
limitation of the system design. If the system had been able to
accommodate dosing ranges in orders, it should have analyzed
the MARs appropriately and avoided false-positive alerts.

Figure 5. Example of a dosing range order interpretation issue by the algorithm. In this example, orders placed with dosing ranges are not interpreted
correctly by the system in place to detect medical administration discrepancies. The algorithms, in their current state, do not expect a dosing range and
mark the MAR as a discrepancy if the value doesn’t match the first value in the order dose range. Subsequent titrations that would fall within the
acceptable range of the order are erroneously identified as discrepancies by the algorithm. *The Order Dose/Rate in this figure represents the value that
the algorithm parses from the original order. In the instance of orders being placed with a dose range (ie, 1-10 Units/hr), the algorithms only parse and
use the first value of the dose range. MAR: medication administration record.

The second cause of deviation is related to an issue where
original order doses/rates were overwritten or replaced by each
new audit value, a consequence of the data extraction,
transforming, and loading operations of the EHR software. We
previously reported on this phenomenon in detail; it is the result
of how the proprietary EHR system updates and stores audited
order values in the retrospective database [22]. Figure 6 presents
an example of this phenomenon. The original order value should
be “5.0 Units/hr” (as evidenced by the first audit that changed
dose from 5 to 4) but was listed as “3.0 Units/hr” that reflected
the last dose modification (the second audit). Consequently, the
first MAR was marked as discrepant. This issue resulted in
inflated discrepancy rates because the first MAR could always

be marked as discrepant if the original order value was no longer
presented in our data. This data extraction, transforming, and
loading pattern was confirmed by the team’s suspicions upon
inspecting order values in the real-time production EHR system
and comparing them to the retrospective data extracts. Astute
readers may also notice that only the first MAR was considered
discrepant by the system in Figure 6. This is because the system
implements a “check the value with previous MAR data” logic
that overrides subsequent discrepancy calls when the MAR
values do not change in order to avoid overcalling discrepancies.
As such, the first is considered a discrepancy, while subsequent
consecutive MARs do not trigger a discrepancy to be called,
by design.

Figure 6. Example of an “order/audit value overwriting” issue leading to false positive calls from the system. Due to an ETL process, the original order
value is repeatedly overwritten by the newer order audit values and ends up with the value of the last order audit record. When compared to the MAR
documentations (which are correct), the false value in the order causes the algorithms to ‘detect’ a discrepancy, which is a false positive. ETL: extract,
transform, load; MAR: medication administration record.
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Lastly, there were discrepancies associated with changes to
dosage (manifested as MAR documentations) that occurred
greater than 30 minutes before the order was entered into the
EHR. Such might occur as a result of an emergency during
which a verbal order at the bedside is performed but not timely
documented in the EHR. As such, the system implemented a
30-minute time window to account for these known lags in
documentation due to verbal ordering while meeting the
institutional expectations. This phenomenon is depicted in
Figure 7, where the rate was changed to “4.0 Units/hr” 76

minutes before the order was modified. By reviewing the patient
chart, we confirmed that the dose was changed via a verbal
order and the administration was correct. However, the system
marked the corresponding MAR as a discrepancy given that
there was no audit or new order entered into the EHR for over
30 minutes after the administration. As a quick sensitivity
analysis, we modified the algorithms to accept orders within a
60-minute time window; a comparison of discrepancy rates
demonstrated a minimal impact, with rates changing less than
0.142% across all medications.

Figure 7. Example of the delayed entry of a verbal order causing a discrepancy to be detected. A verbal order was given at the bedside and the medication
was appropriately adjusted, but the order was not documented until after the MAR documentation was placed. The algorithms allow a 30-minute window
for verbal orders to be entered before calling a discrepancy, but in this example the order audit for the verbal order rate was not entered until 76 minutes
later. MAR: medication administration record.

Phase 4: Suggested Customization of the System or
Clinical Workflows to Enable Better Detection of
Medication Administration Errors
The system found discrepancies in medication administration
that were attributed to both technical and clinical factors, which
contributed to the initial poor fit of discrepancy detection on
some medications at the implementation site (WFBMC). To
overcome these barriers to successful implementation, the
algorithms should be customized to adapt to the local institution.
As an initiative, we customized the algorithms with a software
update to solve 1 of the 3 major sources of false-positive
discrepancies: order/audit value overwrites (the second issue
identified in phase 3).

The investigative team (all study authors) implemented a patch
to MED.Safe to recover the original order values from the

sequences of medication use data. We then re-executed the
updated system on the data used in the initial analysis to study
its effects. Figure 8 and Table 3 demonstrate its effects in
decreasing the output discrepancy rates for fentanyl, dobutamine,
epinephrine, milrinone, and IV fluids. The other medications
retained their discrepancy rates prior to the update, implying
that they were not affected by order/audit value overwriting
errors. As a result of this update, discrepancy rates from the
WFBMC NICU became comparable to those from the CCHMC
NICU for 5 of 9 medications with orders. The remaining
medications maintained rates approximately twofold higher
than the baseline CCHMC rates. Although this customization
corrected for order/audit value overwriting errors, false-positive
discrepancies persist as a result of delayed documentation of
verbal orders and dosing range issues.
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Figure 8. A comparison of discrepancy rates between (A) CCHMC NICU, (B) WFBMC NICU using the updated MED.Safe, and (C) WFBMC using
the original MED.Safe. CCHMC: Cincinnati Children’s Hospital Medical Center; IV: intravenous; NICU: neonatal intensive care unit; TPN: total
parenteral nutrition; WFBMC: Wake Forest Baptist Medical Center.

Table 3. Discrepancy rates of medication administration in the NICU before and after implementation of a software update at WFBMC in comparison
to the site of development CCHMC.

Initial discrepancy rates in

CCHMCc NICU, %

Absolute change in
discrepancy rate, %

Updated discrepancy rates
in WFBMC NICU, %

Initial discrepancy rates in

WFBMCa NICUb, %

Medication

0.0–0.319.519.8Dobutamine

0.90.06.06.0Dopamine

2.1–0.93.84.7Epinephrine

0.3–0.250.250.5Fentanyl

4.30.059.359.3Insulin

2.5–0.71.01.7Intravenous fluids

0.10.00.00.0Lipids

0.0–0.110.190.3Milrinone

0.1N/AN/AN/AdMorphine

1.30.01.41.4Total parenteral nutrition

2.3N/AN/AN/AVasopressin

aWFBMC: Wake Forest Baptist Medical Center.
bNICU: neonatal intensive care unit.
cCCHMC: Cincinnati Children’s Hospital Medical Center.
dN/A: not applicable. In 2018, no orders for continuous morphine or vasopressin were placed in the WFBMC NICU.

Discussion

Principal Findings
The ability to effectively implement the MED.Safe package at
a second site is the first critical step toward creating a scalable
and impactful solution for detecting and mitigating medication
errors. This study investigated the feasibility and success of
implementation for MED.Safe at a second site distinct from the
origin of the software. The system outputs, such as descriptive
statistics from local EHR data and discrepancy rates, served as

a means to understand the institutional clinical workflows and
prescribing patterns, assess the system generalizability, and help
develop site-specific customizations. It is our hope that this
study will serve as a guide for future institutions to efficiently
assess the applicability of MED.Safe and lead to its
implementation in an effort that maximizes medication safety
in clinical settings.

Consideration of the clinical policies and workflows surrounding
medication ordering, auditing, and MARs was vital in
determining the feasibility of MED.Safe implementation at
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WFBMC. We observed that the NICU, PICU, and adult medical
ICU were fundamentally different in their prescribing and
auditing patterns (Table 1 and Multimedia Appendices 1-5).
The WFBMC NICU had the most orders, audits, and MARs
for the studied medications, reflecting the fact that MED.Safe
was originally designed for an NICU setting that did not include
common adult vasopressors such as norepinephrine. The adult
medical ICUs had far less medication orders despite greater bed
count. This was partially due to the fact that norepinephrine
would have contributed 1466 orders to the total order count in
this environment if an algorithm was available in MED.Safe to
detect discrepancies; if included, the descriptive statistics would
have more closely correlated with the bed count across the units.
Regardless, the descriptive statistics output by the system
allowed us to quickly understand, at the aggregate level, how
prevalent the medications and MAR documentations were in
different clinical environments and where the system may be
the most useful. For instance, we found from the descriptive
statistics that the NICU did not have vasopressin and morphine
orders. As such, the algorithms for those medications not
prescribed would not have any utility in the NICU and
implementing MED.Safe there would yield no benefit. Beyond
the basic descriptive characteristics, the comparison between
audit/order ratios at WFBMC and CCHMC (Figure 2 and
Multimedia Appendices 1-5) allowed us to understand the
differences in prescribing workflows between the institutions.
The lower audit/order ratios at WFBMC in comparison to
CCHMC lead us to believe that WFBMC tends to create new
orders for medication dose/rate changes, whereas CCHMC
modifies existing orders for such changes more frequently. The
more frequent use of order dose range intervals in combination
with practices of documenting MAR rate to verify values very
frequently may have contributed to the higher MAR/(order +
audit) ratios at the WFBMC NICU despite fewer orders and
audits overall (compared to CCHMC NICU). Our findings
highlight potential practice differences across institutions, which
may change the distribution of discrepancy rates, introduce
additional opportunities to identify errors, or suggest the need
for customizations to the MED.Safe system.

In phase 2, we executed the discrepancy detection algorithms
of the software and analyzed the output discrepancy rates at
WFBMC (Table 2). The rates at WFBMC aligned well with the
ones at CCHMC for the majority of the studied medications.
However, the rates at WFBMC varied widely, ranging from 0%
to 59%, compared to CCHMC rates that ranged from 0% to
4.3%. The results suggested that the algorithms generalized
well to the data and clinical practices for some medications but
fit poorly for the others. Further inspection for the poorly
performing medications in phase 3 identified 3 phenomena that
contributed to the inflated discrepancy rates: range-based dosing,
order/audit value overwriting in the data, and verbal ordering
practices.

WFBMC uses dosing ranges to allow for bedside adjustment
of a medication so long as the dosing is in range of the order
and follows ancillary instructions, protocols, or policies. Such
practice is common in adult medication prescribing, particularly
in the administration of insulin, where dosing might shift within
a given range depending on the trend of blood glucose values

or intake of food. However, the algorithms were not equipped
to deal with ordering ranges because at CCHMC site-specific
practices required that an order dose/rate should be determinate
and an audit (modification) be documented each time a dose/rate
was changed. Consequently, WFBMC had comparatively fewer
audits and more discrepancies for values within the acceptable
dosing range. This difference in site-specific practices resulted
in high discrepancy rates for insulin (59.3% at WFBMC NICU
versus 4.3% at CCHMC NICU). A quick glance at the
descriptive data and discrepancy rates generated by the
algorithms will cue future customizations as to the cause of the
high rates and shortcut much of the time spent in exploration
and validation.

Second, the investigative team (all study authors) determined
that the institutional EHR was overwriting the original order
values with each new audit. The overwriting resulted in a notable
amount of false-positive discrepancies on the first MARs. We
were able to overcome this EHR-derived technical limitation
with a software update that recovered the original order dose/rate
by reasoning through from the sequences of order-audit data.

Lastly, a portion of discrepancies originated from dose/rate
changes with delayed order documentation. This often occurs
in emergency settings where verbal orders are first placed, while
electronic orderings are documented after the care is delivered.
The “grace period” for entering the electronic orders varies
between institutions based on the site-specific clinical practices.
Operating under verbal orders without proper documentation
and procedure is high risk, and it creates a blind spot for errors
that may have occurred but lacked the appropriate data for the
system to detect them. The inability to identify medication errors
during this elapsed time might lead to perpetuation of similar
errors for an extended period, ultimately lessening the value of
the system in identifying errors efficiently. A change in policy
to eliminate the practice of verbal ordering is one potential
solution, but this does not fit with the reality of clinical practice.
Another solution is to adapt the system to the “grace period”
that complies with local policies surrounding verbal ordering.
For instance, the MED.Safe algorithms adopted a period of 30
minutes given the institutional expectations at CCHMC, which
could be extended to 45-60 minutes to comply with WFBMC’s
verbal ordering policies. In our quick sensitivity analysis we
found that an extension to a 60-minute window, however, did
not greatly reduce the discrepancy rate. This effect appears to
be site specific as we have seen this change decrease rates to a
greater degree at other sites. In the future, we will add this
customizable feature to the software so that the grace period
can be adjusted depending on the care setting and local policy.
This will also allow an automated version of the sensitivity
analysis. Ultimately, the system could be more flexible and
customizable to fit each institution and even department that
varies in health care policy and procedures surrounding the
medication use life cycle.

In phase 4, we addressed the order/audit value overwriting issue
through a software update. It reduced false-positive
discrepancies output by the system for most of the studied
medications. The remaining 2 medications (dobutamine and
insulin) with discrepancy rates notably higher than baseline
CCHMC rates are largely due to the range-based dosing issue.
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Further reduction in false-positive discrepancies can therefore
be obtained by addressing the other 2 issues, range-based dosing
and verbal ordering practices. Efforts to do so are planned for
future work.

Our study suggested that it was feasible to implement MED.Safe
in a setting external to the development environment. However,
the software package did not account for all the differences in
medication administration practices at the implementation site,
with a resultant impact on its performance. The identified
barriers to proper fitting of the system can be overcome through
both clinical practice change/policy reform and the addition of
algorithm customizations where appropriate. We were able to
identify targets for algorithm customization to account for these
practices and to address one of those issues efficiently. These
efforts have greatly advanced our knowledge of the portability

of the MED.Safe and have shown us what work is left to do in
order to further improve its generalizability.

Conclusions
The implementation of the MED.Safe system at a second site
was a feasible and efficient way to track medical administration
discrepancies. Analysis of medication use data and discrepancy
rates output by the system revealed local medication prescribing
patterns, and comparison against implementation at the original
site suggested areas of both good and poor fit. Overall fit was
enhanced through the implementation of a software update. To
maximize efficiency in accurately detecting and correcting
medication errors, modifications must be made to both the
MED.Safe software package and suboptimal clinical practices.
Such modifications should increase the system’s customizability
to the local clinical workflows and policies, ultimately
improving its accuracy and generalization for external use.
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Abstract

Background: Considering morbidity, mortality, and annual treatment costs, the dramatic rise in the incidence of sepsis and
septic shock among intensive care unit (ICU) admissions in US hospitals is an increasing concern. Recent changes in the sepsis
definition (sepsis-3), based on the quick Sequential Organ Failure Assessment (qSOFA), have motivated the international medical
informatics research community to investigate score recalculation and information retrieval, and to study the intersection between
sepsis-3 and the previous definition (sepsis-2) based on systemic inflammatory response syndrome (SIRS) parameters.

Objective: The objective of this study was three-fold. First, we aimed to unpack the most prevalent criterion for sepsis (for both
sepsis-3 and sepsis-2 predictors). Second, we intended to determine the most prevalent sepsis scenario in the ICU among 4 possible
scenarios for qSOFA and 11 possible scenarios for SIRS. Third, we investigated the multicollinearity or dichotomy among qSOFA
and SIRS predictors.

Methods: This observational study was conducted according to the most recent update of Medical Information Mart for Intensive
Care (MIMIC-III, Version 1.4), the critical care database developed by MIT. The qSOFA (sepsis-3) and SIRS (sepsis-2) parameters
were analyzed for patients admitted to critical care units from 2001 to 2012 in Beth Israel Deaconess Medical Center (Boston,
MA, USA) to determine the prevalence and underlying relation between these parameters among patients undergoing sepsis
screening. We adopted a multiblind Delphi method to seek a rationale for decisions in several stages of the research design
regarding handling missing data and outlier values, statistical imputations and biases, and generalizability of the study.

Results: Altered mental status in the Glasgow Coma Scale (59.28%, 38,854/65,545 observations) was the most prevalent sepsis-3
(qSOFA) criterion and the white blood cell count (53.12%, 17,163/32,311 observations) was the most prevalent sepsis-2 (SIRS)
criterion confronted in the ICU. In addition, the two-factored sepsis criterion of high respiratory rate (≥22 breaths/minute) and
altered mental status (28.19%, among four possible qSOFA scenarios besides no sepsis) was the most prevalent sepsis-3 (qSOFA)
scenario, and the three-factored sepsis criterion of tachypnea, high heart rate, and high white blood cell count (12.32%, among
11 possible scenarios besides no sepsis) was the most prevalent sepsis-2 (SIRS) scenario in the ICU. Moreover, the absolute
Pearson correlation coefficients were not significant, thereby nullifying the likelihood of any linear correlation among the critical
parameters and assuring the lack of multicollinearity between the parameters. Although this further bolsters evidence for their
dichotomy, the absence of multicollinearity cannot guarantee that two random variables are statistically independent.
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Conclusions: Quantifying the prevalence of the qSOFA criteria of sepsis-3 in comparison with the SIRS criteria of sepsis-2,
and understanding the underlying dichotomy among these parameters provides significant inferences for sepsis treatment initiatives
in the ICU and informing hospital resource allocation. These data-driven results further offer design implications for multiparameter
intelligent sepsis prediction in the ICU.

(JMIR Med Inform 2020;8(12):e18352)   doi:10.2196/18352

KEYWORDS

sepsis; MIMIC-III; SIRS; qSOFA; pathophysiology; medical internet research; medical informatics; critical care; intensive care
unit; multicollinearity

Introduction

Sepsis remains one of the most elusive syndromes in medical
science, which is a syndrome induced by infection and
associated with biochemical, physiological, and pathological
abnormalities as a result of an unregulated response from the
human body [1-3]. In the United States, over 1.7 million adults
are affected by sepsis, and more than 970,000 patients are
admitted to hospitals because of sepsis each year. Sepsis both
directly and indirectly contributes to more than 250,000 deaths
annually, representing more than 50% of all hospital deaths
[2,4-8]. Unfortunately, these excruciating statistics have been
exacerbated over recent years, as identified in a two-decade
study on US hospitalizations, costs, and disease epidemiology.
These statistics reflect an 8.7% annual increase in the incidence
of sepsis among hospitalized patients in the United States
[5,9,10].

Besides the alarmingly increasing incidence of sepsis and
associated mortality rate, the average length of stay in hospitals
is considerably higher (approximately 75% higher than that
reported for most other conditions) for sepsis patients in the
United States, thereby increasing the burden associated with
hospital utilization [10-13]. Furthermore, the Agency for
Healthcare Research and Quality [14] reported that the average
length of stay for patients with sepsis dilated compellingly in
2013, and there was a distinct proportion of patients with severe
sepsis cases, including 4.5 days, 6.5 days, and 16.5 days of
hospitalization for sepsis, severe sepsis, and septic shock,
respectively, according to the systematic inflammatory response
syndrome (SIRS) criteria. Moreover, although accounting for
3.6% of hospital stays, sepsis-related care represents 13% of
total US hospital costs, resulting in hospital expenses exceeding
US $24 billion in 2013. Not surprisingly, in 2013, the cost
associated with sepsis management ranked the highest among
the admissions for all diseases and medical conditions, followed
by osteoarthritis at US $17 billion and childbirth (medical
condition) at US $13 billion [15-17]. At present, the hospital
costs associated with sepsis still rank first, and sepsis care
currently requires more than twice the resources required for
other medical conditions [18]. These costs are also expected to
be exacerbated in the near future, and will likely approach a
3-fold increase compared to those of other admissions [3,19,20].

This notable increase in mortality rate and annual health care
expenditure (affected by the increased length of stay) has made
sepsis treatment and research a critical domain in medical
internet research and medical informatics, resulting in a recent
surge in the related literature [21-24]. Studies have shown that

improved and effective methods of early sepsis identification
can substantially reduce the severity and epidemiological burden
of sepsis in the United States [24-29]. In addition, several
authors have recommended that identifying the prevalent risk
factor(s), followed by an instant diagnosis, can reduce the cost
in treatment workflow, and further scale down the mortality
rate for patients with sepsis to some extent [26,30-33]. However,
most of these studies have only concentrated on one risk factor
at a time for the clinical assessment of sepsis, thereby limiting
the probability for sepsis detection as it requires complex
reasoning and implications. In many cases, it is apparent that
the results are sensitive to subtle variations in definition(s) of
sepsis, as well as subjective suspicions of physicians
[21,22,34-36].

The recent major release of Medical Information Mart for
Intensive Care (MIMIC-III, Version 1.4) is an extensive,
single-center, and comprehensive database comprising
information pertaining to patients admitted to the critical care
units at Beth Israel Deaconess Medical Center in Boston,
Massachusetts, including vital signs, laboratory measurements,
observations and notes charted by care providers, imaging
reports, fluid balance, medications, procedure codes, diagnostic
codes, and hospital length of stay [17,21,37,38]. MIMIC-III is
a multidisciplinary collaborative effort of the Laboratory for
Computational Physiology at MIT, Computer Science and
Artificial Intelligence Laboratory at MIT, and Information
Systems Department at Beth Israel Deaconess Medical Center.
The underlying motivation behind this collaboration is to assure
reproducibility and improve the quality of data-driven medical
informatics research. The salient features of MIMIC-III (Version
1.4) include that it is the only freely accessible critical care
database of its kind in the United States that promotes analysis
without additional restriction after accepting the data use
agreement.

Furthermore, a critical care dataset with detailed individual
patient care information spanning more than a decade empowers
medical informatics research and pedagogy around the world.
MIMIC-III (Version 1.4) contains data from 58,976 hospital
admissions for patients admitted to the critical care units from
2001 to 2012. Personal information is removed, and the original
records are shifted and reformatted to ensure that the data are
not identifiable to human patients. The database comprises 26
tables linked by identifiers for corresponding patients. Each of
the tables is a spreadsheet including information on patient
hospital stays and the physiological data collected in the
intensive care unit (ICU), along with data dictionaries to explain
the observational context. MIMIC-III (Version 1.4) allows for
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a variety of data forms, ranging from text interpretations for
radiology images to time-stamped physiological measures
[21,37]. This open and unrestricted nature of extensive health
care data allows for clinical studies to be improved and
reproduced in ways that would not otherwise be possible [39].
Hence, MIMIC-III (Version 1.4) can facilitate exploratory and
data-driven studies on sepsis, its diagnosis, and treatment in the
ICU [17,21].

Sepsis was first formally defined by a 1991 consensus
conference as a SIRS to infection in the host [1,40]. According
to the then-prevailing definition, sepsis associated with organ
dysfunction was referred to as severe sepsis, and severe sepsis
followed by sepsis-induced persisting hypotension despite
adequate fluid resuscitation was termed as septic shock.
Subsequently, considering the limitations of 1991 consensus
conference definitions, the 2001 task force extended the list of
diagnostic criteria for sepsis [41]. Despite discrepancy in the
1991 interpretation, the 2001 task force could not offer an
alternative definition due to lack of supporting evidence;
therefore, the sepsis definition remained mostly unchanged from
1991 to 2016 [41,42]. In 2016, a task force comprising experts
of sepsis pathobiology, pathophysiology, epidemiology, and
clinical trials convened by the Society of Critical Care Medicine
along with the European Society of Intensive Care Medicine
revised the definition of sepsis and septic shock.

The substantial advances observed in pathobiology,
epidemiology, immunology, and intervention management
motivated efforts to reexamine the interpretation of sepsis. The
definition devised by the 2016 task force has since been
supported by 31 international sites [1]. Singer et al [1] concluded
that it is necessary to change the perception about sepsis to
establish a more reliable predictive indicator of mortality and
impact in the survivability of patients. Consequently, the
SIRS-based definition was replaced by the quick Sequential
Organ Failure Assessment (qSOFA) criteria. The qSOFA
suggests three criteria to evaluate patients who are more likely
to have a poor outcome due to sepsis: hypotension, altered
mental status, and high respiratory rate [21]. In addition to
qSOFA, the sepsis-3 definition (given that this was the third
updated definition of sepsis) includes the Sepsis-related Organ
Failure Assessment (SOFA) for making a sepsis diagnosis.
Albeit not substantially, SOFA provides better predictive
accuracy with greater consistency compared to qSOFA.
However, the intricacy and time-consuming lab tests involved
in SOFA have remained poorly understood outside the critical
care community since the definition was updated in 2016.

As sepsis is still perceived as a spectrum disease that
subsequently ends in organ dysfunction, septic shock is a crucial
juncture for multiparameter intelligent sepsis prediction in the
ICU. However, we here focus on sepsis defined according to
SIRS and qSOFA. We adopted a data-driven approach using
MIMIC-III (Version 1.4) to offer unique contributions to the
field. First, we aimed to unpack the most prevalent SIRS and
qSOFA criteria. Second, we evaluated the most prevalent sepsis
scenarios based on SIRS and qSOFA criteria. Third, we
investigated the dichotomy among SIRS and qSOFA criteria to
establish underlying statistical relations among these predictors,
with design implications for predictive modeling. Quantifying

the prevalence of the qSOFA criteria (in comparison with SIRS)
and understanding the underlying dichotomy of these parameters
have important implications for sepsis treatment initiatives in
the ICU and for informing hospital resource allocation. Hence,
this study has potential to improve preventable deaths from
sepsis.

Methods

Theoretical Background

Sepsis Pathophysiology
Sepsis—commonly interpreted as a spectrum disease—ranges
from milder symptoms and ends in septic shock, followed by
multiple organ dysfunction syndromes. This entire spectrum
begins with the introduction of pathogens in the blood vessels,
such as gram-positive or gram-negative bacteria, fungi, viruses,
and parasites. The appearance of pathogens in the blood vessels
makes them no longer sterile; when the white blood cells
confront these infective materials (pathogens), they become
activated. Consequently, more white blood cells are called in
to the site of infection to eradicate the pathogens. Generally,
these infective materials exist outside in the interstitial tissue
rather than in the bloodstream. Therefore, to access the infective
materials and eradicate them, the white blood cells release
substances such as nitric oxide. Three events occur once these
substances interact with the blood vessels. First, the diameter
of the blood vessel expands, resulting in vasodilation. The
vasodilation reduces the localized systemic vascular resistance
and affects the speed of the blood flow, including the blood
flow in the infected area. Second, the permeability of the blood
vessels increases so that the immune system can confront the
peripheral infective material easily. In the context of this paper,
blood pressure—in the mathematical sense—is considered to
be the product of cardiac output and systemic vascular
resistance, thus affecting tissue perfusion. Hence, the lower the
systemic vascular resistance, the lower the blood pressure, and
consequently tissue perfusion is reduced [43,44].

The decrease in tissue perfusion is further exacerbated by the
increased permeability of the blood vessels since the fluid can
reach out and build around the tissue, which eventually makes
it challenging for oxygen to diffuse through the fluids and access
the cells. This exacerbated tissue perfusion is the cardinal reason
behind the shock. Third, when the white blood cells interact
with the pathogens, they release lytic enzymes as well as reactive
oxygen species to eliminate the infective materials. These
enzymes damage not only the pathogens but also the blood
vessels to some extent, resulting in serious complications. When
the blood vessels are ruptured, proteins are released to cause
clotting as a patch due to coagulation factors in the blood. This
may initially preclude the blood from spilling into the
extravascular space; however, over time, some of these clots
can break off into the bloodstream to allow the blood to spill
out of the blood vessels, resulting in disseminated intravascular
coagulation. Since this complication is disseminated throughout
the body, the damaging enzymes and cytokines associated with
different immune molecules may also cause damage to the blood
vessels in the lungs. Damage and rupture in all of the blood
vessels in the lungs seriously affects oxygen absorption into the
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bloodstream, resulting in acute respiratory distress syndrome.
This can lead to severe respiratory distress since the respiratory
system can no longer pull in oxygen into the bloodstream from
the environment. In response, the human body initially pushes
to increase the cardiac output to compensate for the decreased
systemic vascular resistance so as to maintain blood pressure.
However, if remained untreated, the septic shock will persist
and the cardiac output will eventually start to be depressed,
resulting in a serious decrease in cardiac output [43-46]. These
pathophysiological incidents caused by sepsis are reflected in
several physiological parameters as clinical clues, hence
commonly named as symptom distributives. Although highly
elusive in nature, the entire purpose of the sepsis-3 and sepsis-2
definitions is to capture the underlying symptom distributives
that are the most relevant.

Bedside Monitoring: qSOFA vs SIRS
Sepsis, unlike most other human diseases, is not a specific
disease entity but rather a syndrome consorted with an
ambiguous pathobiology and the absence of gold-standard
diagnostic tests for assessments [1,21]. Therefore, numerous
endeavors have been made to capture the pathobiology,
pathophysiology, and epidemiology of sepsis to explain the

syndrome. An initial definition of sepsis (sepsis-1) was
introduced at the 1991 Consensus Conference that described
sepsis as SIRS [21,40]. Addressing the limitations of sepsis-1,
the 2001 task force extended the list of diagnostic criteria for
sepsis (sepsis-2), based on SIRS, with the following four criteria:
fever or hypothermia (body temperature>100.4°F or <96.8°F),
tachypnea (respiratory rate >20 breaths/minute), tachycardia
(heart rate >90 beats/minute), and white blood cell count

>12,000/mm3 or <4000/mm3 (or >10% immature bands) [47].
In particular, sepsis-2 interprets sepsis as a cascaded disease
that is primarily diagnosed as SIRS, followed by sepsis, severe
sepsis, and septic shock. At the very end of the spectrum,
patients may experience multiple organ dysfunction syndrome,
an incurable stage of sepsis. Table 1 lists the parameters and
cascaded development of sepsis as per the SIRS criteria.
However, this definition failed to distinguish sepsis from the
other uncomplicated infections and diseases that exhibit identical
criteria, and indispensably failed to define what sepsis really is
[1]. The task force also coined definitions for severe sepsis and
septic shock, interpreting severe sepsis as sepsis complicated
by organ dysfunction and septic shock as sepsis-induced
hypotension persisting despite sufficient fluid resuscitation [47].

Table 1. Systemic inflammatory response syndrome (SIRS) criteria for sepsis definition.

Phases of syndrome developmentParameters/Criteria

Criterion 1: Body Temperature

Phase 1: SIRS ≥ 2 criteria>100.4°F or <96.8°F

Criterion 2: Respiratory Rate

Phase 2: Sepsis (SIRS + suspected or confirmed infection)>20 breaths/minute (or PaCO2 <32 mmHg)

Criterion 3: Heart Rate

Phase 3: Severe sepsis (sepsis + organ dysfunction)> 90 beats/minute

Criterion 4: White blood cell count

Phase 4: Septic shock (severe sepsis + persistent hypotension)>12,000/mm3 or <4000/mm (or >10% bands)

Final Phase: Multiple Organ Dysfunction

Reported ≥ 2 organs failing

With significant advancements in the understanding of sepsis
pathophysiology and pathobiology, after nearly two decades, a
new definition of sepsis was proposed at the Third International
Consensus in 2016 [1]. Currently, sepsis (sepsis-3) is defined
as a syndrome pertaining to a life-threatening organ dysfunction
introduced by a dysregulated host response to a microorganism.
According to the definitions of sepsis-3, the SOFA score
(criteria) is used in the ICU to determine the extent of a patient’s
organ functions (dysfunction) [1]. In addition, sepsis can be
promptly identified for an individual with a suspected infection
at bedside using the qSOFA (sepsis-3) score. qSOFA requires
satisfying at least two of the following criteria to determine that
a patient is likely to have poor outcome due to sepsis [21]:
respiratory rate ≥22 breaths/minutes, altered mental status (≤13
on the Glasgow Coma scale), and low blood pressure (≤100
mm Hg).

With the goal of leveraging the greater consistency of sepsis-3
in clinical trials and epidemiologic studies, several predictive

machine-learning models were developed using the qSOFA
parameters. Khwannimit et al [48] found that the qSOFA score
showed higher prognostic accuracy for mortality and organ
failure compared with SIRS criteria. Moreover, in predicting
mortality and ICU-free days, qSOFA rendered considerably
better discrimination in comparison with SIRS [49]. Donnele
et al [50] and Hwang et al [51] provided substantial evidence
to support employing SOFA and qSOFA in the ICU sepsis
diagnosis and treatment workflow over SIRS criteria. However,
numerous studies implied conflicting results, and asserted that
qSOFA manifests inconsistent performance in mortality
prediction [21]. Several studies reported that qSOFA showed
poor sensitivity and inconsistent precision in the predictive
models [49,51,52]. Although counterintuitive to some extent,
Haydar et al [49] and Fernando et al [52] indicated that qSOFA
took much longer in the patients’ trajectory in comparison with
SIRS to identify patients with sepsis, which further delayed the
initiation of medical interventions in the ICU, and thereby
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subjected the patients to a higher risk of developing septic shock
and multiple organ dysfunction.

Considering these stark contrasts in the results (reflected by
evaluation metrics such as accuracy, sensitivity, precision, and
G-mean) of predictive modeling using SIRS and qSOFA
parameters, in this study, we decided to take a step back and
have a more in-depth look at the qSOFA and SIRS parameters,
and their underlying attributes and interrelations.
Multicollinearity among parameters often intensifies the tension

between optimization and generalizability, and eventually leads
to model overfitting, which in turn hampers the generalizability
of discriminant functions [53]. Moreover, model overfitting
indicates that a small deviation in the input data can result in
considerable, and sometimes aberrant, changes in the model,
even leading to changes in the sign of parameter estimates
[21,53]. Table 2 compares the SIRS and qSOFA criteria,
highlighting the changes brought in with sepsis-3 from sepsis-2
throughout all of the cascaded steps.

Table 2. Comparison of sepsis-2 and sepsis-3 criteria.

Sepsis-3 criteria (qSOFAb)Sepsis-2 criteria (SIRSa)Stage

Suspected or confirmed infection + qSOFA score ≥2Suspected or confirmed infection + SIRSSepsis

Category removedSepsis + organ dysfunction (lab markers, including hypoxia,
hypotension, elevated lactate)

Severe sepsis

Sepsis + vasopressors to maintain mean arterial pressure ≥65 mmHg
+ serum lactate level >2 mmol/L

Severe sepsis + persistent hypotension (after adequate fluid
resuscitation)

Septic shock

aSIRS: systemic inflammatory response syndrome.
bqSOFA: quick Sequential Organ Failure Assessment.

Data and Research Design
We used MIMIC-III (Version 1.4), a publicly available ICU
patient database [1], for this study. The data, ranging from 2001
to 2012, involves 58,976 distinct hospital admissions. For the
purpose of our study, we used the parameters of the qSOFA as
well as SIRS to identify all ICU patients who had been
diagnosed with sepsis or were most susceptible to the disease.
We then analyzed the qSOFA and SIRS parameters of these
identified sepsis patients, or the patients who had undergone
sepsis screening, to study their intrarelationship. In our
population, 1994 hospital admissions resulted in a diagnosis of
sepsis among 58,976 overall admissions from 2001 to 2012.
Among these 1994 patients, the mortality rate was 21.11%
(n=421 deaths).

The selection criteria included identifying the unique key for
the critical parameter records and omittable parameters that we
deemed to be bias-free for the purpose of this study, such as
patient gender, data storage time, and deidentified date of birth
in the case of sepsis. During research design and data wrangling,
we confronted missing data and outlier values that were not
biologically reasonable, albeit not for a considerable amount of
records. This modicum amount of unexpected data points opened
up the possibility of two distinct research designs. First, we

could ignore the observations that have such data point(s)
because they are of negligible number compared to the total
observations available. Second, we could follow the
conventional central-value imputation or multiple imputations
by chained equations to handle the missing data. A multiblind
Delphi process, convened by Ubicomp Lab of the Department
of Computer Science at Marquette University and Regenstrief
Center for Healthcare Engineering at Purdue University, came
to the decision that ignoring the observations that have such
unexpected data point(s) will be more suitable for the purpose
of this study, which requires avoiding imputation bias.
Moreover, outlier values that are not biologically reasonable
were excluded, considering them as mistaken data entries in the
ICU [21].

To determine the prevalence and dichotomy of the qSOFA and
SIRS parameters, we identified 13,783,035 patient records
(Chartevent) from 330,712,483 records (Chartevent) available
in MIMIC-III (Version 1.4), which are unique for each Hospital
Admission ID and chart time and pertaining to patients who
had received a sepsis diagnosis. Then, to identify the most
prevalent qSOFA and SIRS criteria, we selected 540,953 and
770,368 patient records for SIRS and qSOFA, respectively (in
which respiratory rate was common in both cases). Figure 1
summarizes the research design in a simple flow chart.
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Figure 1. Outline of research design.

To assure the consistency and interpretability of the results
while determining the most prevalent sepsis scenario, our
selection criteria only filtered within chart times for which we
had observations for all three qSOFA parameters since the
observation frequency varies with the parameters based on the
intricacy involved in measurement. For instance, observations
for altered mental status (based on the Glasgow Coma Scale)
are less frequently recorded than those of the respiratory rate.
More importantly, since sepsis is a spectrum disease, studying
and comparing the observations for different parameters at
different record times for a particular patient can confound the
result and its interpretability. For the same reason, studying the
parameters that are observed at the same time can capture the
patient’s disease trajectory more consistently. For determining
the most prevalent sepsis scenario for SIRS, our selection criteria
only filtered within chart times for which we had observations
for all four parameters (temperature, heart rate, respiratory rate,
and white blood cell count). The white blood cell count
observations are considerably less frequent compared to the
other three parameters of SIRS, and therefore observations
considered for the SIRS criteria are substantially reduced
compared with those considered for the qSOFA criteria.

We further addressed two possible sources of selection bias.
First, it is intuitive that the longer the patient stays in the ICU,
there will be more observations available for that particular
patient. We considered that this may influence the results of

our study to some extent if there are considerably more patients
with a longer length of stay. Second, when evaluating the
respiratory rate for ICU patients, there may be a possible blend
in the data between patients with intubated breathing and natural
breathing. However, the possibility of these two selection biases
also provided an opportunity to test the intrageneralizability of
the results of this study (both for qSOFA and SIRS). Therefore,
in the second phase of this study, we dissected our data for only
the first observations of each hospital admission.

This research design is grounded in statistical theory such that
the results can help in developing multiparameter intelligent
sepsis prediction or treatment models that require predictors
exhibiting the least or no collinearity.

Results

Statistical Distributions: qSOFA and SIRS
The means (SD) and median (IQR) values for qSOFA and SIRS
parameters in each phase of the study are presented in Table 3.
In the first phase of the study, with respect to the qSOFA
criteria, we analyzed the distributions of systolic arterial blood
pressure, Glasgow Coma Scale score, and respiratory rate. For
the SIRS criteria, in the first phase we analyzed the distribution
of heart rate, respiratory rate, temperature, and white blood cell
count. In the second phase, we only considered the first
observation of each hospital admission for each parameter.
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Table 3. Statistical distributions of parameters for quick Sequential Organ Failure Assessment (qSOFA) and systemic inflammatory response syndrome
(SIRS).

Phase 2: First observation onlyPhase 1: Entire patient trajectoryParameter

Median (IQR)Mean (SD)Median (IQR)Mean (SD)

qSOFA

110.0 (96.0-126.0)106.7 (37.62)114.0 (100-131)116.4 (24.78)SABPa (mmHg)

14.00 (8-15)11.53 (4.32)11.00 (9-15)11.17 (3.66)GCSb

20.00 (16.00-24.00)20.48 (6.16)21.00 (17-25)21.07 (6.52)RRc (breaths/min)

SIRS

94.00 (80.00-109.00)95.58 (20.76)87 (76-100)89.1 (18.61)HRd (beats/minute)

20.00 (16.00-24.00)20.48 (6.16)21.00 (17-25)21.07 (6.52)RR (breaths/minute)

98.20 (97.00-99.50)98.25 (2.01)98.30 (97.30-99.30)98.37 (1.57)BTe (°F)

12.80 (8.50-18.90)14.34 (8.28)11.70 (8.10-16.70)13.14 (7.30)WBCf count (/mm3)

aSABP: systolic arterial blood pressure.
bGCS: Glasgow Coma Scale.
cRR: respiratory rate.
dHR: heart rate.
eBT: body temperature.
fWBC: white blood cell.

Kernel density estimation distributions for the qSOFA criteria
(systolic arterial blood pressure, altered mental status in Glasgow
Coma Scale, and respiratory rate) and SIRS criteria (heart rate,
respiratory rate, temperature, and white blood cell count) are
depicted in Figure 2 to investigate the most prevalent sepsis
parameter. Visual statistics demonstrated that most of the
patients’ observations did not meet the qSOFA criterion for
systolic arterial blood pressure (Figure 2a). The distribution for
systolic arterial blood pressure implies that most of the
observations were in the range of 100-125 mmHg, which is in
the healthy range from the clinical point of view. Similarly, the
Glasgow Coma Scale distribution (Figure 2a) indicated that a

significant portion of these observations were in the safe zone
(15 and 14). However, as the Glasgow Coma Scale ranges from
1 to 15, and the domain of consideration for the not-safe zone
(qSOFA, 1-13) and the domain of consideration for the safe
zone (14-15) are significantly disproportionate, the visual
analytics may be confusing for an accurate interpretation. In
the case of respiratory rate (Figure 2a), it is critical to interpret
whether or not the majority of the observations met the qSOFA
criterion, although it is evident that most of the data ranged
between 15 and 24 breaths/minute. From the clinical point of
view, at a resting state, a respiratory rate observation of 12-20
breaths/minute is considered to be healthy.

Figure 2. Kernel density estimation distribution of (a) quick Sequential Organ Failure Assessment (qSOFA) and (b) systemic inflammatory response
syndrome (SIRS) parameters to understand the prevalence of each parameter.
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For the SIRS criteria (Figure 2b), the distribution for heart rate
observations was less confounding using visual analytics in
inferring prevalence, as more of the kernel density was below
the criterion margin (90 beats/minute), which indicates the
presence of more healthy observations. In the case of respiratory
rate measurement, it is worth mentioning that the cutoff for the
SIRS criteria is different than that of the qSOFA criteria. For
SIRS criteria, the criterion cutoff is 20 breaths/minute, and
anything above that level is considered as tachypnea. It is
visually discernible that as the cutoff shifted left (from 22 to
20) for SIRS, more patient observations met the sepsis criteria.
The distribution for body temperature can be interpreted as a
band: the observations inside two temperature cutoffs indicate
the density of the healthy observations, and they represented a
significant portion of the distribution. In the case of white blood
cell count, as the domain of consideration for the not-safe zone
and the domain of consideration for the safe zone were
significantly disproportionate, the visual analytics may be
confusing to imply prevalence. However, we can infer that the
majority of observations met the SIRS criteria.

In the following subsections, we provide an explicit numerical
interpretation to better understand the prevalence and underlying
statistical relation between the predictors.

Patients’ Entire Trajectory for qSOFA
The kernel density estimation distribution of qSOFA parameters
for both safe and qSOFA criterion–met observations are
presented in Figure 3 to better understand the prevalent qSOFA
parameters. Overall, 25.12% of the systolic arterial blood
pressure observations, 59.28% of the Glasgow Coma Scale
measurements, and 45.11% of the respiratory rate observations
met the respective qSOFA criterion. It is intuitive from the
qSOFA criteria that determination of the most prevalent criterion
from observational studies would help practitioners and
researchers in further factorial experiments. This observational
study entirely relied on passive retrospective observations
without assigning any further treatment. The results suggest
that altered mental status is the most prevalent qSOFA criterion
experienced in the ICU. We further addressed a nearly
double-barreled question: what is the most prevalent sepsis
scenario in the ICU? We found that 28.19% of the observations
(when three measurements were available at the same time)
showed a two-factored qSOFA of high respiratory rate and
altered mental status (among 3C3+3C2=4 possibilities), resulting
in this pair identified as the most prevalent qSOFA (sepsis-3)
scenario in the ICU. Notably, no sepsis is another possible
scenario besides these four possible qSOFA scenarios in the
ICU (which is also true for our observations).

Figure 3. Kernel density estimation distribution of quick Sequential Organ Failure Assessment (qSOFA) parameters for both safe and qSOFA
criterion-met observations to identify the prevalent qSOFA parameters.

Figure 4 shows a facet grid plot of the qSOFA parameters to
capture the most prevalent sepsis scenario and the underlying
dichotomy among the parameters. This plot has multiple
implications; however, the most obvious is the comparison of
the Pearson correlation coefficients (absolute) of each of the
qSOFA parameters’ pairs. The absolute Pearson correlation
coefficients for respiratory rate-Glasgow Coma Scale
measurement, Glasgow Coma Scale measurement-systolic
arterial blood pressure, and respiratory rate-systolic arterial
blood pressure pairs were 0.09, 0.07, and 0.04, respectively.
These insignificant correlation coefficients nullify the possibility

of any linear correlation among the qSOFA parameters, thereby
ensuring that multicollinearity does not exist between the
parameters and further advocates for the dichotomy among
them. Understanding this relationship can help in developing
predictive models, as it implies that the overdetermined system
involved in the modeling is a full-ranked matrix (ie, not
rank-deficient). However, the lack of multicollinearity cannot
guarantee that two random variables are statistically
independent. Moreover, based on its pathophysiology, sepsis
is a spectrum disease, and therefore one predictor may influence
another during the development of sepsis and septic shock.

JMIR Med Inform 2020 | vol. 8 | iss. 12 |e18352 | p.80https://medinform.jmir.org/2020/12/e18352
(page number not for citation purposes)

Sakib et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 4. Facet grid illustration of sepsis-3 (qSOFA) parameters to capture the underlying relationship between parameters and the most prevalent
sepsis scenario in the intensive care unit. qSOFA: quick Sequential Organ Failure Assessment.

Patients’ Entire Trajectory for SIRS
Figure 5 shows the kernel density estimation distribution of
SIRS parameters for both safe and SIRS criterion–met
observations to understand the prevalent SIRS parameters. We
found that 43.30% of the heart rate observations, 50.89% of the
respiratory rate observations, 23.08% of the body temperature
observations, and 53.12% of the white blood cell count
observations met the respective SIRS criterion. Although both
the white blood cell count and respiratory rate had a significant
prevalence in the observations of patients who went through
the sepsis screening, white blood cell count was the most
prevalent SIRS criterion experienced in the ICU. In addition,

12.32% of the observations (when four measurements were
available at the same time) showed a three-factored SIRS of
tachypnea-high heart rate-high white blood cell count. It is
critical to consider that there are 6 possible pairs of
combinations, 4 possible trios of combinations, and 1
combination considering all the parameters as the possible sepsis
scenario in the ICU. As mentioned above for qSOFA, no sepsis
is another possible scenario besides these 11 possible SIRS
scenarios in the ICU (which is also the case for our
observations). Identifying the most prevalent criterion and sepsis
scenario in the ICU for SIRS can help practitioners and
researchers in the diagnosis, treatment, and design of further
factorial experiments.

Figure 5. Kernel density estimation distribution of systemic inflammatory response syndrome (SIRS) parameters for both safe and sepsis criterion–met
observations to identify the prevalent SIRS parameters.

Figure 6 shows a facet grid plot of SIRS (sepsis-2) parameters
to capture the most prevalent SIRS scenario and the underlying
dichotomy among the parameters. The absolute Pearson
correlation coefficients for heart rate-respiratory rate, heart

rate-temperature, heart rate-white blood cell count, respiratory
rate-temperature, respiratory rate-white blood cell count, and
temperature-white blood cell count were 0.32, 0.34, 0.13, 0.11,
0.05, and 0.03, respectively. These insignificant absolute
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correlation coefficients invalidate the possibility of any
correlation among the critical parameters, thereby ensuring that
multicollinearity does not exist between the parameters and
further advocates for the dichotomy among them. However,
despite being not statistically significant, the absolute correlation
coefficients were not negligible in the case of heart

rate-respiratory rate and heart rate-temperature pairs.
Understanding this relationship can help in developing predictive
models as it implies that the overdetermined system involved
in the modeling is a full-ranked matrix (ie, not rank-deficient).
However, the lack of multicollinearity cannot guarantee that
two random variables are statistically independent.

Figure 6. Facet grid illustration of sepsis-2 (SIRS) parameters to capture the underlying relationship between parameters and the most prevalent sepsis
scenario in the intensive care unit. SIRS: systemic inflammatory response syndrome.

Patients’ First Observation Only for qSOFA
In the second phase of this study, we dissected data for only the
first observations of each hospital admission. This may address
two possible selection biases, including the opportunity to test
the intrageneralizability of the result of this observational study.
First, it is intuitive that the longer the patient stays in the ICU,
there will be more observations available for that particular
patient. This may influence the results of our study to some
extent if there is considerable disproportion between the length
of stay among patients. Second, when evaluating the respiratory
rate for ICU patients, there may be a possible blend in the data
between patients under intubated breathing and those naturally
breathing. The kernel density estimation distribution of qSOFA

parameters for both safe and qSOFA criterion–met observations
are presented in Figure 7 to understand the prevalent qSOFA
parameters. We found that 32.58% of the systolic arterial blood
pressure observations, 44.54% of the Glasgow Coma Scale
measurements, and 40.53% of the respiratory rate observations
met the respective qSOFA criterion. This observational study
entirely relied on passive retrospective observation without
assigning any further treatment. The results suggest that altered
mental status is the most prevalent qSOFA criterion experienced
in the ICU. In addition, 18.25% of the observations had a
two-factored qSOFA of high respiratory rate and altered mental
status (among 3C3+3C2=4 possibilities), resulting in this pair
as the most prevalent qSOFA (sepsis-3) scenario in the ICU,
although the no-sepsis scenario is also possible.
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Figure 7. Kernel density estimation distribution of quick Sequential Organ Failure Assessment (qSOFA) parameters for both safe and qSOFA
criterion–met patients at first observations to identify the prevalent qSOFA parameters.

Figure 8 shows the facet grid on qSOFA parameters to
understand the most prevalent qSOFA scenario and the
underlying dichotomy among the parameters. The absolute
Pearson correlation coefficients for respiratory rate-Glasgow
Coma Scale measurement, Glasgow Coma Scale
measurement-systolic arterial blood pressure, and respiratory
rate-systolic arterial blood pressure pairs were 0.15, 0.01, and

0.02, respectively. These insignificant correlation coefficients
invalidate the possibility of any correlation among the critical
parameters, ensuring that multicollinearity does not exist
between the parameters and further bolsters the dichotomy
among them. However, the lack of multicollinearity cannot
guarantee that two random variables are statistically
independent.

Figure 8. Facet grid illustration of sepsis-3 (qSOFA) parameters to capture the underlying relationship between parameters and the most prevalent
sepsis scenario of patients at first observations in the intensive care unit. qSOFA: quick Sequential Organ Failure Assessment.

Patients’ First Observation Only for SIRS
Figure 9 shows the kernel density estimation distribution of
SIRS parameters for both safe and SIRS criterion–met
observations using only the first observations. We found that
57.03% of the heart rate observations, 45.89% of the respiratory
rate observations, 33.93% of the body temperature observations,

and 60.57% of the white blood cell count observations met the
respective SIRS criterion. These results suggest that white blood
cell count is the most prevalent criterion experienced in the
ICU, albeit considering that both the white blood cell count and
respiratory rate had significant prevalence. In addition, 11.38%
of the SIRS criteria–met sepsis patients showed a three-factored
SIRS of tachypnea-high heart rate-high white blood cell count
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(among 4C4+4C3+4C2=11 possibilities), resulting in this trio
as the most prevalent sepsis (SIRS) scenario in the ICU. It is
important to consider that there are 6 possible pairs of
combinations, 4 possible trios of combinations, and 1
combination considering all of the parameters as the possible

sepsis scenarios in the ICU, and that no sepsis is another possible
scenario. Determining the most prevalent SIRS criterion and
sepsis scenario at the first observation upon hospitalization can
help practitioners and researchers in diagnosis, treatment, and
further factorial experiments.

Figure 9. Kernel density estimation distribution of systemic inflammatory response syndrome (SIRS) parameters for both safe and sepsis criterion–met
patients at first observations to identify the prevalent SIRS parameters.

Figure 10 shows the facet grid illustration for SIRS parameters
at the first observation. The insignificant absolute Pearson
correlation coefficients invalidate the possibility of any
correlation among the critical parameters, thereby ensuring that
multicollinearity does not exist between the parameters and

further bolsters the dichotomy among them. However, similar
to the case for all observations, the absolute correlation
coefficients were not negligible in the case of heart
rate-respiratory rate and heart rate-temperature pairs.

Figure 10. Facet grid illustration of sepsis-2 (SIRS) parameters to capture the underlying relationship between parameters and the most prevalent sepsis
scenario of patients at first observations in the intensive care unit. SIRS: systemic inflammatory response syndrome.

Discussion

Theoretical Reasoning
This study reveals that altered mental status and systolic arterial
blood pressure are the most and least prevalent qSOFA criteria,
respectively, observed in the ICU. Mathematically, blood
pressure is the product of systemic vascular resistance and

cardiac output. Hence, with the decrease in systemic vascular
resistance due to vasodilation, blood pressure will drop down
if the cardiac output remains the same. However, in practice,
when the systemic vascular resistance drops down, the human
body immediately tries to maintain the equilibrium for a few
moments and compensates with the cardiac output. Cardiac
output depends on the respiratory rate in a nonlinear and
proportionate manner; hence, the increase in the respiratory rate
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increases the cardiac output and maintains the equilibrium of
the blood pressure initially. However, over time, that equilibrium
breaks down, although the cardiac output (and consequently
respiratory rate) continually tries to reach a stable state. This
fact advocates the possibility of respiratory rate to be a more
prevalent criterion compared to systolic arterial blood pressure
as a symptom. From the aspect of SIRS criteria, the reason for
the white blood cell count to emerge as the most prevalent
criterion is intuitive. When a microorganism invades, the body’s
immune response is triggered and white blood cells appear
immediately. Heart rate, respiratory rate, and temperature are
consequential symptoms associated with an increase in white
blood cells and the immune response. As sepsis is a spectrum
disease, one predictor may influence another during disease
development and progression to septic shock, although they are
not linearly correlated. The findings of this observational study
support the established pathophysiology of sepsis described in
the literature.

Research Opportunities
Although MIMIC-III is an extensive critical care database, it is
a single-center database comprising critical care unit electronic
health record data of Beth Israel Deaconess Medical Center in
Boston. Regardless of the myriad amount of patient data, the
findings that are valid for the Beth Israel Deaconess Medical
Center in Boston may not be useful for other medical centers
and critical care units. The epidemiology and treatment facilities
vary among the hospitals, states, and infrastructures of countries.
Epidemiology and treatment facilities have a significant impact
on patient outcome, as well as on patients’ symptom
distributives. On the flip side, this observational study entirely
relied on passive retrospective observation, and the dynamics
of the treatment and medicine advance with time and research.
In addition, the prevalence of the physiological parameters,
along with time and resource variability, may also affect the
interrelation nature among parameters. The results may also
vary if considering the analysis from an individual aspect.
Although a collective analysis infers the dichotomy among
parameters, there may be a possibility that data from even one
patient show strong multicollinearity. Again, the parameters
measured may vary according to the therapeutics undertaken

in the ICU. For instance, the Glasgow Coma Scale score may
become low due to sedation, catecholamines may be responsible
for healthy blood pressure, or mechanical ventilation may affect
the respiratory rate. Any predictive modeling and treatment plan
should take this variability and uncertainty into account.

This uncertainty around generalizability opens up new research
opportunities in the health informatics domain in three possible
directions: (1) Does this finding hold its generalizability while
integrating data from multiple electronic health records? (2)
How can we study confounding variables induced by numerous
groups of people with different characteristics? (3) How can
these findings address the confounding medical interventions
in sepsis treatment?

Moreover, the comparison between qSOFA and SIRS can be
extended to comparing SOFA and qSOFA, SIRS and SOFA,
or all the three criteria available to better understand the
underlying interrelations between the parameters.

Conclusion
This study indicates that altered mental status (as assessed with
the Glasgow Coma Scale) is the most prevalent qSOFA criterion
and white blood cell count is the most prevalent SIRS criterion
for patients in the ICU. Besides, two-factored sepsis comprising
altered mental status and high respiratory rate (≥22
breaths/minute) is the most prevalent sepsis-3 (qSOFA) scenario,
and two-factored sepsis of white blood cells and tachypnea is
the most prevalent sepsis-2 (SIRS) scenario confronted in the
ICU among patients screened for sepsis. In addition, the Pearson
correlation coefficients advocate for the dichotomy among the
sepsis parameters (for both qSOFA and SIRS). This study
implies that sepsis diagnosis and treatment should be pertinent
to its type, and in this regard, these multifactored attributes
should be taken into account. Machine-learning predictive
models should consider the most prevalent criterion pair, which
would allow for a faster diagnosis. Moreover, the reasoning
backed by the sepsis pathophysiology assures the interpretability
that these results require. These findings can help obtain a better
understanding of the algorithmic, as well as contextual
challenges that influence predictive decisions in the ICU.
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Abstract

Background: Tuberculosis (TB) is one of the most infectious diseases that can be fatal. Its early diagnosis and treatment can
significantly reduce the mortality rate. In the literature, several computer-aided diagnosis (CAD) tools have been proposed for
the efficient diagnosis of TB from chest radiograph (CXR) images. However, the majority of previous studies adopted conventional
handcrafted feature-based algorithms. In addition, some recent CAD tools utilized the strength of deep learning methods to further
enhance diagnostic performance. Nevertheless, all these existing methods can only classify a given CXR image into binary class
(either TB positive or TB negative) without providing further descriptive information.

Objective: The main objective of this study is to propose a comprehensive CAD framework for the effective diagnosis of TB
by providing visual as well as descriptive information from the previous patients’ database.

Methods: To accomplish our objective, first we propose a fusion-based deep classification network for the CAD decision that
exhibits promising performance over the various state-of-the-art methods. Furthermore, a multilevel similarity measure algorithm
is devised based on multiscale information fusion to retrieve the best-matched cases from the previous database.

Results: The performance of the framework was evaluated based on 2 well-known CXR data sets made available by the US
National Library of Medicine and the National Institutes of Health. Our classification model exhibited the best diagnostic
performance (0.929, 0.937, 0.921, 0.928, and 0.965 for F1 score, average precision, average recall, accuracy, and area under the
curve, respectively) and outperforms the performance of various state-of-the-art methods.

Conclusions: This paper presents a comprehensive CAD framework to diagnose TB from CXR images by retrieving the relevant
cases and their clinical observations from the previous patients’ database. These retrieval results assist the radiologist in making
an effective diagnostic decision related to the current medical condition of a patient. Moreover, the retrieval results can facilitate
the radiologists in subjectively validating the CAD decision.

(JMIR Med Inform 2020;8(12):e21790)   doi:10.2196/21790

KEYWORDS

tuberculosis; computer-aided diagnosis; chest radiograph; lung disease; neural network; classification-based retrieval

Introduction

According to a World Health Organization (WHO) report,
tuberculosis (TB) is a major global health problem that causes

severe medical conditions among millions of people annually.
It ranks along with the HIV as a leading cause of mortality
worldwide [1]. In 2014, approximately 9.6 million new TB
cases were reported as per the WHO report, which ultimately
caused 1.5 million deaths [1]. Today, early diagnosis and proper
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treatment can cure almost all the TB cases. Various types of
laboratory tests have been developed to diagnose TB [2,3].
Among these tests, sputum smear microscopy is the most
common, in which bacteria are examined from sputum samples
using a microscope [2]. Developed in the last few years,
molecular diagnostics [3] are the new techniques to diagnose
TB. However, they may not be suitable in real-time screening
applications. Currently, chest radiography is the most common
test to detect pulmonary TB worldwide [4]. It has become
cheaper and easier to use with the advent of digital chest
radiography [5]. However, all these diagnostic tests are assessed
by specialized radiologists, who must expend significant time
and effort to make an accurate diagnostic decision. Therefore,
such subjective methods may not be suitable for real-time
screening.

Over the past few years, researchers have made a significant
contribution to the development of computer-aided diagnosis
(CAD) tools related to chest radiography [6,7]. Such automated
tools can detect the various type of chest abnormalities within
seconds and can aid in population screening applications,
particularly in scenarios which lack medical expertise.
Fortunately, the recent development in artificial intelligence
has presented a remarkable breakthrough in the performance of
these tools. Deep learning algorithms, specifically artificial
neural networks [8], are the state-of-the-art achievement in the
artificial intelligence domain. These algorithms offer more
reliable methods to distinguish positive and negative TB cases
from chest radiographs (CXR) images in a fully automated
manner. In recent decades, several ground-breaking CAD
methods have been proposed for TB diagnosis [9-24]. Most of
the previous studies used segmentation-, detection-, and
classification-based approaches to make the ultimate diagnostic
decisions. All these methods indicated a binary decision (either
TB positive or TB negative) without providing further
descriptive information that may assist medical experts to
validate the CAD decision. As the CAD decision can also be
erroneous in some scenarios, a method to perform its
cross-validation is necessary. Therefore, further research is
required to achieve the practical performance and usability of
such diagnostic systems in the real world. A comprehensive
analysis of these existing studies [9-24] in comparison with our
proposed method can be found in Multimedia Appendix 1.

Recently, various types of artificial neural networks have been
proposed in the domain of general image processing to achieve
the maximum performance in terms of accuracy (ACC) and
computational cost. Among these models, convolutional neural
networks (CNNs) [25] attract special attention because of their
outstanding performance in many general and medical image
recognition applications [26,27]. The entire structure of a CNN
model consists of an input layer, hidden layers, and a final output
layer. Among all these layers, hidden layers are considered the
main components of the CNN model and primarily consist of
a series of convolutional layers that include trainable filters of
different sizes and depths. These filters are trained by
performing a training procedure to extract the deep features
from a training data set. When the training procedure is
completed, the trained network can analyze the given testing
data and generate the desired output.

In this paper, a novel CAD framework is proposed to diagnose
TB from a given CXR image and provide the appropriate visual
and descriptive information from a previous database, which
can further assist radiologists to subjectively validate the
computer decision. Thus, both subjective and CAD decisions
will complement each other and ultimately result in effective
diagnosis and treatment. The performance of our proposed
framework was evaluated using 2 well-known CXR data sets
[9,28]. The overall performance of our method is substantially
higher than that of various state-of-the-art methods. The main
contributions of our work can be summarized as follows:

1. To the best of our knowledge, this is the first comprehensive
CAD framework in chest radiography based on multiscale
information fusion that effectively diagnoses TB by
providing visual and descriptive information based on a
previous patients’ database.

2. We propose an ensemble classification model obtained by
integrating 2 CNNs named shallow CNN (SCNN) to capture
the low-level features such as edge information and a deep
CNN (DCNN) to extract high-level features such as TB
patterns.

3. Furthermore, a multilevel similarity measure (MLSM)
algorithm is proposed based on multiscale information
fusion to retrieve the best-matched cases from a previous
database by computing a weighted structural similarity
(SSIM) score of multilevel features.

4. The cross-data analysis (trained with one data set and tested
with another data set, and vice versa) is a key measure to
access the generalizability of a CAD tool. However, in the
medical image analysis domain, most of the existing studies
[9-15,18,19,21-24] did not analyze the performance of their
methods in cross data set. Therefore, to further highlight
the discriminative power of the proposed model in
real-world scenarios, we also analyzed its performance in
a cross data set.

The remainder of the paper is structured as follows. In the
“Methods” section, we describe our proposed framework.
Subsequently, the experimental results along with the data set,
the experimental setup, and the performance evaluation metrics
are provided in the “Results” section. Finally, the “Discussion”
section presents the comprehensive discussions of our paper
including the principal findings.

Methods

This section presents a comprehensive description of our
proposed framework in the following sequential order. First,
we provide a brief overview of the proposed method to describe
its end-to-end workflow. Subsequently, a detailed explanation
of our proposed classification model and similarity measuring
algorithm is presented in subsequent subsections.

Overview of Our Proposed Framework
In general, the overall performance of the image classification
and retrieval framework is directly related to the mechanism of
feature extraction, which is adopted to transform the visual data
from high-level semantics to low-level features. These low-level
features incorporate the distinctive information that can easily
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distinguish the instances of multiple classes. Recently, deep
learning methods provide a fully automated means to extract
the optimal features from available training data sets and lead
to a substantial performance gain. In this study, we used the
strengths of such deep learning methods to develop a
comprehensive CAD tool to diagnose TB from CXR images.
A comprehensive representation of the proposed framework is
shown in Figure 1. The complete framework comprised a
classification stage, a retrieval phase to perform the diagnostic
decision, and retrieval of the descriptive evidence, respectively.
In the first phase, our proposed ensemble-shallow–deep CNN
(ensemble-SDCNN) model was trained to make the diagnostic
decision for the given CXR image I by predicting its class label
(CL) as either TB positive or TB negative. Such a diagnostic
decision was made into 2 stages: feature extraction and
classification. The detailed explanation of the proposed
ensemble-SDCNN model and its workflow is provided in the
subsequent subsection.

In the second phase, a classification-driven retrieval was
performed for the input query image. The ultimate objective of
this phase was to retrieve the relevant cases (such as CXR
images) corresponding to the given CXR image with the
inclusion of clinical observations (such as textual description)
from the previous patients’ database. Such retrieval results can

assist radiologists to subjectively validate the computer
diagnostic decision, which ultimately results in an effective
diagnostic decision. Initially, based on the predicted CL (in the
first phase), a set of positive or negative feature vectors was
selected from features database based on the following

predefined criteria: F = F+, if CL = TB positive; otherwise F =

F–, where F+and F–present the set of positive (F+ = {f1
+, f2

+, ...,

fp
+}) and negative features maps (F– = {f1

–, f2
–, ..., fq

–}) in the
features database, respectively, and p and q are the total numbers
of positive and negative cases, respectively.

Both F+ and F– were extracted from TB-positive and
TB-negative CXR-database (previously collected CXR images
of different patients), respectively, and stored as a features
database. In the subsequent step, our proposed MLSM algorithm
was applied to select a subset of n best-matched features from

this selected set of positive or negative features maps (ie, F={F+}

or {F–}) in the first phase. Such feature matching was performed
for the extracted multilevel features f′ of input query image I
(as explained in a later subsection). Finally, the selected subset
of n best-matched features was used to select the corresponding
CXR images and their clinical readings from CXR-database
and information database, respectively.

Figure 1. Comprehensive flow diagram of the proposed classification and retrieval framework. In the first stage, the given input CXR image is
categorized as either TB positive or TB negative. In the second stage, the n best relevant cases are retrieved from the previous database based on our
proposed MLSM algorithm. The parameter n is a user given input and controls the total number of retrieved cases from the previous record related to
a current medical condition. CXR: chest radiograph; DB: database; MLSM: multilevel similarity measure; SDCNN: shallow–deepCNN; TB: tuberculosis.

Classification Network
The first phase of our proposed framework involved classifying
the given CXR image as either TB positive or TB negative by
predicting its CL. To accomplish this task, we proposed a jointly
connected ensemble-SDCNN model by performing a
features-level fusion of 2 different networks, SCNN and DCNN
(Figure 2). In general, a shallow network captures low-level
features such as edge information while a deep model is used

to exploit high-level information such as overall shape patterns.
In our radiograph image analysis study, the experimental results
prove that the combination of low- and high-level features
results in better performance compared with using only
high-level features. Therefore, both networks were combined
in parallel (by connecting their input and last output layers with
each other; Figure 2) to create a single end-to-end trainable
network. An existing DCNN model called a residual network
(ResNet18) [29] was selected based on its substantial
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classification performance and the optimal number of parameters
in comparison with the other CNN models. After selecting an
optimal DCNN model, we further enhanced its performance by
connecting our proposed SCNN model in parallel to it. Several
experiments were performed to select the optimal number of
convolutional and fully connected (FC) layers (and their hyper
parameters) for the SCNN. The ultimate objective of these
experiments was to construct an optimal shallow network
(according to the number of parameters) that could maximize
the overall classification performance of the complete network.

A complete layer-wise configuration of these models is shown
in Table 1. This information can assist in exploring the
parametric configuration of these models more precisely.
Moreover, Figure 2 shows the overall architecture of the
proposed ensemble-SDCNN model based on shallow and deep
networks. Both SCNN and DCNN models processed the given

CXR image in a parallel order to extract low- and high-level
features, respectively. In the SCNN, the Conv1 layer (first
convolutional layer with a total of 128 filters of size 7 × 7)
explored the input image I in both horizontal and vertical
directions and generated the output feature map, FSN1 of size
73 × 73 × 128. This output feature map was further processed
through the Conv2 layer (second convolutional layer with a
total of 64 filters of size 5 × 5) and converted into a new features
map FSN2 of size 35 × 35 × 64. Thereafter, the FC1 layer (first
fully connected layer including a total of 32 output nodes)
identified the significant hidden patterns in FSN2 by combining
all the learned features into a single features vector fSN of size
1 × 1 × 32. Thus, we obtained a low-dimension features vector
fSNthat held a more diverse representation of the low-level
features compared with FSN2.

Figure 2. Overall architecture of our ensemble-SDCNN model by connecting 2 different networks, SCNN and DCNN. Both networks process the input
image I simultaneously (in the testing phase) and extract 2 different feature vectors, which are concatenated and finally used to make a diagnostic
decision by predicting the CL. CL: class label; CNN: convolutional neural network; DCNN: deep CNN; SCNN: shallow CNN; SDCNN: shallow–deep
CNN.
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Table 1. Layer-wise configuration details of the proposed ensemble-SDCNNa model.b

ParametersIterationsFilter sizedOutput sizecLayer name

DCNNe model

——gN/Af(224,224,3)Input

96001(7,7,64)(112,112,64)Conv1

—1(3,3)(56,56,64)Max pooling

74,1122(3,3,64)(56,56,64)IMh-based RU1i

74,1122(3,3,64)(56,56,64)IM-based RU2

230,5282; 1(3,3,128); (1,1,128)(28,28,128)CMj-based RU3

295,6802(3,3,128)(28,28,128)IM-based RU4

919,8082; 1(3,3,256);

(1,1,256)

(14,14,256)CM-based RU5

1,181,1842(3,3,256)(14,14,256)IM-based RU6

3,674,6242; 1(3,3,512);

(1,1,512)

(7,7,512)CM-based RU7

4,721,6642(3,3,512)(7,7,512)IM-based RU8

—1(7,7)(1,1,512)Avg pooling

SCNNk model

19,2001(7,7,128)(112,112,128)Conv1

204,9921(5,5,64)(35,35,64)Conv2

2,508,8321(5,5,64)(1,1,32)FC1

—1—(1,1,544)Depth concat

10901—(1,1,2)FC2

—1—(1,1,2)SoftMax

—1—2Classification

aSDCNN: shallow–deep CNN.
bTotal learnable parameters: 13,915,426.
cOutput size (image width, image height, # of channels),
dKernel size (kernel width, kernel height, # of filters), Max pooling (kernel width, kernel height), Avg pooling (kernel width, kernel height).
eDCNN: deep CNN.
fN/A: not applicable.
g—: not available.
hIM: identity mapping.
iRU: residual unit.
jCM: convolutional mapping.
kSCNN: shallow CNN.

Similarly, for the DCNN, the input image I passes through a
large number of convolutional layers (as compared with the
SCNN) to exploit the high-level features. Our selected DCNN
model was composed of multiple residual units (RUs) that
consisted of identity mapping–based or convolutional
mapping–based shortcut connections to each pair of 3 × 3 filters
[29]. These shortcut connections caused the network to converge
more efficiently compared with other sequential networks
without including any shortcut connection. Moreover, a detailed
explanation of these RUs is provided in [30]. Figure 2 also
depicts an abstract representation of our selected DCNN model.

Primarily, the input image I underwent the first convolutional
layer, Conv1, with a total 64 filters of size 7 × 7. Subsequently,
a Max pooling layer (with a window size 3 × 3) further down
sampled the output of Conv1 and generated an intermediate
features map FDN1 of size 56 × 56 × 64. Thereafter, a stack of
8 consecutive RUs (including 5 identity mapping–based RUs
and 3 convolutional mapping–based RUs, as shown in Figure
2) further exploited high-level features. Furthermore, each RU
converted the preceding features map into a new one by
exploiting much deeper features in comparison with the previous
layer. In Figure 2, all the intermediate features maps (ie, FDN2,
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FDN3, FDN4, and FDN5) after each pair of RU show the
progressive effect of different RUs. We observed that the depth
of these features maps increased progressively, and the spatial
size decreased after passing through the RUs. Ultimately, a
low-dimension feature vector, fDN, of size 1 × 1 × 512 was
obtained after processing the final features map, FDN5 (obtained
from the last RU), through an average pooling layer. This
low-dimension feature vector exhibited a high-level abstraction
of the input image I and substantially contributed, together with
fSN, to the prediction of the final CL.

After extracting both low- and high-level features, a depth
concatenation layer (labeled as Depth concat in Figure 2 and
Table 1) performed the feature-level fusion by combining both
fSN and fDN along the depth direction and generated a final
features vector, f, of size 1 × 1 × 544. Finally, a stack of the
FC2, SoftMax, and the classification layers (Figure 2) acted as
a multilayer perceptron classifier and predicted the CL for the
given image I using the ultimate features vector f. In this stack,
the FC2 layer (including the number of nodes equal to the total
number of classes) identified the larger patterns in fby
combining all the features values. It multiplied f by a weight
matrix W, and then added a bias vector b, where y = W·f + b,
with y = [yi|i=1,2]. Subsequently, the SoftMax layer converted
the output of FC2 in terms of probability by applying the

softmax function as y′i=eyi/Σ2
i=1 [8]. Ultimately, the

classification layer obtained (y′i)from the SoftMax layer was
assigned each input to one of the 2 mutually exclusive classes
(ie, TB positive and TB negative) using a cross-entropy (CE)

loss function as LossCE(W,b) = Σ2
i=1 ciln(y′i) [8]. Here, (W, b)

are the network trainable parameters and ci is the indicator of
the actual class label of the ith class during the training

procedure. Meanwhile, in the testing phase, the network
generated a single CL (as either TB positive or TB negative)
corresponding to each input image I.

There is also an existing SDCNN model [31] (proposed for
effective breast cancer diagnosis). However, there is a
substantial difference between our proposed and the existing
model [31] in terms of architecture, application, and
computational complexity. In [31], the authors proposed an
ensemble of 2 existing ResNet50 [29] models to extract the
deep features and then used a gradient boosted tree classifier to
make the diagnostic decision. In addition, a 4-layer FC network,
namely SCNN (which includes FC convolutional layers), was
proposed for image reconstruction to increase the data samples
in the preprocessing stage. By contrast, in our work, we
proposed an ensemble of SCNN (which includes 2 convolutional
layers [no FC] and 1 FC layer) and DCNN models as shown in
Figure 2 to extract low- and high-level features, respectively.
Then, an FC classifier (also known as a multilayer perceptron)
was used to make the final diagnostic decision using both low-
and high-level features. Furthermore, the SCNN [31] is an image
reconstruction network (ie, both input and output are images),
whereas our proposed SCNN is a classification network (ie,
input is image, and output is feature vector). Therefore, the
architecture of both SCNN models is completely different from
each other. In addition, our DCNN model is based on ResNet18
that includes a substantially lower number of trainable
parameters than ResNet50 as used in [31], that is, 11.2M
(ResNet18) << 23.5M (ResNet50). In this way, the total number
of trainable parameters of the proposed ensemble-SDCNN is
substantially lower than the existing SDCNN [31], that is, 13.9M
(proposed) << 47M [31]. Figure 3 further highlights the overall
structural difference between our proposed and the existing
model [31].

Figure 3. Overall structural comparison of our proposed ensemble-SDCNN (left) and existing SDCNN model (right). MLP: multilayer perceptron;
GBT: gradient boosted tree.

Multilevel Similarity Measure Algorithm
In the medical domain, the visually correlated images
occasionally depict different illnesses, whereas the images for
a similar ailment have distinctive appearances. Therefore,
estimating the similarity by contemplating the multilevel features
is more advantageous in content-based medical image retrieval
systems rather than using single-level features. Most of the
existing systems often use a single-level similarity measure
(SLSM) method to perform the content-based medical image
retrieval task. However, it can miss the potentially useful

information that is required in discriminating the different
diseases in visually correlated images. To overcome these
challenges, we proposed an MLSM algorithm to retrieve the
best-matched cases from the previous patients’ database by
fusing multilevel features starting from a low-level visual to a
high-level semantic scale. The similarity at multiple features
levels was calculated using a well-known matching algorithm
called SSIM [32], as it quantified the visibility of errors
(differences) between 2 samples more appropriately compared
with other simple matching schemes such as mean square error,
peak signal-to-noise ratio (PSNR), and Euclidean distance. A
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generalized mathematical expression to calculate the SSIM
score between 2 samples (x and y) is given as follows:

SSIM(x,y) = ([2µxµx + c1][2σxy + c2])/[µ
2
x + µ2

y + c1]

[σ2
x + σ2

y + c2]     (1)

where [µx·µy], [σx·σy], and σxy are the local mean, standard
deviation, and cross-covariance of the given samples,
respectively; and c1 and c2 are constants to avoid instabilities
such as infinity errors and undefined solutions.

In our MLSM algorithm, multilevel features were extracted
from the 8 different locations of the ensemble-SDCNN model
(Figure 4). Each features map in Figure 4 was obtained by
calculating the depth-wise averaging of each stack of feature
maps (extracted from a particular location). Moreover, this
newly obtained feature map corresponding to each specific
location was further presented with a pseudocolor scheme to

highlight the activated regions more appropriately. In Figure 4,
f′ presents a set of these multilevel features maps (ie, {F′SN1,
F′SN2, F′DN1, F′DN2, F′DN3, F′DN4, F′DN5, f*}) corresponding to

the given query image I. Similarly, f+
i or f–

i notates a set of
multilevel features maps (ie, {FSN1, FSN2, FDN1, FDN2, FDN3,
FDN4, FDN5, f}) for the ith positive or negative sample image in

CXR-database, respectively. The selection of f+
i or f–

i was
conducted based on the CL prediction, which was performed
by our proposed network in the first phase. For example, in a
positive prediction (ie, CL = TB positive) for the input query
image I, the MLSM score between the query image I and set of

p positive sample images I+ (stored in CXR-database) is
calculated as follows:

MLSM = Σ8
k=1wkSSIM(f′{k},f+

i{k}) i=1, 2, …, p     (2)

Figure 4. Complete workflow diagram of our proposed MLSM algorithm using the multilevel features (extracted from the different parts of the proposed
ensemble-SDCNN model) in retrieving the best-matched cases from a previous patients’ database. DCNN: deep convolutional neural network; MLSM:
multilevel similarity measure; SCNN: shallow convolutional neural network; SSIM: structure similarity.

Similarly, in a negative prediction (ie, CL = TB negative), the
MLSM score between the query image I and set of q negative

sample images I– (also stored in CXR-database) is calculated
as follows:

MLSM = Σ8
k=1wkSSIM(f′{k},f–

i{k}) i=1, 2, …, q     (3)

In both mathematical expressions, w1, w2, w3, …, w8 are the
weights of SSIM measured at different levels and their total

sum is equal to one (ie, Σ8
i=1 wi=1). The optimal weights were

obtained by maximizing the intraclass SSIM score for some

selected pairs of positive CXR images. Each pair (I+
i, I

+
j) was

selected from the positive data samples based on the highly
correlated clinical observations between 2 CXR images. These
observations were provided in our selected data sets as a text
file for each data sample. As our main objective was to diagnose
TB by retrieving similar abnormal cases from a previous
database, we only considered positive CXR images in
calculating the optimal weights rather than using normal images.

Finally, the overall objective function to maximize the intraclass
similarity is defined as follows:
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w*=max(Σi,jεTBpositiveΣ8
k=1wk SSIM[f+

i{k},f+
j{k}])

/N+     (4)

where N+is the total number of pair images selected from the
positive data samples. In our experiment, the total number of

pairs was 30 (ie, N+ = 30). After performing the optimization
according to Equation (4), we obtained the optimal values of
w1, w2, w3, …, w8 as 0.069, 0.179, 0.087, 0.133, 0.071, 0.123,
0.299, and 0.039, respectively. Finally, these optimal weights

were used to calculate the MLSM scores between f′ and F+ (set

of positive features maps in features database) or F– (set of
negative features maps in features database) depending on the
predicted CL in the classification stage. Thereafter, the indices
of n best-matched features were selected based on the maximum
MLSM scores. These indices were eventually used to select the
corresponding CXR images and their clinical readings from
CXR-database and information database, respectively. Thus, n
best-matched cases were retrieved from the previous patients’
database, which could assist radiologists in making an effective
diagnostic decision after performing the subjective validation
of the computer decision.

Results

Data Set and Preprocessing
Our proposed diagnostic framework was validated using 2
publicly available data sets: Montgomery County (MC) and
Shenzhen (SZ) [9,28]. The MC data set is a subset of a larger
CXR repository collected within the TB control program of the
Department of Health and Human Services of Montgomery
County, Maryland, USA. All these images are in 12-bit
grayscale, captured using a Eureka stationary X-ray machine.
This data set comprises a total of 138 posteroanterior CXR
images, among which there are 80 normal and 58 abnormal
images with the manifestations of TB disease. The abnormal
images encompass a vast range of abnormalities related to
pulmonary TB. The SZ data set is collected from the Shenzhen
No. 3 People’s Hospital in Shenzhen, Guangdong Providence,
China. This data set includes a total of 326 normal and 336
abnormal CXR images, which include different types of
abnormalities related to pulmonary TB. All these images are
also in 12-bit grayscale and were captured using the Philips DR
DigitalDiagnost system. In both data sets, a radiologist report
is also provided for each CXR image as a text file, containing
the clinical observation related to chest abnormalities along
with the patient’s age and gender information. After collecting
both data sets, we resized all the images to a spatial dimension
of 224 × 224 (according to the fixed input layer size of our
ensemble-SDCNN model).

Implementation Details
The proposed framework was implemented using a standard
deep learning toolbox available in the MATLAB R2019a
(MathWorks, Inc.) framework [33]. It provides a complete
framework for developing and testing different types of artificial
neural networks and using existing pretrained networks. All the
experiments were performed on a desktop computer with a
3.50-GHz Intel Core i7-3770K CPU [34], 16-GB RAM, an
NVIDIA GeForce GTX 1070 graphics card [35], and Windows
10 operating system (Microsoft). Our proposed and other
baseline models were trained through back-propagation (a
procedure to determine the optimal parameters of a model) using
a well-known optimization algorithm called the stochastic
gradient descent [36]. It iteratively trains the network by
computing the optimal learnable parameters (such as filter
weights and biases) that are included in different layers of the
network. The following hyper-parameters were selected for our
proposed and all the comparative CNN-based methods: learning
rate as 0.001 with a drop factor of 0.1. Moreover, the min-batch
size was selected as 10 (ie, feeding a stack of 10 images per
gradient update in each iteration), L2-regularization as 0.0001,
and a momentum factor as 0.9.

Evaluation Metrics and Protocol
After the training, the quantitative performance of our proposed
framework was evaluated based on the following metrics: ACC,
average precision (AP), average recall (AR), F1 score (F1), and
finally the area under the curve (AUC) [37]. These well-known
metrics can quantify the overall performance of a deep learning
model from many perspectives. The mathematical definition of
all these metrics is provided in Table 2.

In our binary classification problem, true positive (TP) and true
negative (TN) were the outcomes of our model for correctly
predicted positive and negative cases, respectively, whereas
false positive (FP) and false negative (FN) could be interpreted
as the incorrectly predicted positive and negative cases,
respectively. Finally, these 4 different outcomes were further
used in assessing the overall performance of a model in terms
of ACC, AP, AR, F1, and AUC. We performed a fivefold
cross-validation in all the experiments by randomly selecting
80% of data (110/138 [79.7%] of MC data and 530/662 [80.0%]
SZ data) for training and the remaining 20% (28/138 [20.2%]
of MC data and 132/662 [19.9%] SZ data) for testing. As most
of the previous studies considered fivefold cross-validations,
we followed a similar data splitting protocol. However, the
fivefold cross-validation was not possible for the evaluation of
the cross–data set performance, as a complete data set was used
for training and others for testing. However, we performed
cross-data validation using the MC data set as training and the
SZ data set as testing, and vice versa.

JMIR Med Inform 2020 | vol. 8 | iss. 12 |e21790 | p.96http://medinform.jmir.org/2020/12/e21790/
(page number not for citation purposes)

Owais et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 2. Mathematical definition of our selected performance evaluation metrics.

Mathematical equationMetric name

(TPa + TNb)/(TP + TN + FPc + FNd)Accuracy (ACC)

TP/(TP + FP)Average precision (AP)

TP/(TP + FN)Average recall (AR)

2×([AP × AR]/[AP + AR])F1 score (F1)

0.5 × (TP/[TP + FP] + TN/[TN + FP])Area under the curve (AUC)

aTP: true positive.
bTN: true negative.
cFP: false positive.
dFN: false negative.

Our Results and an Ablation Study
The overall performance of our diagnostic framework was
directly related to the classification performance of the proposed
ensemble-SDCNN model. As in our classification-driven
retrieval framework, the first step was to predict the CL for the
given query image and then explore that predicted class database
to retrieve the relevant cases. Consequently, the correct
prediction would ultimately result in correct retrieval and the
incorrect prediction in incorrect retrieval. Therefore, we
comprehensively assessed the classification performance of the
proposed model for both data sets and their combinations. Table
3 shows the performance of our classification model along with
an ablation study to highlight the significance of each submodel
in enhancing the overall performance. Therefore, the individual
performance of both SCNN and DCNN models was also
computed as an ablation study. The experimental results
indicated that the combination of SCNN and DCNN resulted
in a substantial performance gain (ie, 8.8%, 8.12%, 9.42%,
8.76%, and 5.68% for the average F1, AP, AR, ACC, and AUC,
respectively) compared with their individual performances. We
further performed a t test [38] and Cohen d [39] analysis to

signify the performance gain of our SDCNN model in contrast
to the DCNN (second-best model). In these 2 performance
analysis measures, a large number of experimental results
appropriately discriminated the performances of 2 systems.

Therefore, the detailed performance results of both
ensemble-SDCNN and DCNN for all the different folds were
used to perform the t test and Cohen d analysis. In the t test
analysis, all the P-values (ie, .012, .011, .015, .014, and .012 in
the case of average F1, AP, AR, ACC, and AUC, respectively)
were less than .05. These results implied the discriminative
performance of our ensemble-SDCNN against the SCNN with
a 95% confidence score. In the Cohen d analysis, the
performance difference between 2 systems was measured in
terms of effect size [40], which is generally categorized as small
(approximately 0.2-0.3), medium (approximately 0.5), and large
(≥0.8). The large effect size indicated a substantial performance
difference between the 2 systems. In this analysis, all the effect
sizes (ie, 0.6, 0.6, 0.6, 0.5, and 0.5 for the average F1, AP, AR,
ACC, and AUC, respectively) were greater than and equal to
0.5, which also indicated the substantial performance difference
between the ensemble-SDCNN and SCNN models.
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Table 3. Classification performance of our proposed ensemble-SDCNNa model including the submodels as an ablation study.

AUCeACCdARcAPbF1Data sets and models

MCf

0.8170.7690.7570.7750.765SCNNg,h

0.9320.8780.8720.8880.88DCNNi,j

0.9650.9280.9210.9370.929ensemble-SDCNN

SZk

0.8680.8020.8020.8030.802SCNN

0.9390.8910.8920.8920.892DCNN

0.9480.9080.9080.9090.908ensemble-SDCNN

MC + SZ

0.8410.7890.7880.7930.79SCNN

0.9430.890.890.8920.891DCNN

0.950.8990.8980.9020.9ensemble-SDCNN

MC train and SZ test

0.5410.5570.5550.5590.557SCNN

0.7370.5170.510.5740.54DCNN

0.8530.7920.7930.7980.795ensemble-SDCNN

SZ train and MC test

0.6010.6160.6260.6240.625SCNN

0.7540.710.6980.7020.7DCNN

0.8730.7970.8130.8080.811ensemble-SDCNN

aSDCNN: shallow–deep CNN.
bAP: average precision.
cAR: average recall.
dACC: accuracy.
eAUC: area under the curve.
fMC: Montgomery County.
gAblation study performance by only considering SCNN for classification.
hSCNN: shallow CNN.
iAblation study performance by only considering DCNN for classification.
jDCNN: deep CNN.
kSZ: Shenzhen.

Figure 5 depicts the receiver operating characteristic curves of
the proposed model for all the data sets. Each curve plots the
TPR versus the FPR of our model at different classification
thresholds beginning from 0 to 1 at 0.001 increments. Among
all the classification thresholds, the optimal threshold was
obtained based on the operating points (as highlighted with red
closed circles) existing over the operating line. We attained the
optimal threshold value of 0.507 for all the data sets. This
implied that any CXR image with a classification probability
larger than .507 was reported as a positive case. Finally, based

on these receiver operating characteristic curves, we calculated
the AUC results of our model for each data set (Table 3). We
observed that the MC, SZ, and MC + SZ data sets had
comparable AUCs of 0.965, 0.948, and 0.95, respectively.
However, the performance of the cross–data set AUC was lower
than that of the MC and SZ because of high intraclass and
interclass variances between 2 different data sets, but the
comparative performance (as reported in the subsequent section)
of our model was still greater than the existing state-of-the-art
methods for all the data sets.
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Figure 5. Receiver operating characteristic curves of our ensemble-SDCNN model for all the datasets. Each curve plots true-positive rate (TPR) vs
false-positive rate (FPR) of our model at different classification thresholds beginning from 0 to 1 in 0.001 increments. MC: Montgomery County;
SDCNN: shallow–deep convolutional neural network; SZ: Shenzhen.

To determine the optimal ratio of the SCNN features with the
DCNN, we performed several experiments for all the data sets
by considering the different feature lengths of fSN concatenated
with fDN. In this analysis, the feature lengths began from 0 to
512 with the increment of 8 features per experiment. Figure 6
shows the F1 and AUC results (average performance of all the
data sets) according to different features length of fSN. In
addition, the black line depicts the growing number of the total
parameters of our proposed model with the increasing length

of fSN. The figure indicates that our model exhibited the best
performance (ie, maximum F1 of 0.871 and AUC of 0.918 as
indicated by the vertical red line) and required the optimal

number of total parameters as 1.39 × 107 for fSN=32. Although
the total number of trainable parameters of our model was
slightly higher (approximately 2.7 million) than that of the
DCNN, a substantial performance difference was observed,
particularly for the cross data set (Table 3).
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Figure 6. Average performance of the proposed ensemble-SDCNN model by considering different lengths of SCNN features with DCNN features
(beginning from 0 to 512 with the increment of eight features in each experiment). AUC: area under the curve; DCNN: deep convolutional neural
network; SDCNN: shallow–deep convolutional neural network; SCNN: shallow convolutional neural network.

In our classification-driven framework, both classification and
retrieval performances were similar. However, we also evaluated
the retrieval performance without performing the class prediction
to validate the superiority of our classification-driven approach.
In Table 4, the experimental results indicate that our
classification-driven approach exhibited higher retrieval
accuracies than the retrieval without class prediction. Moreover,
our retrieval approach was computationally more efficient than

that without class prediction as feature matching was performed
using only the predicted class database rather than the entire
database as in the retrieval without class prediction. In
conclusion, these comparative results (Tables 3 and 4) implied
that our jointly connected model exhibited superior performance
in making the effective diagnostic decision and retrieving the
best-matched cases from the previous database.
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Table 4. Comparative retrieval performance with and without predicting the class label (CL).

ACCcARbAPaF1Retrieval and data sets

Without class prediction

0.8470.8280.8610.844MCd

0.890.890.8920.891SZe

0.8790.8780.8820.88MC + SZ

0.5330.530.5380.534MC train and SZ test

0.7390.720.7370.729SZ train and MC test

With class prediction

0.9280.9210.9370.929MC

0.9080.9080.9090.908SZ

0.8990.8980.9020.9MC + SZ

0.7920.7930.7980.795MC train and SZ test

0.7970.8130.8080.811SZ train and MC test

aAP: average precision.
bAR: average recall.
cACC: accuracy.
dMC: Montgomery County.
eSZ: Shenzhen.

Comparative Analysis
Several CAD methods are presented in the literature for
diagnosing pulmonary TB in CXR images. To make a fair
comparison, we considered the following state-of-the-art
methods [14,15,17,21,22,41,42], because these approaches
selected the same data sets and experimental protocols as
considered in our study. Moreover, in some recent studies [21],
the authors adopted existing CNN models to classify the
different types of pulmonary abnormalities including TB.

However, these studies considered different data sets and
experimental protocols. For a fair and detailed comparison, we
evaluated the performance of these methods for our selected
data sets and experimental protocol. Additionally, we calculated
the performance of other CNN models [29,43-45] proposed for
the general image-classification domain rather than radiology.
The objective of this comparative analysis was to estimate the
performance of the existing state-of-the-art CNN models in
CXR image analyses. All these comparative analysis results are
shown in Table 5.
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Table 5. Comparative performance analysis of the proposed ensemble-SDCNNa model with various state-of-the-art methods.

MC + SZSZcMCbComparative methods

AUCACCARAPF1AUCACCARAPF1AUCgACCfAReAPdF1

0.7630.7290.7290.7290.7290.830.760.760.760.760.6750.580.50.580.537LBPh and SVMi,j [46]

0.8820.8210.8210.8230.8220.900.850.850.850.850.8630.7970.7980.7960.797HoGk and SVMi [47]

0.9360.8840.8830.8850.8840.9370.8730.8730.8760.8750.840.7480.7270.7710.747ShuffleNeti [43]

0.9440.8850.8840.890.8870.9420.8810.8810.8830.8820.8280.740.7110.7730.739InceptionV3i [44]

0.9460.8840.8830.8880.8860.9410.8750.8750.8780.8760.8330.7690.7550.7690.762MobileNetV2i [45]

—————0.930.86———0.880.79———lSantosh et al [41]

—————0.9260.837———0.8840.674———Hwang et al [17]

0.9210.8790.8780.8810.880.940.8760.8770.8770.8770.8860.790.780.7960.788ResNet50i [29]

0.9230.8580.8570.8620.8590.9340.8610.8620.8650.8640.8950.7980.7820.8210.8ResNet101i [29]

——————————0.890.7910.790.81—Alfadhli et al [14]

0.9140.840.840.8460.8430.9210.8510.8510.8530.8520.9020.8340.8180.8510.834GoogLeNeti [20,21]

—————0.9040.847———0.9260.826———Lopes and Valiati [21]

——————————0.870.783———Vajda et al [42]

0.9250.862———0.90.844———0.8110.79———Pasa et al [22]

——————————0.940.8780.877—0.876Govindarajan and Swaminathan [15]

0.950.8990.8980.9020.90.9480.9080.9080.9090.9080.9650.9280.9210.9370.929Proposed

aSDCNN: shallow–deep CNN.
bMC: Montgomery County.
cSZ: Shenzhen.
dAP: average precision.
eAR: average recall.
fACC: accuracy.
gAUC: area under the curve.
hLBP: local binary pattern.
iWe evaluated the performance of these models using our selected data sets and experimental protocol.
jSVM: support vector machine.
kHoG: histogram of oriented gradients.
l—: not available. These results were not reported in some existing studies.

We observed that our method exhibited a superior performance
(in terms of all the performance measures and data sets)
compared with all the other baseline methods. In addition to
deep learning–based methods, we evaluated and compared the
performance of 2 known handcrafted feature-based methods
[46,47]. To evaluate the performance of these 2 methods [46,47],
we used the following default parameters as provided by the
MATLAB framework [33]: size of histogram of oriented
gradients cell as 8 × 8 with block size of 2 × 2 and number of
overlapping cells between adjacent blocks as 1 block and the
number of orientation bins as 9. In local binary patterns (LBPs)
[46], the number of neighbor pixels considered was 8, with the
linear interpolation method applied to compute pixel neighbors.
Whereas in LBP histogram parameters, cell size was selected
as 1 × 1 by applying L2-normalization to each LBP cell
histogram. Thus, our comparative analysis was more detailed
than the various existing studies [14,17,21,22]. For the MC data

set, the performance gain of our model in contrast to
Govindarajan and Swaminathan [15] (second-best) was greater
than 4.4%, 5%, and 2.5% for AR, ACC, and AUC, respectively.
Similarly, the difference in the performance of our model from
a second-best model called InceptionV3 [44] (for the SZ data
set) was more than 2.6%, 2.6%, 2.7%, 2.7%, and 0.6% for F1,
AP, AR, ACC, and AUC, respectively. Moreover, for the
combined data set (MC + SZ), the performance gain of our
model in contrast to InceptionV3 [44] (second-best) was equal
to 2.1%, 1.9%, 2.4%, 2.3%, and 0.4% for F1, AP, AR, ACC,
and AUC, respectively. Hence, the performance of all these
existing baseline methods validated the superiority of our
proposed model with a substantial performance difference.

Moreover, comparative studies on the analysis of the cross–data
set performance are rare. The majority of the studies only
considered a similar data set for training and testing. Cross–data
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set testing is an important analysis to demonstrate the general
capability of a model and its potential applicability in a
real-world environment. Therefore, similar comparative results
are also evaluated (in a cross data set) for different baseline
models for a detailed performance comparison with the proposed
ensemble-SDCNN model. In this analysis, the MC data set was
used to train the model and SZ was used to test, and vice versa.
Table 6 shows the results of these cross–data set analyses along
with comparative studies.

These comparative results indicated that our model had
outperformed the various deep learning and handcrafted
feature-based TB diagnostic methods. For the SZ data set, which
was used for training, the accuracies were slightly higher than

those for the MC data set. The main reason for this was the
presence of more training data samples compared with the MC
data set. For the scenario in which the MC data set was the
training set and the SZ the testing set, the performance of our
model in contrast to that of Santosh and Antani [16] (second
best) was higher than 3.3%, 3.2%, and 3.3% for AR, ACC, and
AUC, respectively, and the comparative performance difference
of our model with that of Santosh and Antani [16] (for SZ as
training and MC as testing data sets) was also higher than 2.3%,
1.7%, and 2.3% for AR, ACC, and AUC, respectively. All these
experimental results highlighted the potential applicability of
our model in real-world diagnostics related to chest
abnormalities.
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Table 6. Results of comparative performance analysis of our proposed method with various baseline methods for cross data sets.

AUCdACCcARbAPaF1Data sets and our methods

MCe train and SZf test

0.690.4920.50.4920.496LBPg and SVMh,i [46]

0.7620.6390.6350.6950.664HoGj and SVMi [47]

0.7090.610.6150.7150.661ShuffleNeti [43]

0.7610.6980.70.7170.708InceptionV3i [44]

0.780.5650.5590.6780.613MobileNetV2i [45]

0.770.6630.6670.7070.686ResNet50i [29]

0.7720.6720.6710.6770.674ResNet101i [29]

0.650.5910.5890.5950.592GoogLeNeti [20,21]

0.820.760.76——kSantosh and Antani [16]

0.8530.7920.7930.7980.795Proposed

SZ train and MC test

0.5520.580.50.580.537LBP and SVMi [46]

0.6010.5940.5460.5730.559HoG and SVMi [47]

0.6830.6520.6240.6430.633ShuffleNeti [43]

0.7480.6880.6440.7220.681InceptionV3i [44]

0.7970.6520.5890.7720.668MobileNetV2i [45]

0.7870.6160.6380.6420.64ResNet50i [29]

0.6980.6380.5740.7260.641ResNet101i [29]

0.7540.6590.6090.6910.648GoogLeNeti [20,21]

0.850.780.79——Santosh and Antani [16]

0.8730.7970.8130.8080.811Proposed

aAP: average precision.
bAR: average recall.
cACC: accuracy.
dAUC: area under the curve.
eMC: Montgomery County.
fSZ: Shenzhen.
gLBP: local binary pattern.
hSVM: support vector machine.
iWe also evaluated the performance of these models (for the cross data set) using our selected data sets and experimental protocol.
jHoG: histogram of oriented gradients.
k—: not available. The results were not provided in this comparative study for these performance metrics.

Discussion

This article presents an interactive CAD framework based on
multiscale information fusion to diagnose TB in CXR images
and retrieve the relevant cases (CXR images) from a previous
patients’ database including clinical observations. In this
framework, a classification model is primarily proposed to
classify the given CXR image as either a positive or a negative
sample. Subsequently, classification-based retrieval is performed

to retrieve the relevant cases and corresponding clinical readings
based on our newly proposed MLSM algorithm. The proposed
model substantially improves diagnostic performance by
performing the fusion of both low- and high-level features. The
network processes the input image through different layers and
finally activates the class-specific discriminative region [48] as
key-features maps. Figure 7 shows such activation maps
extracted from the 7 different layers (ie, FSN1, FSN2, FDN1, FDN2,
FDN3, FDN4, and FDN5 as labeled in Figure 2) of our model for
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both positive and negative sample images. As Figure 7 shows,
each activation map is generated by calculating the average of
all the extracted maps from a specific location. All the activation
maps overlay on their corresponding input image after resizing

and applying a pseudo-color scheme (blue to red, equivalent to
lower to higher activated region) to produce a better
visualization of the activated regions.

Figure 7. Extracted features maps from the different parts of the proposed ensemble-SDCNN model for both TB positive and negative cases. DCNN:
deep convolutional neural network; SDCNN: shallow–deep convolutional neural network; SCNN: shallow convolutional neural network; TB: tuberculosis.

Figure 7 indicates that the class-specific discriminative regions
of the given input image become more prominent after
processing through the successive layers of the network. A
semilocalized activation map (labeled as FDN5 in Figure 7) is
obtained from the last convolutional layer of the DCNN model,
which includes the more distinctive high-level features for each
class. Moreover, for the SCNN, the obtained activation map
from the last convolutional layer (labeled as FSN2 in Figure 7)
encompasses the low-level features such as edge information.
Finally, both low- and high-level features are used in making
an effective diagnostic decision for the given CXR image. The
experimental results (also provided in Multimedia Appendix 2)
proved that the diagnostic performance of our ensemble-SDCNN
model is more effective than the various CNN models where
only single-level features are used for class prediction.

After an effective diagnostic decision, we can further retrieve
the relevant cases based on our proposed MLSM algorithm,
which considers the multilevel features in retrieving the best
matches. Figure 8 depicts the retrieval results of our proposed
MLSM algorithm in comparison with the conventional
Euclidean distance–based SLSM scheme. In Figure 8, these
results comprise the 5 best-matched CXR images along with
their corresponding high-level activation maps (labeled as FDN5

in Figure 7) and clinical readings. Generally, a high correlation
between the high-level activation maps (as FDN5 in our study)
of the query image and retrieved image implies the optimal
performance of a retrieval system. With our MLSM algorithm,
these activation maps (corresponding to retrieved cases) were
more analogous (in terms of shape and location) to that of query
image compared with the conventional SLSM scheme. This
implied that our algorithm retrieved the highly correlated cases
in terms of TB patterns, location, and clinical observation.
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Figure 8. Visualization of retrieval performance for the given input query image by considering SLSM and MLSM (our proposed model). MLSM:
multilevel similarity measure; SLSM: single-level similarity measure.

In addition, we evaluated the objective similarity score in terms
of the PSNR between the activation maps of the input query
and 20 best-matched cases for both algorithms (MLSM and
SLSM). The main purpose of this analysis was to quantitatively
evaluate such feature-level similarities of both algorithms. A
total of 28 images (28/138, 20.2% of the MC data set) from the
MC data set and 132 images (132/662, 19.9% of the SZ data
set) from the SZ data set were selected as the query database to
perform this analysis. Using each query image one at a time,
we retrieved the 20 best-matched cases corresponding to each
algorithm. Thus, 20 different PSNR values were computed
corresponding to these retrieved images for each matching
algorithm. After these results for the entire selected query
database were evaluated, an average PSNR performance was
calculated to present the average performance of a single query
image for each algorithm. Figure 9 shows the comparative
performance results of our proposed MLSM algorithm and the
conventional SLSM scheme. We observed that our matching
algorithm exhibited the higher features-level similarity scores
in terms of the PSNR (for all the retrieved images and both data
sets) in contrast to the SLSM scheme. Thus, our algorithm
resulted in an optimal retrieval performance because of the
significant correlation of high-level activation maps. All these
results (Figures 8 and 9) were computed based on our selected
classification-driven retrieval method. The experimental results
provided in Table 4 have already proved that our selected class

prediction–based retrieval method outperforms the retrieval
method without class prediction.

In addition to the numerical results provided in Table 4, Figure
10 further distinguishes the retrieved results of these 2 different
approaches (ie, with and without class prediction) figuratively.
Figure 10 indicates that all the retrieved cases (for the given
query image) were TPs in our class prediction–based retrieval
method.

However, in the retrieval without class prediction, the first and
third best matches were FPs (highlighted by the red bounding
box) while the remaining three cases were TPs. Such FP cases
may lead to a vague diagnostic decision. Additionally, the
numerical results (Table 4) indicated that the average number
of FPs in retrieval without class prediction was substantially
higher than our class-prediction retrieval method. Therefore, in
this study, we considered a classification-driven retrieval by
performing the class prediction in the first step and then
retrieving the best-matched cases from the predicted class
database rather than exploring the entire database. Ultimately,
the classification results can aid in making a diagnostic decision
and the retrieved CXR images can assist radiologists to further
validate the computer decision. Furthermore, if the wrong
prediction is made by the computer, the medical expert can
check other relevant cases (ie, second-, third-, or fourth-best
matches) that can be more relevant than the first best match.
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Thus, both classification and retrieval results can aid radiologists
in making an effective diagnostic decision even in scenarios of
small TB patterns that remain undetectable in the early stage.
Such a comprehensive CAD framework may assist radiologists
in clinical practices and alleviate the burden of an increasing

number of patients by providing an effective and timely
diagnostic decision. Our trained model and the training and
testing data splitting information are publicly available [49] to
enable other researchers to evaluate and compare its
performance.

Figure 9. PSNR-based objective similarity measures between the high-level activation maps of the query image and retrieved images to evaluate
feature-level similarities of both algorithms (ie, MLSM and SLSM). MLSM: multilevel similarity measure; PSNR: peak signal-to-noise ratio; SLSM:
single-level similarity measure.
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Figure 10. Visualization of retrieval performance for the given input query image by considering both retrieval methods with class prediction and
without class prediction.
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Abbreviations
ACC: accuracy
AP: average precision
AR: average recall
AUC: area under the curve
CAD: computer-aided diagnosis
CL: class label
CNN: convolutional neural network
CXR: chest radiograph
DCNN: deep convolutional neural network
FN: false negatives
FP: false positives
FPR: false-positive rate
F1: F1 score
HoG: histogram of oriented gradients
LBP: local binary pattern
MC: Montgomery County
MLSM: multilevel similarity measure
PSNR: peak signal-to-noise ratio
ROC: receiver operating characteristic (curve)
SDCNN: shallow–deep convolutional neural network
SCNN: shallow convolutional neural network
SLSM: single-level similarity measure
SSIM: structure similarity
SVM: support vector machine.
SZ: Shenzhen
TB: tuberculosis
TN: true negative
TP: true positive
TPR: true-positive rate
WHO: World Health Organization
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Abstract

Background: Despite steady gains in life expectancy, individuals with cystic fibrosis (CF) lung disease still experience rapid
pulmonary decline throughout their clinical course, which can ultimately end in respiratory failure. Point-of-care tools for accurate
and timely information regarding the risk of rapid decline is essential for clinical decision support.

Objective: This study aims to translate a novel algorithm for earlier, more accurate prediction of rapid lung function decline in
patients with CF into an interactive web-based application that can be integrated within electronic health record systems, via
collaborative development with clinicians.

Methods: Longitudinal clinical history, lung function measurements, and time-invariant characteristics were obtained for 30,879
patients with CF who were followed in the US Cystic Fibrosis Foundation Patient Registry (2003-2015). We iteratively developed
the application using the R Shiny framework and by conducting a qualitative study with care provider focus groups (N=17).

Results: A clinical conceptual model and 4 themes were identified through coded feedback from application users: (1) ambiguity
in rapid decline, (2) clinical utility, (3) clinical significance, and (4) specific suggested revisions. These themes were used to
revise our application to the currently released version, available online for exploration. This study has advanced the application’s
potential prognostic utility for monitoring individuals with CF lung disease. Further application development will incorporate
additional clinical characteristics requested by the users and also a more modular layout that can be useful for care provider and
family interactions.
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Conclusions: Our framework for creating an interactive and visual analytics platform enables generalized development of
applications to synthesize, model, and translate electronic health data, thereby enhancing clinical decision support and improving
care and health outcomes for chronic diseases and disorders. A prospective implementation study is necessary to evaluate this
tool’s effectiveness regarding increased communication, enhanced shared decision-making, and improved clinical outcomes for
patients with CF.

(JMIR Med Inform 2020;8(12):e23530)   doi:10.2196/23530
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Introduction

Background
Cystic fibrosis (CF) is a life-limiting, recessively inherited
disease resulting from mutations in the cystic fibrosis
transmembrane conductance regulator (CFTR) gene. Irregular
functioning of the CFTR protein, which controls the transport
of water and salt across epithelial cells in different organ
systems, primarily affects the lungs [1]. Forced expiratory
volume in 1 second (FEV1), expressed as a percentage of an
individual’s predicted value based on normative standards for
age, race, height, and sex (percent predicted FEV1), is a measure
of airway obstruction and a primary indicator of CF disease
progression, severity, and efficacy of therapeutic interventions
[2]. Acute decreases in FEV1, clinically termed rapid decline,
occur throughout adolescence and adulthood. Early prediction
of FEV1 decline is critical in order to initiate preventative
interventions. Tools to predict rapid decline are crucial for
clinical decision support and timely intervention. Various
statistical models have been proposed and applied to understand
and predict CF lung function over time [3,4]. Linear
mixed-effects models with random intercepts and slopes are
commonly employed but are problematic because lung function
data are correlated within an individual over time in a potentially
more complex and nonlinear manner [5]. CF studies show that
lung function decline is nonlinear and heterogeneous; using an
exponential correlation structure can improve predictions of
lung function decline [5,6]. We recently used a nonstationary
Gaussian linear mixed-effects model [7] to predict rapid FEV1

decline using data from the US Cystic Fibrosis Foundation
Patient Registry (CFFPR) [8]. Specifically, we applied a
nonlinear model to simultaneously fit both population- and
individual-level FEV1 decline. We used integrated Brownian
motion instead of random slopes to account for longitudinal
correlation in each patient’s lung function trajectory. We
provided risk prediction of rapid decline in the form of
predictive probabilities.

Objective
This study’s objective was to translate our predictive algorithm
into an interactive web-based graphical user interface that can
be integrated with electronic health record systems and utilized
by CF care providers. Over a 3-year period, we codeveloped
the application with algorithm statisticians, programmers, and
CF care providers. We have detailed our development process,
including a multiphase study to acquire and incorporate clinician
feedback, and our technical approach. The resulting application,

Cystic Fibrosis Point of Personalized Detection (CFPOPD), is
available online [9].

Methods

Application User Feedback

Participants
This study was conducted in the Cystic Fibrosis Care Center
within the Division of Pulmonary Medicine of Cincinnati
Children’s Hospital Medical Center and was approved by the
Cincinnati Children’s Hospital Medical Center Institutional
Review Board. Individuals involved in CF clinical care were
eligible to participate; these included physicians, advanced
practice nurses, social workers, dieticians, pharmacists, and
respiratory therapists.

Procedures
Clinician feedback regarding the readability, feasibility, and
perceptions of the CFPOPD application was collected in 2
phases. In the first phase, participants were encouraged to
provide written feedback, drawings, and verbal comments. A
semistructured interview guide was tailored to assess a given
clinician’s experience in using the application. Subsequent to
the initial phase, additional feedback was gathered through
either individual, semistructured interviews, or focus groups.
Interview guides in the second phase were revised based on
previously conducted clinician focus groups and revisions to
the application. Clinician feedback was recorded and transcribed
by MT-STAT, a commercial medical transcription company,
and it was subsequently verified for accuracy and de-identified
by study staff. When discussion prompted examples of specific
patients or providers were referenced, names, places, family
relationships, and other potentially identifying data were
removed from the transcript [10].

Analysis
Initial interviews were analyzed using thematic analysis [11]
in which transcribed data were used to generate codes based on
participant feedback and were then grouped according to the
arising motifs. These resulting themes and subthemes were used
to advance application development.

Application Development

Data and Algorithm Development
The source of patient data used during CFPOPD development
and the algorithm’s development and validation has been
described in detail elsewhere [8]. Briefly, we obtained data for
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30,879 patients from the US CFFPR from 2003 to 2015 to train
and validate our algorithm. Our model exhibited excellent
predictive accuracy. Mean absolute percentage errors for the
forecasted FEV1 values in the validation sample for 6-month,
1-year, and 2-year intervals were within 5.6%, 6.9%, and 8.6%
of patients’ actual values, respectively. CFPOPD displays data
from 4847 patients from the validation sample. Data within
CFPOPD were de-identified by jittering demographic and
clinical measurements and reassigning a separate identifier for
the purpose of application development. Patients with CF
contributed data to the registry at regular clinic visits that
typically occurred at least once every 3 months and during
suspected pulmonary exacerbations. The algorithm requires the
input of a patient’s longitudinal clinical history, including FEV1,
the number of pulmonary exacerbations in the last year, the
number of clinic visits in the past year, the presence of
CF-related diabetes, the presence of chronic Pseudomonas
aeruginosa (Pa) infection, the presence of a persistent
methicillin-resistant Staphylococcus aureus (MRSA) infection,
and their utilization of public or private insurance. Furthermore,
the algorithm takes as inputs time-invariant characteristics,
including age and FEV1 at entry, year of birth categorized into
different cohorts, sex, and the number of F508del alleles.

Software Development
CFPOPD was built using R (version 3.6.1; R Core Team) [12]
and R Shiny (version 1.4.0.2; RStudio) [13], a framework for
interactive web applications and data visualization using R.
Other packages used for development included emo,

flexdashboard (version 0.5.1.1; RStudio), and plotly (version
4.9.2.1; Plotly) [14-16]. The software version control platform
git was used to manage changes to the source code and
implement modifications to CFPOPD functionality and features.
The source code was hosted on GitHub, where multiple
developers could track modifications to the source code,
document software issues, and catalog major revisions through
software releases. Each versioned release of the CFPOPD web
application was deployed within a Docker container and stored
on DockerHub to ensure a reproducible and automated
workflow. A public version of the application suitable for
interactive exploration is hosted online [9]. This paper describes
version 7.1 of the software application.

Results

Initial Application Development
The progression of our application development is depicted in
Figure 1 and shows screenshots of 4 CFPOPD versions (versions
1, 3, 5, and 7.1) in which significant revisions were
implemented. Preliminary clinician feedback from CF chart and
data conferences provided a blueprint for a bootstrap layout and
structure, which was developed during the first 3 versions of
CFPOPD [17]. The underlying layout and structure from
CFPOPD (version 3) prior to formal clinician feedback remain
the same in the current version, 7.1 (Figure 1). Clinician
participants formally reviewed versions 3 and 7.1, and a subset
of participants commented on intermittent updates to CFPOPD.

Figure 1. Progression of Cystic Fibrosis Point of Personalized Detection (CFPOPD) across multiple versioned releases. From versions 1 (top left) to
3 (top right), additional pulmonary function plots for the rate of forced expiratory volume in 1 second (FEV1) change and the risk of rapid decline was
added. In version 5 (bottom left), users were given the ability to adjust the delta threshold to calculate the risk of rapid decline, and covariate information
was moved to a table in the farthest right panel rather than a banner at the bottom of the application screen. The addition of a checkbox to visualize the
initiation of modulator use was a key feature in version 7 (bottom right).

The leftmost sidebar of the application includes filtering options
to enable a clinician to subset the data based on model covariates

and other patient-level characteristics (Figure 2). Users can
select a patient to explore via a drop-down list of identification
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numbers. Patient data can also be filtered by toggling a sidebar
checkbox and slider features for patient age at entry (coded as
the first record available in the CFFPR registry data), FEV1 at
entry into the registry, patient sex, birth cohort group, F508del
copies, chronic Pa, and persistent MRSA. The list of patient
identification numbers is conditional on which features are

selected and the available data. For example, if the user alters
the minimum value for age at entry to 16 years of age, only
patients 16 years of age or older will be available for selection.
Similarly, a text box above the drop-down list displays changes
dynamically and displays the number of patients available based
on the selected filters.

Figure 2. Leftmost panel of Cystic Fibrosis Point of Personalized Detection (CFPOPD). The drop-down menu shows patient 341 has been selected.
Users can subset the patient sample by toggling options for sex, birth cohort, genotype (F508del copies), Pseudomonas aeruginosa (Pa) and Staphylococcus
aureus (MRSA) infections, and forced expiratory volume in 1 second (FEV1) and age at entry into the US Cystic Fibrosis Foundation Patient Registry.
A slider rule allows a user to select a delta threshold that is clinically relevant to a specific patient. Checkboxes allow users to select what data is viewable
in the pulmonary function plots [ie, population norms, fitted and forecasted values, pulmonary exacerbations (PEs), and modulator use]. In the pictured
instance, all subset and data viewing options have been selected.

CFPOPD has 2 main plot windows. The middle panel of our
current application (Figure 3) displays pulmonary function data

recorded over a patient’s years of clinical follow-up via 3 faceted
plots: observed percent predicted FEV1 (top), predicted rate of
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FEV1 decline (middle), and predicted risk of rapid decline
(bottom). Together, these 3 plots facilitate clinical interpretation
of a patient’s historical and future lung function trajectory.
Bands surrounding each FEV1 trajectory line show 95%
confidence intervals to demonstrate the degree of uncertainty.
Bands for fitted values are colored gray, and bands representing
2-year forecasted values are beige. For the 2-year forecasted
period, we show the predictions holding this interval of data
out of the model (the red trend line shown in each plot); the
gray trend lines represent the predictions with the data included

in the model. Both sets of trend lines were presented to clinician
focus group participants in order to show model fit and
transparency. In addition to filtering options, users can choose
what underlying data is viewable in pulmonary function plots.
In version 3, one toggle was made available that allowed users
to view population norms for the FEV1 rate of change and
observed values. Normative data is generated through dynamic
medians, which are computed based on the available patient
data as specified by the filtering options; this was a suggestion
from the aforementioned work soliciting informal feedback at
chart review and data conference sessions [17].

Figure 3. Middle panel of Cystic Fibrosis Point of Personalized Detection (CFPOPD). The 3 plots show pulmonary function data from patient 341.
The top plot displays the patient’s % predicted forced expiratory volume in 1 second (FEV1) values (circles) recorded during pulmonary function testing,
as well as the patient’s fitted (gray line) and forecasted (red line) values. Pulmonary function values recorded at the time a patient experienced a pulmonary
exacerbation are colored red. A dotted line shows normative data (dynamic medians) respective to the patients % predicted values and rate of change
in FEV1 (middle plot). The plot shows that the patient’s rate of change in FEV1 fluctuated initially but has remained stable from ages 24 to 32 years.
Compared to the overall norms, patient 341’s rate of change is analogous to other patients. Similarly, the patient’s risk of rapid decline initially fluctuated
but declined and stabilized (bottom plot). All plots show that patient 341 was prescribed a modulator at 31 years of age (blue line; ivacaftor) and a
second modulator at 32 years of age (green line; lumacaftor/ivacaftor).
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The rightmost window in version 7.1 of CFPOPD (Figure 4)
presents patient longitudinal covariate data and other disease
status information such as the number of pulmonary
exacerbations (denoted as “PEs” on the app) in the previous
year, persistent MRSA, and CF-related diabetes. In version 3
of CFPOPD, this data was displayed using points plotted over
time and colored to correspond to continuous and dichotomous

variables, including the presence (red) or absence (gray) of
clinical characteristics. Lastly, CFPOPD also displays
time-invariant covariate information such as the selected
patient’s starting age, birth cohort, sex, and number of F508del
copies. In version 3, these were shown in a horizontal table
below the plotting windows.

Figure 4. Rightmost panel of Cystic Fibrosis Point of Personalized Detection (CFPOPD). The covariate table (bottom) shows that patient 341 is female,
born between 1981 and 1988, enrolled in the Cystic Fibrosis Foundation Patient Registry at age 20, had a baseline of 84% predicted forced expiratory
volume in 1 second (FEV1), and is homozygous for F508del copies. The top bar plot shows that she has had few pulmonary exacerbations (PEs) but
numerous clinic visits throughout her clinical history. Binary covariate plots (middle) indicate that she has been diagnosed with cystic fibrosis (CF)-related
diabetes and had not developed Staphylococcus aureus (MRSA) infection but has experienced chronic Pseudomonas aeruginosa (Pa) infection since
age 20. The plots for insurance type indicate that she utilized public insurance at entry and transitioned between public and private insurance, beginning
at around 25 years of age.
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CFPOPD also features an ‘About’ tab in the top banner that
describes the purpose of the application, defines
application-specific terms, and instructs users how to use the
data filtering and data viewing options. This section also
provides a narrative of the clinical history and covariate
information for an example patient (186) to illustrate CFPOPD’s
utility in clinical practice.

A key feature of CFPOPD is the interactivity of pulmonary
function and covariate plots. Users have the capability to zoom
in and pan across a specific year in a patient’s clinical history.
Faceted FEV1 plots are also linked. For example, if a user zooms
to a specific range of ages in the bottom pulmonary function
plot where a patient’s risk of rapid decline appears to change,
the same period of interest will be displayed in the plots for
FEV1 derivative and observed FEV1 values. The scales on the
x- and y-axes also change dynamically. An additional interactive
feature includes text hovering. When a user scans across the

plots with the cursor, a text window will display the values of
the underlying data.

Focus Group and Conceptual Model
A total of 17 clinicians (6 attending pulmonologists, 1 nurse
practitioner, and 10 pulmonary research fellows) participated
in 2 formal focus group sessions (Table 1). The first session
included attending physicians and a nurse practitioner, while
the second session included fellows. Fellows were grouped
separately from attending physicians and other standing
members of the care teams, given their roles as trainees. Select
participants from the attending and nurse practitioner session
were followed up in individual interviews for additional
feedback after CFPOPD updates were made based on the focus
group. We followed up with a subset of 3 participants from the
fellows’ session. Participants were chosen for follow-up based
on the salience of their feedback. Prior iterations garnering
feedback through CF-specific chart and data conferences
consisted of 35 members across the clinical care teams.

Table 1. Focus group participant (clinician) characteristics (n=17).

Total (n=17), n (%)Men (n=8), n (%)Women (n=9), n (%)Clinician characteristics

Ethnicity

2 (12%)2 (25%)0 (0%)Hispanic or Latino

15 (88%)6 (75%)9 (100%)Not Hispanic or Latino

Race

1 (6%)0 (0%)1 (11%)Asian

2 (12%)1 (12%)1 (11%)Black/African American

14 (82%)7 (88%)7 (78%)White

As a result of focus group sessions, we developed a conceptual
model of clinician perceptions toward rapid decline and
CFPOPD integration (Figure 5). Key a priori discussion points
were the definition of rapid decline, challenges to CFPOPD
utility, and revisions (yellow boxes). The first discussion point
illuminated how clinicians use different communication
techniques with families as opposed to care teams when referring
to the rate of decline. Clinicians expressed hesitation with using
the phrase “rapid decline.” There was also difficulty expressed
in the concept of “rate of decline” and how to conceptualize
rate as velocity. Challenges to CFPOPD utility, which prompted
ways to improve the application, focused on electronic health
record (EHR) accessibility, distinguishing change in FEV1 from

artifacts, and the desire to have a decision support tool that could
help reveal patterns in FEV1 trajectories. Actionable revisions
included the development of dynamic medians, which allowed
for the use of normative data and customizable graphics.
Participants described how CFPOPD could be used to strengthen
conversations with patients and families, particularly in
promoting adherence to therapies. Another identified area of
potential clinical significance was its use in communicating
rapid disease progression during inpatient settings, as CFPOPD
could serve as a motivation to improve the clinical course or
initiate antibiotic therapy to raise lung function levels. Targeted
interviews prompted further CFPOPD developments.
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Figure 5. Conceptual clinical model of rapid decline. Larger yellow-shaded boxes with bold text represent key discussion points during focus group
sessions. The first half of the diagram summarizes clinician understanding and discussion with other care team members and patients/families. Clinicians
translated concepts of rapid decline into optimizing Cystic Fibrosis Point of Personalized Detection (CFPOPD) data visualization/monitoring capabilities.
The second half represents CFPOPD integration and clinical utility. Clinicians identified challenges to the user interface and suggested revisions. The
rightmost boxes represent clinician feedback on how the use of CFPOPD would change the conversations with families or otherwise be helpful.

Based on coded feedback from focus group participants and
semistructured interviews, 4 primary themes were identified,
providing granularity to the conceptual model in Figure 5. Each
theme and corresponding illustrative quotes from focus group
participants are shown in Textbox 1. Clinicians expressed
uncertainty regarding the definition of rapid lung function
decline (list 1, Ambiguity). The other 3 themes focused on the
CFPOPD application’s utility, clinical significance, and
suggested revisions (lists 2-4). CFPOPD facilitated the
clinicians’ ability to decipher trends in a patient’s FEV1,
recognize when a patient may be at risk of rapid FEV1 decline,
and assist in determining the clinical impact of treatment
interventions. Focus group participants stated that CFPOPD
may be a useful educational tool (list 2, quotes a-d). Visualizing
a patient’s clinical history assisted clinical adjudication (list 2,
quotes e-f). Still, some care providers expressed concern that

the CFPOPD may cause confusion in patient and family
interactions (list 2, quotes g-h). Clinician feedback demonstrated
that our application had the potential to advance clinical practice
by facilitating decision-making, discussions with patients, and
identification of rapid decline. Care providers articulated that
incorporating CFPOPD into previsit planning meetings would
improve point-of-care decision-making and facilitate
conversations between families and the care team (list 3, quote
a). Physicians stated that visualizing a patient’s risk of rapid
decline may also be used as a motivator by eliciting treatment
adherence (list 3, quote b). Clinicians recognized the value of
CFPOPD and the capability to advance clinical practice (list 3,
quotes c-f). Caution was expressed regarding its impact during
inpatient visits, as it could serve as a demotivator (list 3, quote
g). Provider feedback regarding revisions to CFPOPD has been
critical to ensuring our instrument is translational, relevant, and
impactful in clinical practice (list 4, quotes a-d).
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Textbox 1. Emergent themes and accompanying quotes from clinician focus groups.

Defining Rapid Decline:

• 1. Ambiguity

a. “[I am] more likely to refer to the curve in a clinical setting than to a threshold that is going to capture almost every patient.”

b. “Really hard to define.”

c. “If we were able to tweak [the definition] ‘rapid decline’…go for minimal change in lung function over time as opposed to something that
might be more realistic for the patient.”

Cystic Fibrosis Point of Personalized Detection (CFPOPD) Application:

• 2. Utility

a. “Oh my gosh, it’s just what I wanted.”

b. “Yes, [I] would use graphs in preclinic meetings.”

c. “… helpful both on a sort of clinical decision-making side and describing it to families’ side.”

d. “As a fellow trainee, I feel sometimes that it’s really difficult for me to see that big picture.”

e. “Great that hovering gives you the exact numbers.”

f. “If you can show some improvement in the derivative, in the trajectory, it's more cause for optimism.”

g. “I don’t think it would be helpful at all to show a family. I think it is complicated for families; it’s complicated for me.”

h. “I like graphs in talking with families, but as a clinician, I think the only one I would feel comfortable using would be the top one.”

• 3. Clinical Significance

a. “If you have a visual representation like that, it would be substantially more helpful than me verbally saying, ‘You’re getting worse faster
than we think you should.’”

b. “I would definitely show a 16-year-old who is noncompliant…‘if you don’t step it up, this is where you are going.’”

c. “10 years ago, we were just trying to look at random pieces of paper, and we never could see any of this whatsoever.”

d. “… put this in Epic.”

e. “These are things you can intervene on if you knew 5 years ago this trend was coming.”

f. “If you look at any clinical trial or any aspect of medicine, the more frequent your intervention is, the more frequent your clinic visits, the
more frequent you’re ahead of this data, the better your outcomes.”

g. “… billboard of death.”

• 4. Revisions

a. “Customize threshold for rapid decline…if you want to call rapid as 3% or as 6% or 10%...you can play with that.”

b. “Add mutation classes and modulator therapy use.”

c. “Categorize continuous covariates based on clinical severity.”

d. “Different dots and colors…what’s bad and what’s steady.”

Further Application Development
Our collaborative approach to developing CFPOPD has allowed
our team of programmers to prospectively track its evolution,
as shown in Figure 1. Data filters, pulmonary function
data-viewing options, covariate information, coloring according
to values, and icon typography were added to the application
based on feedback received from clinical application users.
Subsequent to clinician feedback, we implemented a feature to
enable users to adjust the threshold value for percent predicted
FEV1 loss or delta threshold, used to calculate a patient’s risk
of rapid decline (Textbox 1, list 4, a). This threshold can be
modified by manipulating the slider to the desired value, which

ranges from -10% to 0.5% (Figure 2). The default threshold of
-1.5% predicted/year was chosen previously [17].

We incorporated CF registry data on modulator use and mutation
type (Textbox 1, list 4, b) through a checkbox in the left sidebar
(‘Show Modulator Use?’). If a patient has been prescribed a
modulator, vertical lines are shown on each pulmonary function
graph at the age medication was first administered (Figure 3).
When hovering over the vertical line, a window stating the name
of the medication and age at administration is displayed. The
names of each patient’s CFTR gene mutations were added to
the covariate table (Figure 4).
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Clinician feedback (Textbox 1, list 4, c-d) to categorize covariate
information and assign clinical severity based on color was
applied to pulmonary exacerbation and visit frequency plots.
Pulmonary exacerbations are acute respiratory events that can
emerge from precipitous drops in lung function. We revised the
color scheme according to a categorical designation versus the
continuous scale from version 3. Occurrences greater than 5 are
colored red to designate an exceedance of the clinical threshold
(Figure 4). In order to enhance a clinician’s ability to visualize
pulmonary exacerbations and rapid decline, a checkbox option
(‘Highlight PEs?’) was added to the left sidebar (Figure 2).
When checked, a patient’s FEV1 value in the top pulmonary
function plot will be colored red if a pulmonary exacerbation
was observed (Figure 3).

Other CFPOPD revisions were based on informal feedback or
implemented to optimize application functionality and
comprehension. To maximize the space to visualize pulmonary
function plots, we repositioned the covariate table underneath
the covariate dot plot (Figure 4). We also increased the pixel
width of the pulmonary function plots to improve readability
and a checkbox that allowed users to toggle whether patient
FEV1 values are displayed in the top pulmonary function plot
(‘Show Fitted and Measured Forecasts?’). Depending on the
number of spirometry results, removing FEV1 values from the
plot may facilitate a clinician’s ability to decipher rapid decline
(Figure 3). These revisions were completed under CFPOPD
version 4.

We supplemented the covariate table with emojis to increase
the ease of visual interpretation, implemented in version 5.
Where applicable, emojis change dynamically according to the
age and sex of the selected patient. The standard symbol for
either male (♂ ) or female (♀ ) is shown to communicate the
selected patient’s sex, and depending on if the patient is younger
or older than 18 years of age, either a girl, boy, woman, or man
emoji is shown to communicate the starting age.

Lastly, binary dot plots of the number of PEs and clinic visits
a patient experienced in the previous year were modified to bar
plots in version 6. In addition to colored bars indicating clinical
severity, this second dimension enhances a user’s ability to
visually evaluate a patient’s clinical trajectory.

Discussion

Principal Findings
We developed and coproduced an interactive web application
designed to facilitate clinical point-of-care decision-making by
predicting acute pulmonary function decline in patients with
CF. We conducted focus groups with clinicians and CF care
providers to garner feedback on a prototype application [17]
and used this feedback to further develop the application in
order to advance its utility for clinical care.

Clinicians suggested insightful and actionable CFPOPD
revisions, which we incorporated over the course of 4 versioned
releases. A principal revision was to add a feature enabling care
providers to tailor the delta threshold according to their clinical
judgment and characteristics of an individual patient.

Implementing this capability was paramount to ensure CFPOPD
was applicable in clinical practice. Adding this feature also
manifested in a related theme regarding uncertainty toward a
single clinical definition of “rapid decline.”

With the advent of modulator therapies, another requested
modification was to include visualization of modulator use and
descriptive text to communicate patient mutations. While
numerous therapies exist to mitigate and treat acute symptoms
in CF, modulator therapies act at a molecular level to restore
function to CFTR protein [1,18]. By enabling care providers to
detect when a patient is at risk for acute decline in pulmonary
function, CFPOPD may facilitate clinical judgment and
decision-making regarding the initiation of acute therapies, such
as intravenous antibiotics. Previous research has shown that a
treatment of acute drops in FEV1 using intravenous antibiotics
improved long-term pulmonary function [19]. Similarly, if a
patient is currently prescribed a modulator, our application
allows care providers to track a patient’s lung function
prospectively and assess the effectiveness of personalized
treatment regimens. CFPOPD has implications for emerging
studies involving patient withdrawal of maintenance therapies,
given observed effectiveness for select combinations of
mutations and modulators.

Technological advances in electronic data storage have
transformed the management of medical records, greatly
increasing the volume of data accessible to researchers,
clinicians, and patients [20]. This abundance of information has
yielded opportunities for novel development of interactive
applications to synthesize, model, and translate EHR data [21].
Web-based applications have been employed across research
and medical domains, ranging from infection management [22]
to personalized mental health monitoring [23]. Likewise, others
have leveraged visual analytics to translate results from complex
statistical techniques used in EHR research, such as
case-crossover design [24] and hierarchical clustering [25], into
a comprehensible form. We sought to develop CFPOPD in order
to improve point-of-care decision-making, and feedback from
clinicians at our institution demonstrates our application has
the potential to do so. Furthermore, clinician responses also
indicate CFPOPD may promote communication and shared
decision-making. Previous research indicates that participatory
decision-making between physicians and their patients results
in greater patient satisfaction [26]. Care providers noted that
CFPOPD use may encourage adherence among patients with
CF that are noncompliant, and there is empirical evidence to
support this. Heisler et al [27] have shown that effective
communication and shared decision-making are associated with
positive diabetes self-management.

Limitations
Although our results indicate that CFPOPD has the potential to
positively impact clinical care, some feedback suggests that
care provider comprehension is not universal. Additional
training may be necessary before our application is fully
deployed for clinical practice. Some discord existed among
physicians as to whether our application would facilitate
conversations between patients/families and the clinical care
team, as clinicians expressed differing opinions regarding
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approaches to communicate a high risk of rapid decline. To
accommodate this limitation, future revisions to CFPOPD could
include additional options that allow care providers to customize
CPOPD’s layout by selecting only plots that are relevant to the
patient-provider discourse. Currently, CFPOPD is limited to
existing fields available from the CFFPR data. Risk calculations
are not computed in real time; rather, values are pulled from
precomputed lookup tables. While our application demonstrates
the predictive accuracy of our algorithm, further development
is needed to integrate CFPOPD into near real-time clinical
practice. Lastly, our findings are based on a single-center study
(Table 1). We anticipate drawing a larger, more diverse sample
of care teams in future multicenter studies assessing CFPOPD
feasibility and acceptability.

Future Work
Our future work will address CFPOPD limitations; chiefly, we
will strive to implement CFOPD into an EHR system to provide
“now-casting,” or near real-time statistical predictions of rapid
decline. In addition to rapid decline, a similar area of extension
is to calculate risk probabilities for pulmonary exacerbation
onset. Recently, a data-driven definition for pulmonary
exacerbation has been proposed and is being tested by the Cystic
Fibrosis Learning Network [28]. Making CFPOPD available
for use in clinical practice will enable assessment of its impact
on clinical practice and patient outcomes. It may be desirable

for patients to access their longitudinal data as well, which could
potentially be made available to patients through the medical
institution’s patient portal. Given emerging public health issues
and a drastic increase in telehealth, integrating home spirometry
into CFPOPD may become a critical priority. Combined with
access to the CFPOPD application through a care provider’s
patient portal, this extension could facilitate home monitoring
and diagnosis of acute drops in lung function among patients
with CF being clinically followed via telemedicine. The
developmental framework outlined herein is capable of
adaptation to different clinical markers or chronic diseases, such
as diabetes and asthma, for which longitudinal tracking is
valuable.

Conclusions
We developed CFPOPD to translate a novel predictive algorithm
into an interactive clinical tool to enhance early detection and
forecasting of rapid pulmonary function decline in patients with
CF. Our application was built through an iterative and
collaborative process among programmers, statisticians, and
clinicians. We have demonstrated that this framework of
collaborative design between developers and end-users is
successful, capable of delivering an impactful product, and may
be generalized to other chronic diseases and disorders that rely
on routinely collected clinical data for medical monitoring and
decision-making.
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CFTR: cystic fibrosis transmembrane conductance regulator
EHR: electronic health record
FEV1: forced expiratory volume in 1 second
MRSA: methicillin-resistant Staphylococcus aureus
Pa: Pseudomonas aeruginosa
PEs: pulmonary exacerbations
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Abstract

Background: A lifelogs-based wellness index (LWI) is a function for calculating wellness scores based on health behavior
lifelogs (eg, daily walking steps and sleep times collected via a smartwatch). A wellness score intuitively shows the users of smart
wellness services the overall condition of their health behaviors. LWI development includes estimation (ie, estimating coefficients
in LWI with data). A panel data set comprising health behavior lifelogs allows LWI estimation to control for unobserved variables,
thereby resulting in less bias. However, these data sets typically have missing data due to events that occur in daily life (eg, smart
devices stop collecting data when batteries are depleted), which can introduce biases into LWI coefficients. Thus, the appropriate
choice of method to handle missing data is important for reducing biases in LWI estimations with panel data. However, there is
a lack of research in this area.

Objective: This study aims to identify a suitable missing-data handling method for LWI estimation with panel data.

Methods: Listwise deletion, mean imputation, expectation maximization–based multiple imputation, predictive-mean
matching–based multiple imputation, k-nearest neighbors–based imputation, and low-rank approximation–based imputation were
comparatively evaluated by simulating an existing case of LWI development. A panel data set comprising health behavior lifelogs
of 41 college students over 4 weeks was transformed into a reference data set without any missing data. Then, 200 simulated data
sets were generated by randomly introducing missing data at proportions from 1% to 80%. The missing-data handling methods
were each applied to transform the simulated data sets into complete data sets, and coefficients in a linear LWI were estimated
for each complete data set. For each proportion for each method, a bias measure was calculated by comparing the estimated
coefficient values with values estimated from the reference data set.

Results: Methods performed differently depending on the proportion of missing data. For 1% to 30% proportions, low-rank
approximation–based imputation, predictive-mean matching–based multiple imputation, and expectation maximization–based
multiple imputation were superior. For 31% to 60% proportions, low-rank approximation–based imputation and predictive-mean
matching–based multiple imputation performed best. For over 60% proportions, only low-rank approximation–based imputation
performed acceptably.

Conclusions: Low-rank approximation–based imputation was the best of the 6 data-handling methods regardless of the proportion
of missing data. This superiority is generalizable to other panel data sets comprising health behavior lifelogs given their verified
low-rank nature, for which low-rank approximation–based imputation is known to perform effectively. This result will guide
missing-data handling in reducing coefficient biases in new development cases of linear LWIs with panel data.

(JMIR Med Inform 2020;8(12):e20597)   doi:10.2196/20597
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Introduction

Background
Smart wellness services are designed to help individuals monitor
their own wellness through smart devices, including
smartphones and smartwatches [1]. Reports indicate that these
services will see exponential growth alongside continued smart
device penetration and the increasing size of the wellness market
[2]. Their popularity is further evidenced by the high number
of mobile health apps, with around 325,000 available in app
stores in 2017 [3,4].

Smart wellness services can collect various health behavior
lifelogs through the aid of smart devices [5]. For example,
smartwatches, such as Fitbit, can record daily walking steps,
total distances, and the number of sleeping hours [6], while
smart patches, such as HealthPatch, can monitor heart rate,
breathing rate, skin temperature, posture, number of walking
steps, activity patterns, and sleep habits [7]. There are also
devices for infants, such as Owlet smart socks, that send the
child’s vital signs to their parents via smartphones, including
information on heartrate, oxygen level, skin temperature, sleep
quality, and sleeping position [8].

Existing smart wellness services utilize health behavior lifelogs
to provide users with detailed records about health behaviors
[9]. Fitbit provides a smart wellness service that primarily shows
users detailed activity records (eg, daily walking steps), exercise
habits (eg, type, time, and duration), sleep information (eg, start
and end times), and dietary facts (eg, daily calorie intake). By
focusing on the details of each health behavior, existing smart
wellness services have a limitation in supporting users to easily
identify their aggregate condition from multiple health
behaviors. Users must synthesize the information, making it
difficult to monitor overall progress.

A lifelogs-based wellness index (LWI), a function that
transforms health behavior lifelogs into wellness scores for
smart wellness service users, resolves this limitation [10]. The
wellness scores quantitatively represent how well the user meets
relevant recommended health behaviors. Such information,
including a user’s current or past wellness scores, wellness score
progress over time, and comparisons of their wellness scores
[11], can be offered by smart wellness services. According to
Platt et al [12], a wellness index is a critical feature of wellness
apps for younger demographics. The utility of LWIs is thus
expected to stimulate new LWI development .

An LWI can be developed through 3 key phases: definition,
estimation, and assessment [10,11]. The definition phase refers
to the selection of the LWI function type and a model for
estimating the function that consists of behavior variables and
a proxy variable as its independent variables and dependent
variable, respectively. The behavior variables are potential
constituents of an LWI, while the proxy variable is used in place
of wellness scores, immeasurable during the development
process. The estimation phase refers to the process of estimating

the coefficients of the behavior variables in LWIs by collecting
and preprocessing data, which are then fit with the estimation
model. The assessment phase refers to the assessment of LWI
generalizability and utility for users.

LWI estimation can lead to the reduction of coefficient biases
through a panel data set of health behavior lifelogs. A panel
data set follows a given sample of participants over time, thus
providing multiple observations for each participant. Existing
panel data analysis methods (eg, 1-way random effects
regression) can only be applied to panel data sets. These methods
can reduce biases in the coefficients by controlling for
heterogeneity across participants, which is caused by unobserved
variables [13].

A panel data set comprising health behavior lifelogs will likely
contain large proportions of missing data. Such a data set is
collected based on everyday user activities and is therefore
exposed to various random events that result in missing data.
For example, users may forget to wear smart devices or to record
health behavior lifelogs, and the smart devices themselves will
no longer record health behavior lifelogs when batteries are
depleted. These random events often lead to large proportions
of missing data. For example, missing data accounted for 18%
of a panel data set in an LWI development case [10]. This rate
was considered high considering that participants received
reminders for the data collection.

Missing data can lead to 2 severe problems when attempting to
estimate LWI coefficients. First, it can introduce biases to the
coefficients [14,15]. This leads to low LWI generalizability for
users. Second, most existing data analysis methods are only
applicable to complete data sets (ie, data sets without missing
data). Thus, incomplete data sets must be modified into complete
ones [16]. A variety of missing data handling methods exist to
address these problems, the choice of which becomes
increasingly significant as the proportion of missing data
increases [17]. However, few studies have identified which
existing method is suitable for handling missing data in a panel
data set that is composed of health behavior lifelogs.

This study identified a suitable method for LWI estimation with
panel data based on an examination of 6 representative
missing-data handling methods: listwise deletion, mean
imputation, expectation maximization–based multiple
imputation, predictive-mean matching–based multiple
imputation, k-nearest neighbors–based imputation, and low-rank
approximation–based imputation. These were selected from
common missing-data handling methods from previous studies,
specifically because they represented possible missing-data
handling approaches in the context of LWI estimation.

The 6 abovementioned missing-data handling methods were
comparatively evaluated for various missingness proportions
of a panel data set by simulating an LWI development case
originally presented by Kim et al [10]. The case estimated the
coefficients in a linear LWI with a panel data set composed of
health behavior lifelogs. Such cases are expected to become
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prevalent because linear functions help users understand how
changes in each behavior variable influence their overall
wellness scores [18]. This advantage of linear LWIs enables
users to obtain 2 types of valuable insights. First, users can
easily see which behavior variables substantially decrease or
increase their wellness scores, thus motivating them to manage
those variables. Second, users can create optimized plans for
improving their wellness scores based on the relative effects of
each behavior variable. Linear functions are also already
prevalent in existing wellness-related indexes (eg, [10,19,20]).

Missing-Data Handling Methods
Missing-data handling can be divided into 4 approaches,
including complete case analysis, single imputation, multiple
imputation, and joint model-based imputation (Figure 1).
Complete case analysis excludes observations with missing
values when analyzing data [21]. Single imputation produces
only one complete data set by imputing missing values [22].
Multiple imputation creates multiple imputed data sets, applies
a statistical analysis model to each one, and ultimately combines
all analysis results to create an overall result [23]. Joint

model-based imputation utilizes different distributions to model
individuals with and without incomplete observations or directly
models the relationship between the probability of a variable
being missing and its missing value [24].

When selecting these 4 approaches, previous studies have used
the missingness proportions and missingness mechanisms of
data sets as major criteria for ensuring adequate selection for
the data sets [25,26]. The missingness proportion is the ratio of
the amount of missing values to the amount of missing and
nonmissing values in the data set. The missingness mechanism
can be divided into 3 types [14], including missing completely
at random, missing at random, and missing not at random. First,
missing completely at random is not related to any nonmissing
or missing values in the data set. Second, missing at random
entails that the missingness is independent of the missing values
and is also conditional on nonmissing values. Third, the
mechanism is missing not at random when the missingness
depends on the missing values. As shown above, Figure 1
outlines the current recommendations for selecting adequate
approaches based on both the missingness proportion and
missingness mechanism.

Figure 1. Existing recommendations for missing data handling.

A panel data set of health behavior lifelogs is likely to contain
5% or more of incomplete observations with a missingness
mechanism similar to missing completely at random. This
property is attributed to a variety of random daily events that
result in missing data. For example, the LWI development case
presented by Kim et al [10] showed an 18% proportion of
incomplete observations even though participants received

interventions reminding them about the need to collect data.
Participants also reported that random daily events resulted in
missing or abnormal data, specifically including issues such as
forgetting to wear a smartwatch or not entering data via the
smartphone app, depleted smartwatch batteries, and data
transmission errors. Based on the flowchart shown in Figure 1,
3 of the missing-data handling approaches may be implemented
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for this property of a panel data set composed of health behavior
lifelogs, including the complete case analysis, single imputation,
and multiple imputation.

The 6 missing-data handling methods presented in Table 1 were
selected to represent the complete case analysis, single
imputation, and multiple imputation [21,27-31]. These methods
are known to yield similar results given low missingness
proportions (eg, less than 5% incomplete observations) [17,32].
The choice of missing-data handling method is known to become

increasingly significant as the missingness proportion increases
[17,32].

However, few previous studies have recommended which of
the 6 missing-data handling methods are suitable for reducing
coefficient biases according to the missingness proportion of a
panel data set composed of health behavior lifelogs. This study
filled that gap in the literature by comparatively evaluating the
LWI coefficient biases of the 6 missing-data handling methods
according to the missingness proportion of exactly such a panel
data set.

Table 1. Representative missing-data handling methods applicable for LWI estimation.

DescriptionApproach and method

Complete case analysis

Excludes all observations with missing values to conduct analysisListwise deletion [21]

Single imputation

Imputes each missing value of a variable with the mean of observed values of the
variable

Mean imputation [21]

Imputes each missing value of a variable based on the observed values of the k-
nearest neighbors

k-nearest neighbor–based imputation [30]

Predicts missing values as a linear combination of a small set of singular vectorsLow-rank approximation–based imputation [29]

Multiple imputation

Draws imputed values from the multivariate normal distribution of the data set esti-
mated by expectation–maximization; multiple imputed data sets are estimated by
repeating the imputation and separately analyzed; analysis results are pooled into
the final result

Expectation maximization–based multiple imputation [28]

Substitutes a missing value with a value randomly from complete observations, with
regression-predicted values that are closest to the regression-predicted value for the
missing value from the simulated regression model; multiple imputed data sets are
estimated by repeating the imputation and separately analyzed; analysis results are
pooled into the final result

Predictive-mean matching–based multiple imputation [31]

Methods

Development Case: LWI for College Students
We previously developed an LWI for college students [10]. As
a component of Onecare, a smart wellness service that supports
individual-level health behavior monitoring for Korean college
students based on their health behavior lifelogs, the index was
developed to calculate daily wellness scores from lifelogs, thus
intuitively showing users whether they were meeting
recommended daily health behaviors. Daily wellness scores
ranged from 0 to 100, indicating the worst and best conditions,
respectively. The index was defined as a linear function

consisting of 7 behavior variables (see Table 2), representing
the critical health behaviors that Korean college students needed
or wanted to manage. All such behaviors were identified based
on expert interviews, target-user group discussions, and a
literature review. As the daily wellness score was immeasurable
during the development process, its proxy variable was also
defined to estimate the index. More specifically, the proxy
variable was the perceived score described in Table 2. Previous
studies have regarded these types of perceived scores as valid
measures for representing health. For example, patient-reported
outcome measures are increasingly used in medical studies to
represent psychometric self-evaluations of patient health [33,34].
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Table 2. Variable descriptions.

Description (value meaning)Category and variable

Behavior variable

Student’s self-rating of the day’s breakfast (or lunch or dinner) based on nutrition (0: skip, 33: low, 66: medium,
100: high)

Breakfast (or Lunch or Dinner)

Whether the student exercises or works out for more than 30 minutes during the day (0: no exercising, 100:
exercising)

Exercise

Percentage indicating a ratio that the total number of walking steps in the day reached 10,000Step achievement

Percentage that the student’s sleep duration reached 7 hours between 6 PM of the previous day and 6 PM of the
current day

Sleep duration achievement

Percentage that the student slept during the golden time, which is 10 PM of the previous day to 2 AM of the
current day

Golden time achievement

Proxy variable

Score that the student determines by evaluating overall condition of their critical health behaviors over the dayPerceived score

To establish an intuitive scoring system, all behavior variables
and the proxy variable were set to range from 0 (worst) to 100
(best) [35]. Each variable was defined to minimize user
participation in the data collection process. From this
perspective, data on the 3 behavior variables (ie, golden time
achievement, sleep duration achievement, and step achievement)
were automatically collected by smartwatches worn by students.
Students also could easily record data on the remaining 5
variables through a smartphone app.

A 1-way random effects regression model was used to estimate
the index coefficients:

where i, t, and k denote the ith student, day t, and kth behavior
variable, respectively; yit is the perceived score of the ith student
on day t; β0 and βk are unknown coefficients; xk,it is the value
of the kth behavior variable observed for the ith student on day
t; μi the unobserved student-specific random effect of the ith

student, is independent and identically distributed, N(0, σμ
2),

and is independent of xk,it; μi controls for the effects of
student-specific heterogeneity on yit and uit, the error term, is

independent and identically distributed, N(0, σu
2).

This regression model was selected for 2 reasons. First, the
index is a linear function. Second, the regression model was set
to control for the unobserved student-specific random effects
on the perceived score. Unobserved (or unmeasured)
student-specific heterogeneity could exist in the regression
model and thus influence the perceived score. For example,
students may have different levels of interest in wellness, but
these are unobserved in the regression model. However, those
who are more interested in wellness may have higher standards
for health behaviors, thus resulting in lower perceived scores.
As the failure to control for such unobserved student-specific
effects may produce misleading results [36], this was addressed
by adding the effects to the regression model as μi.

The data set used to estimate the regression model was compiled
by collecting data on the daily life activities of 41 students
including 21 undergraduate (15 males and 6 females) and 20

graduate students (15 males and 5 females), all of whom were
attending a university in Korea. Their age statistics were as
follows: average of 24.7, maximum of 30, minimum of 19, and
a standard deviation of 2.8. A total of 1148 observations were
thus collected over a 28-day period (November 3-30, 2015). An
observation consisted of 1 student’s 1-day data for the 8
variables in the regression model.

Data preprocessing excluded the 264 observations including
missing or abnormal values. Notably, students reported that
these observations went through data collection problems (eg,
forgetting to wear smartwatches, neglecting to enter data through
the smartphone app, or depleting their smartwatch batteries).
In this regard, they did not accurately reflect actual daily health
behaviors of students. By excluding these observations, a panel
data set comprised 884 complete observations from 41 students.

The LWI coefficients were estimated by fitting Eq (1) to the
data set. Based on the estimated coefficients, the LWI was
defined as a linear function consisting of the 7 following
behavior variables: 0.151 × Breakfast + 0.163 × Lunch + 0.135
× Dinner + 0.135 × Exercise + 0.095 × Step achievement +
0.219 × Sleep duration achievement + 0.102 × Golden time
achievement.

This study simulated the aforementioned LWI development
case to evaluate biases regarding the regression coefficients that
each of the 6 missing-data handling methods led to, as follows:
the data set of the LWI development case was transformed into
a reference data set that did not include any missing data;
incomplete data sets were simulated by introducing missing
data to the reference data set at various missingness proportions;
the missing-data handling method changed all simulated data
sets into complete data sets by handling their missing data;
regression coefficients were estimated by fitting Eq (1) to the
complete data sets; a bias measure of the missing-data handling
method was calculated by comparing the estimated coefficient
values with coefficient reference values. The coefficient
reference values were estimated by fitting Eq (1) to the reference
data set.

JMIR Med Inform 2020 | vol. 8 | iss. 12 |e20597 | p.129http://medinform.jmir.org/2020/12/e20597/
(page number not for citation purposes)

Kim & KimJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Overview
In this study, we conducted a simulation to calculate a bias
measure for incremental missingness proportions for each of
the 6 methods. The bias measure was referred to as the
grand-mean of absolute biases (GAB). For each missingness
proportion, GAB was used to compare the coefficient biases,

thus determining which missing-data handling methods was
superior.

Simulation steps are shown in Figure 2. In step 0, a reference
data set was generated by transforming the data set from the
development case. Steps 1 through 6 were then repeated for
each missingness proportion, with each repetition calculating
GAB for the 6 missing-data handling methods.

Figure 2. Research process.
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Step 0: Generating the Reference Data Set
Step 0 was performed to generate a reference data set from the
data set used in [10]. The reference data set included 884
observations of 41 students for 7 behavior variables and a
perceived score variable. The descriptive statistics are provided
in Table 3. Ranges of the variables were transformed from [xmin,

xmax] to [zmin=0, zmax=1] using minimum-maximum
normalization [37]:

This normalization is generally recommended as preprocessing
for data-mining algorithms, including missing-data handling
methods [38].

Table 3. Descriptive statistics of the data set for developing the LWI for college students and regression results for the reference data set.

Regression resultsDescriptive statisticsVariable

P valueEstimate (SE)RangeMean (SD)

N/AN/Aa0-10063.4 (15.9)Perceived score

<.0010.097 (0.014)0-10024.2 (36.2)Breakfast

<.0010.105 (0.013)0-10063.5 (32.3)Lunch

<.0010.088 (0.015)0-10075.5 (27.5)Dinner

<.0010.087 (0.019)0-1005.3 (22.4)Exercise

<.0010.061 (0.015)0-10074.6 (28.6)Step achievement

<.0010.131 (0.021)6.7-10086.0 (19.3)Sleep duration achievement

<.0010.066 (0.018)0-10014.2 (25.1)Golden time achievement

<.0010.305 (0.029)N/AN/A(Intercept)

aN/A: not applicable.

The reference data set also included 40 dummy variables and
a time variable. Here, the dummy variables coded the 41
students, while the value of time variable was determined based
on the dates the data were collected, that is, between the first
and last days of the data collection period (November 3-30,
2015):

The resulting reference data set was 884×49 in dimension, as
it contained all 884 observations mentioned above. Each
observation included values for the 40 dummy variables, time
variable, 7 behavior variables, and perceived score variable for
a particular student on a given day. All variables ranged from
0 to 1.

Step 1: Determining the Missingness Proportion
In Step 1, the missingness proportion was selected to evaluate
the 6 missing-data handling methods. The missingness
proportion increased from 1% to 80% by 1%. An increment of
1% was sufficiently small to observe how the performance of
each method changed according to the missingness proportion.
Previous studies [39-41] have used larger increments, for
example, Hasan et al [39] used 4 levels (10%, 20%, 30%, and
40%), Marshall et al [40] used 5 levels (5%, 10%, 25%, 50%,
and 75%), and Song et al [41] used 4 levels (10%, 15%, 20%,
and 30%) of missingness proportion for simulations to evaluate
method performance.

We used a range up to 80% because one method continued to
show outstanding performance for proportion above 60% and
a missingness proportion of 80% was too high to estimate
coefficients with low biases. If a data set had such a high

missingness proportion in practice, then it may be preferable to
collect another data set instead of using data from the initial
data set.

Step 2: Generating the Simulated Data Sets
As shown in Figure 2, Step 2 generated 200 simulated data sets
by randomly deleting the variable values from the reference
data set according to missingness proportion p%. The random
deletion implemented missing completely at random into the
simulated data sets to reflect the missingness mechanism of a
panel data set composed of health behavior lifelogs.

For proportion p%, there were many ways that missing data
could be distributed across variables within the data set. Such
a wide and varied distribution could affect missing-data handling
method performance. However, there were too many possible
missing data distributions to simulate all of them. Thus, this
study randomly generated 200 simulated data sets for the
missingness proportion, and then calculated the average of
regression coefficient biases that each missing-data handling
method produced across the 200 data sets. The average of each
missing-data handling method was its performance measure (ie,
GAB) for the missingness proportion. Similarly, Young and
Johnson [42] had also calculated GABs of different missing-data
handling methods across 200 simulated panel data sets in order
to compare performance, although their work focused on
multiple imputation and panel data sets related to family
research.

Step 3: Handling Missing Data
In Step 3, each of the 6 missing-data handling methods were
applied to each of the 200 simulated data sets using R software
(version 3.6.0). Listwise deletion and mean imputation were
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implemented by several lines of R code to automatically delete
incomplete observations and substitute a missing value for a
variable with the mean of its observed values, respectively.
k-nearest neighbor–based imputation used the knnImputation
function in the DMwR package [30]. The number of nearest
neighbors was the odd value close to the squared root of
complete observations in each simulated data set [43]. The
package softImpute [29] was utilized as a low-rank
approximation–based imputation. Its maximum rank and lambda
were determined based on “warm starts [29].” Expectation
maximization–based multiple imputation and predictive-mean
matching–based multiple imputation used Amelia II [28] and
MICE [31] packages, respectively. The number of multiple
imputations was set to 5, based on published recommendations
[44].

As a result of this step, each of the listwise deletion, mean
imputation, k-nearest neighbor–based imputation, and low-rank
approximation–based imputation methods resulted in a complete
data set. For expectation maximization–based and
predictive-mean matching–based multiple imputations, there
were 5 complete data sets.

Step 4: Estimating the Regression Coefficients
Eq (1) was fitted to each complete data set resulting from Step
3 using the plm package [45]. As a result, 8 coefficients (ie, βk)
were estimated for each complete data set. Each listwise
deletion, mean imputation, k-nearest neighbor–based imputation,
and low-rank approximation–based imputation contained a set
of the 8 coefficient values for a simulated data set because each
one resulted in a compete data set for the simulated data set in
Step 3. Each expectation maximization–based and
predictive-mean matching–based multiple imputation contained
5 sets of the 8 coefficient values for a simulated data set, which
were pooled into a single set each, following rules established
by Rubin [14]. For each method, the set of 8 coefficient values

was defined as coefficient value set (CVSp,s,m)={ p,s,m,0,...,

p,s,m,7}, where CVSp,s,m is the set of the 8 coefficient values
that originated from the application of mth missing-data handling
method to sth simulated data set of missing proportion p%;

p,s,m,k is kth coefficient value in CVSp,s,m; p ∈ {1%, 2%,...,
80%}; s ∈ {1, 2,…, 200}; and m ∈ {listwise deletion,...,
predictive-mean matching–based multiple imputation}.

Step 5: Calculating the Mean of Absolute Biases
Step 5 was performed to calculate a bias measure for each
coefficient value set. Because a coefficient could have a certain
amount of bias, each coefficient value set contained a total of
8 coefficient biases. The mean of absolute biases (MAB) was
defined as a bias measure to calculate the average amount of
the 8 coefficient biases for a given coefficient value set:

where p,s,m,k ∈ CVSp,s,m; âk is the reference value of k; âk

was estimated by fitting Eq (1) to the reference data set, as all
simulated data sets were generated by deleting the missingness
proportion p% of the reference data set. The estimate column
in Table 3 provides the estimated values of âk. For missingness
proportion p%, this step resulted in the 200 MABs of each
missing-data handling method.

Step 6: Calculating the GAB
We combined the 200 MABs for each method to create a bias
measure that represented the average of its coefficient biases
over the 200 simulated data sets of missingness proportion p%.
By following Young and Johnson [42], the bias measure was
defined as the GAB:

A low GAB indicated that the missing-data handling method
led to small coefficient biases across the 200 simulated data
sets of the missingness proportion. The GAB was used as the
criterion for evaluating method performance.

Results

Figure 3 shows GABs for each missingness proportion. The
listwise deletion, k-nearest neighbor–based imputation, and
expectation maximization–based multiple imputation did not
have GABs over missingness proportions of 24%, 44%, and
67%, respectively. Listwise deletion left too small number of
complete observations to estimate the regression coefficients
over missingness proportions of 24%. Both the k-nearest
neighbor–based imputation and expectation maximization–based
multiple imputation also failed to impute missing values over
missingness proportions of 44% and 67%, respectively. The
simulated data sets for these missingness proportions contained
smaller numbers of complete observations than the minimum
required for them to impute missing values.
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Figure 3. GAB results.

Pairwise multiple comparison tests were conducted to
statistically compare relative superiority among the 6
missing-data handling methods for each missingness proportion.
The tests were conducted using Dunnett modified Tukey-Kramer
pairwise multiple comparison at the .05 significance level [46].
Results provided the number of pairwise comparisons in which
each missing-data handling method had statistically small GAB
compared with all other missing-data handling methods for each

missingness proportion. For interpretation purposes, a superior
missing-data handling method will show the maximum number
of pairwise comparisons with statistically small GAB (Figure
4). For example, the low-rank approximation–based imputation,
predictive-mean matching–based multiple imputation, and
expectation maximization–based multiple imputation were
shown to be superior at a 1% missingness proportion (Figure
4).

Figure 4. Number of pairwise comparisons with statistically small GAB differences.

Different missing-data handling methods were shown to be
superior depending on the missingness proportion. As shown
in Figure 4, this included the low-rank approximation–based
imputation, predictive-mean matching–based multiple

imputation, and expectation maximization–based multiple
imputation for the 1% to 30% missingness proportions, while
the low-rank approximation–based imputation and
predictive-mean matching–based multiple imputation were
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superior for the 31% to 60% proportion, and only the low-rank
approximation–based imputation was superior for proportions
over 60%. These results are also shown in Table 4, which shows
the sum of the pairwise comparison times with statistically small
GAB for each missing-data handling method and missingness
proportion. Listwise deletion, mean imputation, k-nearest
neighbor–based imputation, expectation maximization–based
multiple imputation, predictive-mean matching–based
imputation, and low-rank approximation–based imputation
achieved 15, 53, 2, 84, 91, and 99 as sums for the pairwise
comparison times with statistically small GAB for 1% to 30%
missingness proportions, respectively. The low-rank
approximation–based imputation, predictive-mean

matching–based multiple imputation, and expectation
maximization–based multiple imputation were shown to be
superior for these missingness proportions, with the low-rank
approximation–based imputation revealing the maximum
number (the predictive-mean matching–based and expectation
maximization–based multiple imputations were also close to
the maximum). The second and third rows of Table 4 show that
the low-rank approximation–based imputation and
predictive-mean matching–based multiple imputation were
superior for the 30% to 60% missingness proportions, while
only the low-rank approximation–based imputation was superior
for over 60%.

Table 4. Sum of pairwise comparison times with statistically small GAB for each missing-data handling method and missingness proportion range.

Low-rank approxi-
mation

Predictive-mean
matching

Expectation–maxi-
mization

k-nearest neighborMean imputationListwise deletionMissingness propor-
tion range

99a91a84a253151%-30%

75a74a3409031%-60%

46a24007061%-80%

aThese methods had the best performance for the missingness proportion range.

Discussion

Principal Findings
The low-rank approximation–based imputation showed superior
performance for 1% to 80% missingness proportions and has
previously shown excellent performance with low-rank data
sets [47]. In this context, low rank indicates that a data set can
be approximated by a small subset of its singular vectors. Early
studies [48,49] established strong theoretical guarantees about
the perfect performance of low-rank approximation–based
imputation for low-rank data sets without noise, with extensive
research later supporting its superiority for low-rank data sets
with noise [50-52]. These studies [48-52] suggest that the
low-rank nature of the simulated data sets may be the primary
reason that low-rank approximation–based imputation was
shown to be superior in this study. In this regard, the low-rank
property of the simulated data sets was investigated based on
the chosen ranks for the low-rank approximation–based
imputation to impute them. The rank of 13 was the maximum
among the chosen ranks to impute all simulated data sets, while
the maximum rank was much lower than the dimensions of the
simulated data sets (ie, 884 × 49). It is therefore reasonable to
assume that the low-rank nature of the simulated data sets is
the primary reason that low-rank approximation–based
imputation was shown to be superior.

Low-rank approximation–based imputation is also expected to
perform well with other panel data sets comprising health
behavior lifelogs, as previous studies [53,54] have verified that
such data sets are generally low-rank. For instance, Eagle and
Pentland [53] found that panel data sets comprising human
behaviors were low-rank. They specifically proposed
eigenbehaviors as principal components for panel data sets on
human behaviors. The weighted sums of only 6 eigenbehaviors
achieved more than 90% accuracy in reconstruction of a data

set on the daily behaviors of 100 individuals for 400,000 hours.
Furthermore, Saint Onge and Kreuger [54] found 7 distinct
health lifestyle typologies for US adults in terms of 8 health
behaviors, including sleep, physical activity, and alcohol intake.
This result implied that panel data sets comprising health
behaviors can be approximated by several typologies and are
thus of a low-rank nature.

Both the expectation maximization–based and predictive-mean
matching–based multiple imputations showed larger biases than
the low-rank approximation–based imputation as the
missingness proportion increased. Larger proportions increased
the loss of information with missing values, which then increases
uncertainty. Multiple imputation reflects such uncertainty in
the standard errors of the estimates [14], with greater uncertainty
resulting in larger standard errors for the estimates and larger
coefficient biases [55].

In summary, the low-rank approximation–based imputation was
the superior missing-data handling method for handling missing
data when estimating a linear LWI with a panel data set
comprising health behavior lifelogs, regardless of the
missingness proportion.

Future Research
Three future research issues can improve and expand on this
research. The first involves validating generalizability of the
current research to nonlinear LWIs (eg, functions with
polynomial or interaction variables and logistic functions). New
LWI development cases can aim to develop nonlinear LWIs
that this study did not cover. Thus, additional research is needed
to establish the validity of our findings in regard to nonlinear
LWIs.

The second issue involves the need to identify which health
behavior-related covariates (eg, age, gender, and BMI) can
enhance the performance of missing-data handling for LWI
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estimation. While previous studies have already suggested
several such covariates [56-58], additional covariates can
enhance missing-data handling method performance. However,
this study did not investigate these elements. Furthermore, few
studies have identified covariates that can improve missing-data
handling for panel data sets comprising health behavior lifelogs.

The third issue concerns the need to develop guidelines for
predicting the size of bias in LWI coefficients for a certain
missingness proportion of a given panel data set. In Figure 3,
all missing-data handling methods showed increased coefficient
biases as the missingness proportion increases. This suggests
that missing-data handling methods can lead to large biases in
LWI coefficients when missingness proportions are excessively
large. Thus, a panel data set with a remarkably large missingness
proportion requires careful attention to prevent excessively
biased LWI coefficients. However, few previous studies have
provided guidelines for predicting such biases according to the
given missingness proportion. As shown in Figure 3, the
low-rank approximation–based imputation exhibited linear
growth in GAB as the missingness proportion increased. The
slope of linear growth can be estimated through an experiment
in which the change in GAB is calculated according to the unit
change in the missingness proportion. The slope enables the

prediction of GAB at a given missingness proportion. Such a
guideline will help investigators decide whether the missingness
proportion is acceptable for preventing highly biased coefficients
of LWI. This requires additional research aimed at identifying
relationships between biases and missingness proportions.
Efforts are also needed to validate the generalizability of any
guidelines.

Conclusion
A panel data set comprising health behavior lifelogs will likely
contain a large amount of missing data due to various events.
These missing data can result in LWI coefficient biases. While
there are various methods for handling missing data, few
previous studies have set out to determine which are the most
effective for reducing LWI coefficient biases. This study
comparatively evaluated 6 representative missing-data handling
methods by simulating an existing LWI development case.
Results suggested that low-rank approximation–based
imputation was superior for reducing biases when estimating a
linear LWI with a panel data set composed of health behavior
lifelogs. This finding is expected to contribute to the reduction
of coefficient biases in new development cases where linear
LWIs are estimated with panel data.
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Abstract

Background: Diabetes affects more than 30 million patients across the United States. With such a large disease burden, even
a small error in classification can be significant. Currently billing codes, assigned at the time of a medical encounter, are the “gold
standard” reflecting the actual diseases present in an individual, and thus in aggregate reflect disease prevalence in the population.
These codes are generated by highly trained coders and by health care providers but are not always accurate.

Objective: This work provides a scalable deep learning methodology to more accurately classify individuals with diabetes
across multiple health care systems.

Methods: We leveraged a long short-term memory-dense neural network (LSTM-DNN) model to identify patients with or
without diabetes using data from 5 acute care facilities with 187,187 patients and 275,407 encounters, incorporating data elements
including laboratory test results, diagnostic/procedure codes, medications, demographic data, and admission information.
Furthermore, a blinded physician panel reviewed discordant cases, providing an estimate of the total impact on the population.

Results: When predicting the documented diagnosis of diabetes, our model achieved an 84% F1 score, 96% area under the
curve–receiver operating characteristic curve, and 91% average precision on a heterogeneous data set from 5 distinct health
facilities. However, in 81% of cases where the model disagreed with the documented phenotype, a blinded physician panel agreed
with the model. Taken together, this suggests that 4.3% of our studied population have either missing or improper diabetes
diagnosis.

Conclusions: This study demonstrates that deep learning methods can improve clinical phenotyping even when patient data
are noisy, sparse, and heterogeneous.

(JMIR Med Inform 2020;8(12):e22649)   doi:10.2196/22649
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Introduction

The widespread adoption of an electronic health record (EHR)
has generated large amounts of data, providing an opportunity
for clinical phenotyping to identify patients with characteristics
of interest [1,2]. Analyzing these rich EHR data has many
potential uses such as predicting mortality, defining cohorts,
evaluating health care policy, and driving health care finance
that affect patient care, revenue, and performance evaluation.
The ability to use large amounts of clinical data to discover or
validate information is of particular interest for research studies
as well as clinical practice [3]. Over the years, disease
phenotyping methods from EHR data have evolved from
traditional manually developed rule-based analysis for concept
curation such as eMERGE and PheKB [4-6] to statistical and
traditional machine learning techniques [7-9], and more recently,
deep learning techniques which offer better performance while
reducing the need for data preprocessing and feature engineering
[10-12]. However, EHR data are often incomplete, inaccurate,
fragmented, and heterogeneously structured, reflecting the
challenges of real-world information gathering, extraction, and
interpretation [1,4,13].

Being able to accurately predict diseases in a population could
lead to targeted clinical interventions [14], while applying
predictive models retrospectively may identify patients with
incorrect or missing diagnoses, documentation, or billing codes.
We chose diabetes mellitus for such phenotyping applications
because it is a highly prevalent disease with heterogeneous
presentations and objective diagnostic criteria. In the United
States, more than 34 million people have diabetes, and 1 out of
4 people are undiagnosed. Diabetes is associated with many
serious medical comorbidities such as heart disease and stroke,
as well as high costs of medical care [15]. Previous efforts
assessing errors in diagnosis, classification, and disease coding
in patients with diabetes using clinical trial data and primary
care data have shown that significant errors from misdiagnosis,
misclassification, and miscoded patient data are associated with
worse therapeutic outcomes [16-21].

In this study, we aim to characterize clinical phenotype for
diabetes using data available at the time of discharge by using
a generalizable sequential-based deep learning method. We
employ all laboratory results, medications, demographic data,
and other admission data such as days from prior admission or
duration of current visit for each patient. We also include
diagnostic codes and procedure codes from all encounters except
the most recent one, which is the target to predict. The goal of
this work is to train a model that can identify diseases—diabetes
in this study—for each patient based on all available
information. This model has the potential to merge into hospital
real-time monitoring systems for flagging patients, potentially
improving patient care and EHR documentation quality, among
countless other downstream benefits.

In recent years, there are many interesting studies applying deep
learning methods on EHR data. Using dense neural networks
(DNNs) for finding patients at high risk of mortality [22],
discovering characteristic patterns of physiology [23],
representing patient data for machine learning purposes [14],
improving coding accuracy in EHR data [24,25], taking
advantage of recurrent neural networks (RNNs) for predicting
future diagnosis codes and clinical events [26-30], forecasting
kidney transplant success [31], early detection of heart failure
[32], using bidirectional RNNs for medical event detection [33],
and combining convolutional neural networks and RNNs for
improving patient representation [34] are just a few of these
inspiring projects. There are extensive survey papers exploring
and categorizing recent projects based on methods and their
goal [35,36]. However, in most of them limited EHR data
elements are used, patients have extensive background
information, and the goal is to predict what is recorded in a
future visit for a patient. The real-world disease classification
problem in a health system is different and requires a more
general and scalable model that can make robust predictions
using all data elements.

Our study offers the following key contributions: (1) A
minimally curated, real-world data set for model training is
employed, where about 76% of patients had only 1 encounter,
reflecting the incomplete and fragmented nature of EHR data.
(2) Data from 5 different health care facilities in the United
States are combined to show the generalizability of the model,
avoiding overfitting on a single facility, and demonstrating the
capability of neural networks to learn from data with diverse
and complex structures. (3) Precise measurements are provided
to show improvements and performance of this model. (4) A
thorough validation with a panel of clinicians is conducted to
adjudicate the clinical phenotype from longitudinal data in cases
where the model disagreed with the documented disease coding.
(5) The total impact on the population for patients is calculated
with both improper and missed diagnosis codes in their EHR
data.

Methods

Data Set Description
We obtained data from the CERNER Health Facts database, a
large multi-institutional deidentified database derived from EHR
data and administrative systems. The database has 599 facilities.
For this study, we extracted inpatient encounter data from the
5 acute care facilities with the most inpatient discharges from
January 1, 2016, to December 31, 2017. The extracted
encounters all have ICD-10 (International Classification of
Diseases, 10th edition) diagnosis codes and at least one
laboratory test. Table 1 summarizes general information
including statistics on the reported cases of diabetes in each
facility and the mean number of medications and unique
laboratory tests. Population demographic information is
summarized in Multimedia Appendix 1.
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Table 1. General and diabetes-related inpatient statistics in facilities studied.

1157898384143131Facility ID

52,08055,44445,390a60,17562,318Number of encounters

36,33638,95331,387a38,65741,854Number of patients

10.2213.773.61a19.0713.74Mean number of ICDb codes

25.9123.349.93a27.8234.55Percentage of encounters with diabetes

8.791.71a16.4312.5821.56Mean number of medications

0.280.08a1.530.763.06Percentage with metformin

61.748.7326.89a49.9456.72Mean number of unique laboratories

19.4724.160.00a13.2028.91Percentage with hemoglobin A1c (HbA1c)

aICD: International Classification of Diseases.
bThe lowest value in each row.

EHRs from different facilities usually have various formats,
structures, and may not be directly interoperable. For this reason,
demographic information, laboratory results, diagnosis codes,
procedure codes, and medications were mapped to the
Observational Health Data Sciences and Informatics (OHDSI)
Common Data Model (version 5.3; vocabulary release on
October 2, 2018), a standard data model for observational health
studies [37-39]. Clinical notes are not available in the database
and were not included in this study.

Laboratory Tests
There are 2 major challenges for representing laboratory values.
First, laboratory tests may be performed multiple times in a
single encounter. Second, there are a large number of test types,
which form a huge sparse matrix with many missing values.
We proposed 2 approaches to represent laboratory tests: (1) We
used statistical summaries including median, max, min, total
count, and the values of the first and last instance of a laboratory
test for each single encounter. A laboratory test is ordered by a
physician if there are concerns that it may not be normal.
Therefore, when it is unavailable the value is either expected
to be normal or its result is reflected in other available features
clearly. For these laboratory tests we used median imputation
for filling missing values. It is worth mentioning that we
explored more complicated imputation methods as well,
including MICE [40], Soft-Impute [41], and SVD-Impute [42].
However, these methods did not provide distinct improvement
and took much more computation power. (2) We counted the
number of laboratory values that were classified as “high,”
“low,” “within the range,” or “normal,” “abnormal,” and
“unspecified” according to standards provided by each facility.
In a case that a laboratory value is not recorded, these values
are exactly 0, thus imputation is not needed. However, ranges
for some features are undefined in the EHR system that makes
it necessary to have numerical values as well.

Diagnosis and Procedure Codes
Because the model is designed to use all information available
at the time of discharge, codes from past encounters are
included. However, the codes for the current encounter are the
target to be predicted and not included in the input feature

matrix. Codes are represented as binary values for each ICD
code in the data set.

Medications
Medications were mapped from National Drug Codes to
RxNorm’s Concept Unique Identifiers using mappings
associated with the OHDSI-controlled vocabularies. Total counts
of drug exposure and per inpatient visit were added to the feature
matrix.

Demographic/Personal Information
We also included age, weight, height, race, ethnicity, and gender
from the data set. For categorical features (race, ethnicity, and
gender), we added them to the feature matrix through one-hot
encoding.

Derived Features
We further derived calculated features, such as the number of
days from the latest previous encounter, days hospitalized, and
the facility IDs represented with a one-hot encoding scheme.

Target
The ICD-10-CM codes that defined clinical diabetes were
derived from the Clinical Classification Software (CCS) [43]
categories 49, 50, and 186. We excluded conditions that do not
clearly fit the clinical definition of diabetes as a chronic disease,
such as “unspecified hyperglycemia,” “prediabetes,” and
“gestational diabetes.” All ICD codes under the mentioned CCS
codes were included except conditions specified in Multimedia
Appendix 2.

In order to reduce the sparsity of the feature matrix and remove
features that are not available or relevant to the target disease,
we only kept features with a nonzero value and appearing in at
least 5% of positive cases in the training set.

Data Vectorization
As previously mentioned, diagnosis and procedure codes from
the final encounter are the prediction goal and are not included
in the input to the model. We combined the target diagnosis
codes using CCS categorization to create a binary value for the
presence of disease. For each encounter i, we created a vector
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vi by concatenating laboratories, medications, demographics
from the ith encounter, and the accumulated ICD code presence
value from prior encounters: “0” for no presence and “1” for at
least one instance as shown in Figure 1. The idea behind this

“or” operation is to represent the history data as physicians
would review them, that is, focusing on the presence or absence
of diseases in the patient history. Thus, in mimicking our stated
goal, these vectors hold the information that would be available
at the time of discharge when the codes must be determined.

Figure 1. Feature matrix construction from patient encounters. All information from the ith encounter, except ICD codes, was combined with ICD
codes from prior encounters to build a slice in the sequence. Dx: diagnosis code; ICD: International Classification of Diseases.

Machine Learning/Deep Learning–Based Predictive
Models
We employed both nonsequential and sequential models in this
study. In nonsequential models, the order of input features does
not matter and does not distinguish features based on their
temporal occurrence. On the contrary, sequential models care
about which features happened when and they are designed to
capture temporal information.

Nonsequential Models
We took 2 traditional machine learning approaches, random
forest and logistic regression, as baselines for comparison.
Furthermore, we took advantage of DNNs which are powerful
classifiers and have been widely used in previous studies
[22-25]. The main advantage of DNNs over other machine
learning methods is the capability to learn patterns more
effectively from large data sets with numerous features without
the need for feature selection.

Sequential Models
Because of the inherently sequential nature of a patient’s medical
history, we expect that sequential models should outperform
those that do not consider the order of inputs. RNNs are among
the most powerful tools for prediction and classification when
there is a sequence of data leading to the result. Standard or
vanilla RNNs face vanishing and exploding gradients in
back-propagation during the training phase as the longer the
sequence of inputs grows, the longer and more unstable the

chain of gradients becomes to calculate. Because of these
problems, we leveraged long short-term memory (LSTM) [44]
and gated recurrent unit (GRU) [45] which use “forget” and
“update” elements to selectively turn off portions of the model,
effectively reducing the parameter space during each training
step. Furthermore, we added additional dense layers after the
output of recurrent layers [46,47]. We call these models
LSTM-DNN and GRU-DNN, respectively.

Model Training
As is the case in almost any phenotyping study, the data set is
imbalanced, with only 21.59% of cases positive for diabetes.
In this subsection, we briefly go through techniques and
parameters used to increase prediction power and avoid
overfitting. These parameters also make it possible to replicate
experiments. Data set is normalized (mean = 0, variance = 1)
before training to improve performance and stability. The data
set (combination data of 5 acute care facilities that were
mentioned earlier) was split using stratified random sampling
to 80% for the training set and 20% for the test set. The training
and test sets were the same for training and evaluation of all
models.

Traditional Machine Learning Methods
For the logistic regression model, we used L2 regularization
(1.0) and in the random forest model we limited the tree
maximum depth to 30. The class weights for both models were
adjusted inversely proportional to class frequencies to give more
weight to the minor class (positive cases).
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Neural Networks
For the DNN model both L2 regularization (0.0002) and dropout
(with rate 0.45) [48] were used. We applied weight balancing
with log proportion as the prevalence ratio (2.22) to calculate
loss in each epoch. We employed mini batches (2048) which
are more computationally efficient, use less memory, and are
generally more robust as they avoid local minima in optimization
steps [49]. After hyper-tuning using 12.5% of training data for
cross validation, the best model was trained with mean squared
error loss, Adam optimizer [50], Xavier uniform initializer [51],
tanh activation functions in hidden layers, and a sigmoid
activation function in the output layer. The dense network
consists of 4 hidden layers (512, 512, 512, 512) and the recurrent
networks have 2 recurrent layers (512, 512) (LSTM/GRU) and
2 dense layers (512, 512). All have a single neuron output.
Adding additional embedding layers did not improve models’
performances.

As the search space is enormous, we had 2 steps for finding the
best parameters. First, we fixed all parameters except one and
hyper-tuned that specific parameter. After reaching a short list
of candidates for each variable, we used grid search on all of
them to find the best combination. The network configuration
was reached by extensive hyperparameter search over the
following parameters: activation functions (tanh, relu, selu),
loss functions (mean squared error, mean absolute error, binary
cross entropy), optimizers (Adam, sgd), batch size (512, 1024,
2048), L2 regularization (0.001, 0.01, 0.10, 0.05, 1, 2, 10),
dropout rate (from 0 to 0.80 every 0.05), number of layers (1
to 7), and various number of neurons in each layer (different
combinations of powers of 2 as expected to be faster while using
GPU nodes).

Review Panel Validation Method
Identifying inaccuracy in coded disease states was a major
motivation for the study, and we hypothesized that a well-trained
model would be accurate even when some diagnosis codes in
the training set were incorrectly coded. Because it is impossible

to evaluate this goal using existing diagnosis codes which
themselves can be flawed, we asked 3 board-certified practicing
physicians to review cases where the model contradicted the
documented diagnosis. In this experiment, experts were provided
with the same information as the model, including all
demographic information, laboratory results, and medications
as well as event timelines for inpatient encounters. Furthermore,
the experiment was performed in a blinded manner—experts
did not have any knowledge of the diagnosis from either the
model prediction or EHR documentation. We believe this
experiment can shed light into the usefulness of such a model
for flagging cases in hospital systems.

Results

Experimental Setup
For training and testing the deep learning models, we used Keras
framework [52] backed by Tensorflow [53] and the scikit-learn
library [54]. The training was performed on a NVIDIA Tesla
V100 GPU with 640 Tensor Cores.

Performance of Phenotyping Diabetes According to
EHR Labels
We compared our sequential-based model with other models
based on a variety of metrics. As the data set is imbalanced
(21.59% positive cases), accuracy cannot be a distinguishing
metric among models. The area under the receiver operating
characteristic curve (AUROC) also can be misleading in these
data sets. The F1 score (harmonic mean of precision and recall)
and area under the precision–recall curve (AUPRC) are more
suitable metrics for this purpose [22,55,56]. In this project it is
important to capture the majority of patients, therefore a model
with high recall is desired. The precision for 0.80 recall is also
measured and reported in Table 2. As shown in Figure 2, the
LSTM-DNN model outperforms other models in both the
AUROC and AUPRC curves. We excluded GRU-DNN in Figure
2 as it is close to the LSTM-DNN model.

Table 2. Methods performance comparison.

AUROCbAUPRCaF1 scorePrecision @0.8 recallAccuracyModels

96.15c91.18c84.30c89.02c93.04cLSTM-DNN

95.7790.6583.9288.0492.80GRU-DNN

95.4990.1083.1786.6492.49DNN

93.9686.4780.0381.8690.77Logistic regression

94.1786.8676.7878.3990.95Random forest

aAUPRC: area under the precision–recall curve.
bAUROC: area under the receiver operating characteristic curve.
cNumbers for the best method.
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Figure 2. ROC and PR curves for all models. (A) ROC curve. Diagonal dotted purple line is the performance of random model. (B) PR curve. The
vertical solid line shows precision of different models for achieving 0.8 recall. Straight dotted purple line is the performance of random model. DNN:
dense neural network; LR: logistic regression; LSTM: long short-term memory; PR: precision-recall; RF: random forest; ROC: receiver
operating-characteristic curve.

Review Panel Validation Results
For analyzing discordant cases where the model disagreed with
what was recorded in the EHR, we performed a blinded review
with a group of domain experts including at least three
board-certified practicing physicians for each case review. For
facilities 131 and 143, we used 32 sampled cases per facility
where the model-predicted diagnosis was discordant with the
EHR and the model had a high confidence (sigmoid output
>0.83 or <0.17). We asked the review panel to answer 2

questions: (1) does the patient have diabetes; and (2) what is
their confidence level? (high or low). In 52 out of the 64 cases,
the panel’s conclusions agreed with the results from the model’s
prediction. In 37 out of the 39 cases with which the panel had
high confidence, the model’s prediction (output of the
LSTM-DNN model) was consistent with the panel’s conclusion.
Generally, the panel would have low confidence when there
was insufficient evidence from the data to support a conclusion.
The evaluation results are shown in Figure 3.

Figure 3. Expert review of cases where the model prediction disagreed with coded diagnosis. The error bars were 5% confidence intervals calculated
from the beta binomial distribution.

Through expert validation, we can provide a conservative
estimate of how frequently a case flagged by the model for

review would result in a correction at each facility. We
calculated the range of the total population that would be
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potentially impacted for each facility with lower and upper
bounds. The lower bound considers only the model’s high
confidence interval—probability of more than 0.83 or less than
0.17 for positive and negative labeling, respectively, on sigmoid
output—and the upper bound is for all predictions made by the
model. Each value bound is multiplied by the probability of the
model being correct, as derived from the expert validation
(Figure 3). This final value is the percentage of the impacted
population. In facility 131, we estimated that 1.25%-3.03% of
the total population were missing a diabetes-related diagnosis
code, and 1.65%-2.98% were improperly labeled as having
diabetes. These numbers varied for facility 143, where there
were 1.61%-3.73% missing a diabetes code and 1.12%-1.89%
improperly labeled. Taking the mean of the intervals across
facilities, we estimate that the error rate is 4.3% across these
facilities. This suggests a considerable impact of this
misclassification that can impact patients, hospitals, health
systems, and payers.

These results demonstrate that when the model prediction
contradicts the coders, the model is most often correct even for
patients with several past encounters. From 32 cases with
background information in 24 cases, experts agreed with the
model. This suggests that a deep learning model trained from
EHR data, which are often noisy, is capable of phenotyping and
flagging cases for further review.

Multiple Facilities Versus Single-Facility Models
In our study, we found that different facilities used different
coding schemes for laboratory tests and medications. As a result,
the diversity of features is higher than we had anticipated. For
instance, blood glucose measurement, a standard test in diabetes,

has a variety of names and Logical Observation Identifiers
Names and Codes (LOINC) across facilities. Facilities reported
“Glucose lab,” “Glucose [Mass/volume] in Blood,” “Glucose
[Mass/volume] in Body fluid,” “Glucose [Mass/volume] in
Blood by Test strip manual,” “Glucose; blood, reagent strip,”
and “Glucose finger stick.” Each name has a different LOINC,
making automated consolidation difficult. This problem exists
in other data elements such as medications, where brand names,
generic names, and various similar formulations are recorded.
For this reason, a model trained on a single facility will not
perform as well on another facility. Our goal was to develop a
generalizable model that could perform well on all facilities
independent of features available. Because features might vary
widely, we proposed to collate all information from all facilities,
and created 1 data set containing all features rather than manual
or automatic merging of them (the data set we used for previous
experiments). We were curious to see how does a model trained
on this “combined” data set would differ from a model trained
on just a single facility? From one perspective, with more data
the model should perform better. However, as coding patterns
and features vary significantly between facilities, this
combination can end up misleading the model.

We trained a model for each facility using the exact same steps
we did previously using our best architecture (LSTM-DNN).
As shown in Figure 4, the results from the combined model are
very similar to those from the single facility–based models. In
another experiment, we repeated the training on the combined
data set without including facility IDs, and the results were
almost the same. This suggests that the model trained on the
combined data has the capability to learn all different patterns
and can benefit from this approach.

Figure 4. Comparison of F1 scores on single facility-based models and multifacility combined model.

Facility 384 showed very low performance, and we suspect that
this is due to poor data quality and feature availability. We found
that facility 384 reported fewer laboratory tests than other

facilities (Table 1). It also lacked some laboratory tests essential
to diabetes diagnosis, such as hemoglobin A1c. The facility also
reported far fewer diagnoses per patient, including much lower
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prevalence of diabetes, even though it recorded metformin (a
typical drug used for diabetes treatment) as much as other
facilities. Thus, we believe that the low performance was due
to the low availability of vital training features and the poor
quality of recorded diagnosis codes. Interestingly, the model
appeared to be resilient to other data problems, such as the
paucity of medication data in facility 898.

Limitations of Rule-Based Models
The traditional approach for phenotyping is based on a
predefined set of rules and steps to determine whether a patient
has a specific disease. To compare with such rule-based
methods, we followed the steps in the eMERGE project [46].
Because of the lack of required data elements such as family
history of diabetes and counts of dates that the patient had
face-to-face outpatient clinic encounters, the performance of
this algorithm was not ideal on our data set. For 75.28% of the
patients, the results from the method were undecided and no
final decision could be made. Another major limitation of such
rule-based methods is the need for constant updates for new
ICD codes, laboratory codes, and medications. Even after
mapping and updating codes to current ICD-10, the method
would often fail and detect only obvious cases and discard
uncertain cases. As a result, it was not possible to make a
reasonable comparison between models’ performances and the
eMERGE criteria.

Discussion

Principal Findings
Our study demonstrates the successful identification of patient
phenotypes using a deep learning model trained on
heterogenous, minimally curated data. The model identifies a
noticeable subset of potential coding errors in instances when
patients are either improperly labeled as having or not having
diabetes and is able to avoid errors arising from missing clinician
documentation or sporadic coder errors. Given that the data
were mapped to the OHDSI data model, the model is
independent of facility-specific data representations and could
be adopted by different health care systems based on
normalization using OHDSI.

For much of the work on phenotyping, there is a presumption
that the documented EHR diagnosis codes represent ground
truth. However, human error can result in improper classification
of a patient’s comorbidities and true illness severity. The
motivation for this work was to detect and reclassify individuals
in whom the wrong diagnosis was assigned at the time of
discharge from the hospital, a fact that drives the development
of such phenotyping algorithms. Our efforts can be used to flag
discordant records for human review, leading to more accurate
patient and population characterization. This strategy can be
used to guide coders at the time of discharge to re-evaluate
charts detected by the algorithm, with more directed attention
to the potential missed diagnosis.

To validate the simulation of operational deployment of such
a model, we used a double-blinded physician review panel to
review the discordant cases where the model prediction was in
contrary to the documented diagnosis. From this review, we not
only captured the panel’s diagnosis but also the confidence level
of their decision. During the review, the experts felt that some
cases were too complex or needed more data for a model to
classify correctly. Despite this, our panel and algorithm agreed
on the final diagnosis among 81.25% of cases when the
algorithm was confident in its prediction. In a real health system,
this would equate to an anticipated 4 corrections to the coding
for every 5 cases flagged by the model for further review. This
is estimated to impact about 2.4% of a facility’s entire
population missing a diabetes code that should be present, and
about 1.9% of the population who were given the code of
diabetes when it should not have been present. This suggests
that our methodology is highly promising for improving clinical
decision support to flag possibly missing or improper ICD
classifications.

Limitations
This work could benefit from expert validation at larger scale,
which would result in a more accurate estimation of the effect
on the population. As patients’ background information was
very limited in this study, we did not expect significant
difference using other methods such as attention-based models;
however, they can be beneficial where more background data
are available. Moreover, we are collaborating with the diabetes
care group of our network hospitals to incorporate our prediction
model into a pilot study.

Conclusions
As research continues to advance the capabilities of predictive
algorithms to medicine, we demonstrate a successful application
of deep learning methodology bridging the gap at the
intersection of computer science and clinical medicine.

We can classify a disease state in patients using a generalizable
model that is deployable in institutions adopting the OHDSI
standard. Our sequential deep learning–based model
outperformed both traditional machine learning and
nonsequential DNN as shown earlier. Results proved that the
deep learning model can capture patterns for phenotyping from
a high-dimension feature space without hand-crafted feature
engineering. The findings also provide insights into how to
build a framework/workflow using real-world EHR data for
enhancing operations in real-world health care organizations,
especially in applications to clinical intervention, documentation
and billing, as well as quality improvement. The success of such
disease prediction models can also benefit academic and
translational research, as a faster and more refined disease
phenotyping process allows researchers to better refine their
study cohorts and minimize bias or confounding variables. Most
importantly, one cannot understate the potential impact to patient
care and clinical outcomes afforded by this approach to
diagnostic validation and case ascertainment.
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Abstract

Background: Respondent engagement of questionnaires in health care is fundamental to ensure adequate response rates for the
evaluation of services and quality of care. Conventional survey designs are often perceived as dull and unengaging, resulting in
negative respondent behavior. It is necessary to make completing a questionnaire attractive and motivating.

Objective: The aim of this study is to compare the user experience of a chatbot questionnaire, which mimics intelligent
conversation, with a regular computer questionnaire.

Methods: The research took place at the preoperative outpatient clinic. Patients completed both the standard computer
questionnaire and the new chatbot questionnaire. Afterward, patients gave their feedback on both questionnaires by the User
Experience Questionnaire, which consists of 26 terms to score.

Results: The mean age of the 40 included patients (25 [63%] women) was 49 (SD 18-79) years; 46.73% (486/1040) of all terms
were scored positive for the chatbot. Patients preferred the computer for 7.98% (83/1040) of the terms and for 47.88% (498/1040)
of the terms there were no differences. Completion (mean time) of the computer questionnaire took 9.00 minutes by men (SD
2.72) and 7.72 minutes by women (SD 2.60; P=.148). For the chatbot, completion by men took 8.33 minutes (SD 2.99) and by
women 7.36 minutes (SD 2.61; P=.287).

Conclusions: Patients preferred the chatbot questionnaire over the computer questionnaire. Time to completion of both
questionnaires did not differ, though the chatbot questionnaire on a tablet felt more rapid compared to the computer questionnaire.
This is an important finding because it could lead to higher response rates and to qualitatively better responses in future
questionnaires.

(JMIR Med Inform 2020;8(12):e21982)   doi:10.2196/21982

KEYWORDS

chatbot; user experience; questionnaires; response rates; value-based health care

Introduction

Questionnaires are routinely used in health care to obtain
information from patients. Patients complete these
questionnaires before and after a treatment, an intervention, or
a hospital admission. Questionnaires are an important tool which
provides patients the opportunity to voice their experience in a
safe fashion. In turn, health care providers gather information

that cannot be picked up in a physical examination. Through
the use of patient-reported outcome measures (PROMs), the
patient’s own perception is recorded, quantified, and compared
to normative data in a large variety of domains such as quality
of life, daily functioning, symptoms, and other aspects of their
health and well-being [1,2]. To enable the usage of data
delivered by the PROMs for the evaluation of services, quality

JMIR Med Inform 2020 | vol. 8 | iss. 12 |e21982 | p.151http://medinform.jmir.org/2020/12/e21982/
(page number not for citation purposes)

te Pas et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

mailto:mariska.t.pas@catharinaziekenhuis.nl
http://dx.doi.org/10.2196/21982
http://www.w3.org/Style/XSL
http://www.renderx.com/


of care, and also outcome for value-based health care correctly,
respondent engagement is fundamental [3].

Subsequently, adequate response rates are needed for
generalization of results. This implies that maximum response
rates from questionnaires are desirable in order to ensure robust
data. However, recent literature suggests that response rates of
these PROMs are decreasing [4,5].

From previous studies, it is clear that factors which increase
response rates include short questionnaires, incentives,
personalization of questionnaires as well as repeat mailing
strategies or telephone reminders [6-9]. Additionally, it seems
that the design of the survey has an effect on response rates.
Conventional survey designs are often perceived as dull and
unengaging, resulting in negative respondent behavior such as
speeding, random responding, premature termination, and lack
of attention. An alternative to conventional survey designs is
chatbots with implemented elements of gamification, which is
defined as the application of game-design elements and game
principles in nongame contexts [10].

A chatbot is a software application that can mimic intelligent
conversation [11]. The assumption is that by bringing more fun
and elements of gamification in a questionnaire, response rates
will subsequently rise.

In a study comparing a web survey with a chatbot survey the
conclusion was that the chatbot survey resulted in higher-quality
data [12]. Patients may also feel that chatbots are safer
interaction partners than human physicians and are willing to
disclose more medical information and report more symptoms
to chatbots [13,14].

In mental health, chatbots are already emerging as useful tools
to provide psychological support to young adults undergoing
cancer treatment [15]. However, literature investigating the
effectiveness and acceptability of chatbot surveys in health care
is limited. Because a chatbot is suitable to meet the
aforementioned criteria to improve response rates of
questionnaires, this prospective preliminary study will focus on
the usage of a chatbot [13,16]. The aim of this study is to
measure the user experience of a chatbot-based questionnaire
at the preoperative outpatient clinic of the Anesthesiology
Department (Catharina Hospital) in comparison with a regular
computer questionnaire.

Methods

Recruitment
All patients scheduled for an operation who visit the outpatient
clinic of the Anesthesiology Department (Catharina Hospital)
complete a questionnaire about their health status. Afterward
there is a preoperative intake consultation with a nurse or a
doctor regarding the surgery, anesthesia, and risks related to
their health status. The Medical Ethics Committee and the
appropriate Institutional Review Board approved this study and
the requirement for written informed consent was waived by
the Institutional Review Board.

We performed a preliminary prospective cohort study and
included 40 patients who visited the outpatient clinic between
September 1, 2019, and October 31, 2019. Because of the lack
of previous research on this topic and this is a preliminary study,
we discussed the sample size (N=40) with the statistician of our
hospital and this was determined to be clinically sufficient.
Almost all patients could participate in the study. The exclusion
criteria included patients under the age of 18, unable to speak
Dutch, and those who were illiterate.

Patients were asked to participate in the study and were provided
with information about the study if willing to participate. After
permission for participation was obtained from the patient, the
researcher administered the questionnaires. As mentioned above,
informed consent was not required as patients were anonymous
and no medical data were analyzed.

The Two Questionnaires
The computer questionnaire is the standard method at the
Anesthesiology Outpatient Department (Figure 1). We
developed a chatbot questionnaire (Figure 2) with identical
questions to the computer version. This ensured that the
questionnaires were of the same length, avoiding bias due to
increased or decreased appreciation per question. The patients
completed both the standard and chatbot questionnaires, as the
standard computer questionnaire was required as part of the
preoperative system in the hospital. Patients started alternately
with either the chatbot or the computer questionnaire, in order
to prevent bias in length of time and user experience. During
the completion of both questionnaires, time required to complete
was documented.
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Figure 1. Computer questionnaire.
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Figure 2. Chatbot questionnaire.

The User Experience Questionnaire
After completion of both questionnaires, patients provided
feedback about the user experience. Patients were asked to rate
their experience by providing scores for both questionnaires
with the User Experience Questionnaire (UEQ; Figure 3). The
reliability and validity of the UEQ scales were investigated in
11 usability tests which showed a sufficiently high reliability

of the scales measured by Cronbach α [17-19]. Twenty-six
terms were shown on a tablet and for each term patients gave
their opinion by dragging the button to the “chatbot side” or to
the “computer side.” They could choose to give 1, 2, 3, or 4
points to either the computer or the chatbot in relation to a
specific term. If, according to the patient, there was no difference
between the computer and the chatbot, he or she let the button
in the middle of the bar.
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Figure 3. User Experience Questionnaire.

The UEQ tested the following terms: pleasant, understandable,
creative, easy to learn, valuable, annoying, interesting,
predictable, rapid, original, obstructing, good, complex,
repellent, new, unpleasant, familiar, motivating, as expected,
efficient, clear, practical, messy, attractive, kind, and innovative.

As much as 20 of the 26 items were positive terms, such as
“pleasant.” The other 6 are negative terms, such as “annoying.”

Outcome Measures
The primary outcome measure of this research is the user
experience score and the difference in score between the
standard computer questionnaire and the chatbot questionnaire.
Secondary outcome was duration to complete a questionnaire.

Statistical Analysis
Data analysis primarily consisted of descriptive statistics and
outcomes were mainly described in percentages or proportions.
The unpaired t test was used to quantify significant differences
between men and women and for time differences, because the

data were normally distributed. A P value of .05 or less was
chosen for statistical significance. Data were analyzed with
SPSS statistics version 25 (IBM). Microsoft Excel version 16.1
was used for graphics.

This manuscript adheres to the applicable TREND guidelines
[20].

Results

The mean age of the 40 patients included, of whom 25 (63%)
were women, was 49 (SD 18-79) years.

The average score per term was calculated and shown in Figure
4. The UEQ scores showed that patients favored the chatbot
over the standard questionnaire. According to the graph, the
patients prefer the chatbot for 20 of the 26 terms (77%), all of
which are positive terms. The average values for the other 6
terms, which are the negative terms (23%), are shown to have
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a negative value. This indicates that on average the patients associated the standard questionnaire with negative terms.

Figure 4. Average User Experience Questionnaire (UEQ) scores per term and standard deviation. A score above 0 illustrates that the term fits best
with the chatbot. A score below 0 illustrates that the term fits best with the computer.

In total, 1040 terms were scored. As much as 46.73% (n=486)
of the user experience terms were scored positive for the chatbot,
47.88% (n=498) of the terms had preference neither for chatbot
nor computer, and for 7.98% (n=83) of the terms patients
preferred the computer.

Average time to completion of the computer questionnaire was
8.20 (SD 2.69) minutes; for the chatbot questionnaire this was
7.72 (SD 2.76) minutes. The questionnaire completed initially

took on average more time to complete, as the data in Table 1
indicate.

Time to completion differed between men and women, but did
not reach statistical significance. Every patient completed the
second questionnaire statistically significantly faster than the
initial one (chatbot P=.044, computer P=.012), irrespective of
which questionnaire was completed initially (Table 1).
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Table 1. Time to completion (minutes).

Chatbot questionnaire completion time
(minutes), mean (SD)

Computer questionnaire completion
time (minutes), mean (SD)

Criteria

Average time to completion of computer- and chatbot-based
questionnaire (n=40)

7.72 (2.7)8.20 (2.6)All patients

Average time to completion for men (n=15) versus women (n=25)

8.33 (2.9)9.00 (2.7)Men

7.36 (2.6)7.72 (2.6)Women

.287.148P value

Average time to completion depending on computer first (n=20)
or chatbot first (n=20)

6.85 (2.1)9.25 (2.4)Computer first

8.60 (3.0)7.15 (2.6)Chatbot first

.044.012P value

Discussion

Principal Findings
In this prospective observational study, we evaluated the user
experience of a chatbot questionnaire and compared it to a
standard computer questionnaire in an anesthesiology outpatient
setting. Our results demonstrate that patients favored the chatbot
questionnaire over the standard computer questionnaire
according to the UEQ, which is in line with the previous
research by Jain et al [21], who showed that users preferred
chatbots as these provide a “human-like” natural language
conversation.

Another intriguing result, as seen in Figure 4, is that the highest
score to the chatbot was given for “rapid.” However, the time
to completion of the questionnaires did not differ between the
computer questionnaire and the chatbot questionnaire. This
indicates that a questionnaire answered on a tablet may give the
perception of being faster than a standard model answered on
a computer. In addition, by using more capabilities of a chatbot
it is possible to shorten the questionnaire, possibly leading to
higher response rates, as mentioned by Nakash et al [6].

The second questionnaire took significantly less time to
complete than the initial one, as the contents are identical
between the 2 questionnaires. This is not an unexpected
observation. Although time to completion of the initial
questionnaire was significantly different compared to that of
the second questionnaire, bias in the results was minimized by
alternating the order of questionnaires.

Comparison With Prior Work
Explanations for low response rates can be disinterest, lack of
time, or inability to comprehend the questions. Furthermore,
patient characteristics such as age, social economic status,
relationship status, and those with preoperative comorbidities
appear to have a negative influence on response rates, with the
majority being nonmodifiable factors [22]. However, Ho et al
[23] demonstrated that the method employed to invite and
inform patients of the PROM collection, and the environment

in which it is undertaken, significantly alters the response rate
in the completion of PROMs. This means that, as expected in
this study, there is a chance that response rates will rise by using
a chatbot instead of a standard questionnaire.

Gamification
As described in the study by Edwards et al [7], response rates
will rise when incentives are used. Currently, questionnaires
are often lacking elements motivating the patient to complete
them. The introduction of nudging techniques, such as
gamification, can help. Nudging is the subtle stimulation of
someone to do something in a way that is gentle rather than
forceful or direct, based on insights from behavioral psychology
[24,25]. In a recent study by Warnock et al [26], where the
strong positive impact of gamification on survey completion
was demonstrated, respondents spent 20% more time on
gamified questions than on questions without a gamified aspect,
suggesting they gave thoughtful responses [26]. Gamification
has been proposed to make online surveys more pleasant to
complete and, consequently, to improve the quality of survey
results [27,28].

Limitations
There are some limitations to this research. First, as mentioned
in the “Introduction” section, a chatbot can mimic intelligent
conversation and is a form of gamification. In our study we had
identical questionnaires and therefore did not explore how the
chatbot could mimic intelligent conversation. However, this
research demonstrates that only minor changes in the
questionnaire’s design lead to improved user experience.
Second, because both the tablet and the chatbot were different
from the standard computer questionnaire, it is possible that the
user experience was influenced by the use of a tablet rather than
by the characteristics of a chatbot solely. Third, although the
UEQ shows us that the patients appreciated the chatbot more
than the computer, we did not use qualitative methods to
understand what factors drove users to identify the chatbot as
a more positive experience. Fourth, although we recommend
the use of a chatbot in the health care setting to improve
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questionnaire response rate as seen in previous literature, we
did not formally investigate this outcome.

Future Research
Because patients preferred the chatbot questionnaire over the
computer questionnaire, we expect that a chatbot questionnaire
can result in higher response rates. This research is performed
as a first step in the development of a tool by which we can
achieve adequate response rates in questionnaires such as the
PROMs. Further research is needed, however, to investigate
whether response rates of a questionnaire will rise due to
alteration of the design. In future research it will be interesting
to investigate which elements of gamification are needed to

have beneficial effects such as higher response rates and higher
quality of the answers as well.

Conclusions
Patients preferred the chatbot questionnaire over the
conservative computer questionnaire. Time to completion of
both questionnaires did not differ, though the chatbot
questionnaire on a tablet felt more rapid compared to the
computer questionnaire. Possibly, a gamified chatbot
questionnaire could lead to higher response rates and to
qualitatively better responses. The latter is important when
outcomes are used for the evaluation of services, quality of care,
and also outcome for value-based health care.

 

Authors' Contributions
All authors contributed to the study conception and design. Material preparation, data collection, and analysis were performed
by MP and WR. The first draft of the manuscript was written by MP and all authors commented on previous versions of the
manuscript. All authors read and approved the final manuscript.

Conflicts of Interest
None declared.

References
1. Australian Commission on Safety and Quality in Health Care. URL: https://www.safetyandquality.gov.au/our-work/

indicators-measurement-and-reporting/patient-reported-outcome-measures [accessed 2020-11-06]
2. Baumhauer JF, Bozic KJ. Value-based Healthcare: Patient-reported Outcomes in Clinical Decision Making. Clin Orthop

Relat Res 2016 Jun;474(6):1375-1378. [doi: 10.1007/s11999-016-4813-4] [Medline: 27052020]
3. Gibbons E, Black N, Fallowfield L, Newhouse R, Fitzpatrick R. Essay 4: Patient-reported outcome measures and the

evaluation of services. In: Raine R, Fitzpatrick R, Barratt H, Bevan G, Black N, Boaden R, et al, editors. Challenges,
Solutions and Future Directions in the Evaluation of Service Innovations in Health Care and Public Health. Southampton,
UK: NIHR Journals Library; May 2016.

4. Hazell ML, Morris JA, Linehan MF, Frank PI, Frank TL. Factors influencing the response to postal questionnaire surveys
about respiratory symptoms. Prim Care Respir J 2009 Sep;18(3):165-170 [FREE Full text] [doi: 10.3132/pcrj.2009.00001]
[Medline: 19104738]

5. Peters M, Crocker H, Jenkinson C, Doll H, Fitzpatrick R. The routine collection of patient-reported outcome measures
(PROMs) for long-term conditions in primary care: a cohort survey. BMJ Open 2014 Feb 21;4(2):e003968 [FREE Full
text] [doi: 10.1136/bmjopen-2013-003968] [Medline: 24561495]

6. Nakash RA, Hutton JL, Jørstad-Stein EC, Gates S, Lamb SE. Maximising response to postal questionnaires--a systematic
review of randomised trials in health research. BMC Med Res Methodol 2006 Feb 23;6:5 [FREE Full text] [doi:
10.1186/1471-2288-6-5] [Medline: 16504090]

7. Edwards P, Roberts I, Clarke M, DiGuiseppi C, Pratap S, Wentz R, et al. Methods to increase response rates to postal
questionnaires. Cochrane Database Syst Rev 2007 Apr 18(2):MR000008. [doi: 10.1002/14651858.MR000008.pub3]
[Medline: 17443629]

8. Toepoel V, Lugtig P. Modularization in an Era of Mobile Web. Social Science Computer Review 2018 Jul:089443931878488.
[doi: 10.1177/0894439318784882]

9. Sahlqvist S, Song Y, Bull F, Adams E, Preston J, Ogilvie D, iConnect Consortium. Effect of questionnaire length,
personalisation and reminder type on response rate to a complex postal survey: randomised controlled trial. BMC Med Res
Methodol 2011 May 06;11:62 [FREE Full text] [doi: 10.1186/1471-2288-11-62] [Medline: 21548947]

10. Robson K, Plangger K, Kietzmann JH, McCarthy I, Pitt L. Is it all a game? Understanding the principles of gamification.
Business Horizons 2015 Jul;58(4):411-420. [doi: 10.1016/j.bushor.2015.03.006]

11. A. S, John D. Survey on Chatbot Design Techniques in Speech Conversation Systems. ijacsa 2015;6(7). [doi:
10.14569/ijacsa.2015.060712]

12. Kim S, Lee J, Gweon G. Comparing Data from Chatbot and Web Surveys: Effects of Platform and Conversational Style
on Survey Response Quality. In: CHI '19: Proceedings of the 2019 CHI Conference on Human Factors in Computing
Systems. New York, NY: ACM Press; Sep 04, 2019:1-12.

JMIR Med Inform 2020 | vol. 8 | iss. 12 |e21982 | p.158http://medinform.jmir.org/2020/12/e21982/
(page number not for citation purposes)

te Pas et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

https://www.safetyandquality.gov.au/our-work/indicators-measurement-and-reporting/patient-reported-outcome-measures
https://www.safetyandquality.gov.au/our-work/indicators-measurement-and-reporting/patient-reported-outcome-measures
http://dx.doi.org/10.1007/s11999-016-4813-4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27052020&dopt=Abstract
https://doi.org/10.3132/pcrj.2009.00001
http://dx.doi.org/10.3132/pcrj.2009.00001
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19104738&dopt=Abstract
https://bmjopen.bmj.com/lookup/pmidlookup?view=long&pmid=24561495
https://bmjopen.bmj.com/lookup/pmidlookup?view=long&pmid=24561495
http://dx.doi.org/10.1136/bmjopen-2013-003968
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24561495&dopt=Abstract
https://bmcmedresmethodol.biomedcentral.com/articles/10.1186/1471-2288-6-5
http://dx.doi.org/10.1186/1471-2288-6-5
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=16504090&dopt=Abstract
http://dx.doi.org/10.1002/14651858.MR000008.pub3
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=17443629&dopt=Abstract
http://dx.doi.org/10.1177/0894439318784882
https://bmcmedresmethodol.biomedcentral.com/articles/10.1186/1471-2288-11-62
http://dx.doi.org/10.1186/1471-2288-11-62
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=21548947&dopt=Abstract
http://dx.doi.org/10.1016/j.bushor.2015.03.006
http://dx.doi.org/10.14569/ijacsa.2015.060712
http://www.w3.org/Style/XSL
http://www.renderx.com/


13. Palanica A, Flaschner P, Thommandram A, Li M, Fossat Y. Physicians' Perceptions of Chatbots in Health Care:
Cross-Sectional Web-Based Survey. J Med Internet Res 2019 Apr 05;21(4):e12887. [doi: 10.2196/12887] [Medline:
30950796]

14. Nadarzynski T, Miles O, Cowie A, Ridge D. Acceptability of artificial intelligence (AI)-led chatbot services in healthcare:
A mixed-methods study. Digit Health 2019;5:2055207619871808 [FREE Full text] [doi: 10.1177/2055207619871808]
[Medline: 31467682]

15. Greer S, Ramo D, Chang Y, Fu M, Moskowitz J, Haritatos J. Use of the Chatbot. JMIR Mhealth Uhealth 2019 Oct
31;7(10):e15018 [FREE Full text] [doi: 10.2196/15018] [Medline: 31674920]

16. Tudor Car L, Dhinagaran DA, Kyaw BM, Kowatsch T, Joty S, Theng Y, et al. Conversational Agents in Health Care:
Scoping Review and Conceptual Analysis. J Med Internet Res 2020 Aug 07;22(8):e17158 [FREE Full text] [doi:
10.2196/17158] [Medline: 32763886]

17. Schrepp M, Hinderks A, Thomaschewski J. Applying the User Experience Questionnaire (UEQ) in Different Evaluation
Scenarios. 2014 Jun Presented at: International Conference of Design, User Experience, and Usability; 2014; Heraklion,
Crete, Greece p. 383-392. [doi: 10.1007/978-3-319-07668-3_37]

18. Laugwitz B, Held T, Schrepp M. Construction and Evaluation of a User Experience Questionnaire. In: Holzinger A, editor.
USAB 2008: HCI and Usability for Education and Work. Berlin, Germany: Springer; 2008:63-76.

19. Baumhauer JF, Bozic KJ. Value-based Healthcare: Patient-reported Outcomes in Clinical Decision Making. Clin Orthop
Relat Res 2016 Jun;474(6):1375-1378. [doi: 10.1007/s11999-016-4813-4] [Medline: 27052020]

20. Des Jarlais CC, Lyles C, Crepaz N, TREND Group. Improving the reporting quality of nonrandomized evaluations of
behavioral and public health interventions: the TREND statement. Am J Public Health 2004 Mar;94(3):361-366. [doi:
10.2105/ajph.94.3.361] [Medline: 14998794]

21. Jain M, Kumar P, Kota R, Patel SN. Evaluating and Informing the Design of Chatbots. In: DIS '18: Proceedings of the 2018
Designing Interactive Systems Conference. New York, NY: ACM; 2018 Presented at: Designing Interactive Systems (DIS)
Conference; June 11-13, 2018; Hong Kong p. 895-906. [doi: 10.1145/3196709.3196735]

22. Schamber EM, Takemoto SK, Chenok KE, Bozic KJ. Barriers to completion of Patient Reported Outcome Measures. J
Arthroplasty 2013 Oct;28(9):1449-1453. [doi: 10.1016/j.arth.2013.06.025] [Medline: 23890831]

23. Ho A, Purdie C, Tirosh O, Tran P. Improving the response rate of patient-reported outcome measures in an Australian
tertiary metropolitan hospital. Patient Relat Outcome Meas 2019;10:217-226 [FREE Full text] [doi: 10.2147/PROM.S162476]
[Medline: 31372076]

24. Nagtegaal R. [A nudge in the right direction? Recognition and use of nudging in the medical profession]. Ned Tijdschr
Geneeskd 2020 Aug 20;164. [Medline: 32940980]

25. Cambridge Dictionary. URL: https://dictionary.cambridge.org/dictionary/english/nudging [accessed 2020-06-30]
26. Warnock S, Gantz JS. Gaming for respondents: a test of the impact of gamification on completion rates. Int J Market Res

2017;59(1):117. [doi: 10.2501/ijmr-2017-005]
27. Harms J, Biegler S, Wimmer C, Kappel K, Grechenig T. Gamification of Online Surveys: Design Process, Case Study,

and Evaluation. In: Human-Computer Interaction – INTERACT 2015. Lecture Notes in Computer Science. Cham,
Switzerland: Springer; 2015:219-236.

28. Guin TD, Baker R, Mechling J, Ruyle E. Myths and realities of respondent engagement in online surveys. Int J Mark Res
2012 Sep;54(5):613-633. [doi: 10.2501/ijmr-54-5-613-633]

Abbreviations
PROM: patient-reported outcome measure
UEQ: User Experience Questionnaire

Edited by C Lovis; submitted 30.06.20; peer-reviewed by R Watson, A Mahnke, J Shenson, T Freeman; comments to author 06.09.20;
revised version received 12.10.20; accepted 03.11.20; published 07.12.20.

Please cite as:
te Pas ME, Rutten WGMM, Bouwman RA, Buise MP
User Experience of a Chatbot Questionnaire Versus a Regular Computer Questionnaire: Prospective Comparative Study
JMIR Med Inform 2020;8(12):e21982
URL: http://medinform.jmir.org/2020/12/e21982/ 
doi:10.2196/21982
PMID:33284125

JMIR Med Inform 2020 | vol. 8 | iss. 12 |e21982 | p.159http://medinform.jmir.org/2020/12/e21982/
(page number not for citation purposes)

te Pas et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://dx.doi.org/10.2196/12887
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30950796&dopt=Abstract
https://journals.sagepub.com/doi/10.1177/2055207619871808?url_ver=Z39.88-2003&rfr_id=ori:rid:crossref.org&rfr_dat=cr_pub%3dpubmed
http://dx.doi.org/10.1177/2055207619871808
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31467682&dopt=Abstract
https://mhealth.jmir.org/2019/10/e15018/
http://dx.doi.org/10.2196/15018
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31674920&dopt=Abstract
https://www.jmir.org/2020/8/e17158/
http://dx.doi.org/10.2196/17158
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32763886&dopt=Abstract
http://dx.doi.org/10.1007/978-3-319-07668-3_37
http://dx.doi.org/10.1007/s11999-016-4813-4
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=27052020&dopt=Abstract
http://dx.doi.org/10.2105/ajph.94.3.361
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=14998794&dopt=Abstract
http://dx.doi.org/10.1145/3196709.3196735
http://dx.doi.org/10.1016/j.arth.2013.06.025
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23890831&dopt=Abstract
https://dx.doi.org/10.2147/PROM.S162476
http://dx.doi.org/10.2147/PROM.S162476
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31372076&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32940980&dopt=Abstract
https://dictionary.cambridge.org/dictionary/english/nudging
http://dx.doi.org/10.2501/ijmr-2017-005
http://dx.doi.org/10.2501/ijmr-54-5-613-633
http://medinform.jmir.org/2020/12/e21982/
http://dx.doi.org/10.2196/21982
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33284125&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


©Mariska E te Pas, Werner G M M Rutten, R Arthur Bouwman, Marc P Buise. Originally published in JMIR Medical Informatics
(http://medinform.jmir.org), 07.12.2020. This is an open-access article distributed under the terms of the Creative Commons
Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work, first published in JMIR Medical Informatics, is properly cited. The complete
bibliographic information, a link to the original publication on http://medinform.jmir.org/, as well as this copyright and license
information must be included.

JMIR Med Inform 2020 | vol. 8 | iss. 12 |e21982 | p.160http://medinform.jmir.org/2020/12/e21982/
(page number not for citation purposes)

te Pas et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Original Paper

Effects of Erythropoietin Payment Policy on Cardiovascular
Outcomes of Peritoneal Dialysis Patients: Observational Study

Ying-Hui Hou1*, PhD; Feng-Jung Yang2,3*, MD, PhD; I-Chun Lai4*, MD; Shih-Pi Lin5, PhD; Thomas TH Wan6, PhD;

Ray-E Chang5, PhD
1Department of Health Industry Management, School of Healthcare Management, Kainan University, Taoyuan, Taiwan
2Renal Division, Department of Internal Medicine, National Taiwan University Hospital Yun Lin Branch, Douliu, Taiwan
3School of Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
4Center for Drug Evaluation, Taipei, Taiwan
5Institute of Health Policy and Management, College of Public Health, National Taiwan University, Taipei, Taiwan
6Public Affairs PhD Program, College of Health and Public Affairs, University of Central Florida, Orlando, FL, United States
*these authors contributed equally

Corresponding Author:
Ray-E Chang, PhD
Institute of Health Policy and Management
College of Public Health
National Taiwan University
17 Xu-Zhou Road, Room 639
Taipei, 100
Taiwan
Phone: 886 2 3366 8069
Email: rchang@ntu.edu.tw

Abstract

Background: The change in the reimbursement policy of erythropoietin administration to patients receiving peritoneal dialysis
by the Taiwan National Health Insurance (NHI) system provided a natural experimental venue to examine whether cardiovascular
risk differs when maintaining the hematocrit (Hct) level below or above 30%.

Objective: The aim of this study was to analyze the impact of loosening the erythropoietin payment criteria for peritoneal
dialysis patients on their cardiovascular outcomes.

Methods: Two cohorts of incident peritoneal dialysis patients were identified according to the time before and after relaxation
of the NHI’s erythropoietin payment criteria, designated cohort 1 (n=1759) and cohort 2 (n=2981), respectively. The cohorts
were matched according to propensity scores (1754 patients in each cohort) and then followed up for cardiovascular events, which
were analyzed with Cox regressions.

Results: For the composite cardiovascular endpoint, patients in cohort 2 had a significantly lower risk than those in cohort 1.
However, subgroup analysis showed that this risk reduction was observed only in patients with diabetes.

Conclusions: After loosening erythropoietin payment criteria, reduced cardiovascular risks were observed, particularly for
patients with diabetes. These results indicate that it is crucial to maintain an Hct level above 30% to reduce the cardiovascular
risk in patients with diabetes undergoing peritoneal dialysis.

(JMIR Med Inform 2020;8(12):e18716)   doi:10.2196/18716

KEYWORDS

erythropoietin; cardiovascular disease; peritoneal dialysis; diabetes mellitus

Introduction

Erythropoietin is a major regulatory hormone of erythrocyte
production that is produced from the kidney, and its levels are

decreased in patients with chronic kidney disease (CKD). A
reduction in erythropoietin further decreases erythrocyte survival
and leads to a chronic inflammatory status that contribute to
anemia. Administration of exogenous erythropoietin for CKD
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patients, especially those receiving dialysis, is the standard
treatment for anemia.

Early studies showed that the use of erythropoietin tended to
increase the hematocrit (Hct) target to the normal level (ie,
40.5% for men and 36% for women). However, more recent
large, randomized outcome trials [1-3] showed that elevating
the Hct level above 36% compared to maintaining Hct in the
range of 30%-36% was associated with a higher risk of
cardiovascular events for patients with CKD. These findings
led to establishing the limitation of the Hct upper bound;
however, the optimal Hct target remains debatable. The
recommendations from the National Kidney Foundation-Kidney
Disease Outcomes and Quality Initiative [4] and Taiwan’s
nephrology professionals [5] suggest maintaining the level of
Hct between 33% and 36%.

The public statement of the European Medical Agency in 2007
concluded that the target Hct range should be 30%-36% [6].
The 2011 safety announcement of the US Food and Drug
Administration recommended reducing or interrupting
erythropoietin administration if the Hct level approaches or
exceeds 33% for patients undergoing dialysis [7]. The
recommendation from the Kidney Disease Improving Global
Outcome in 2012 Clinical Practice Guideline was to maintain
Hct below 34.5% [8]. Accordingly, an Hct range of 30%-36%
might be considered the minimal bandwidth to accommodate
all of these recommendations.

To reduce the cost of providing end-stage renal disease (ESRD)
treatments while maintaining, or preferably improving, patient
care, the US Center for Medicare and Medicaid (CMS)
implemented the ESRD Prospective Payment System, known
as the “expanded ESRD bundle,” on January 1, 2011 [9].
Moreover, in response to a quality incentive program (QIP)
required by US congress, two quality measures of anemia
management were established to identify poor performance:
patients with a hemoglobin (Hb) level less than 10 g/dL and
those with an Hb level greater than 12 g/dL [9]. These Hb levels
are equivalent to an Hct level less than 30% and above 36%,
respectively, since 1 g/dL of Hb is equal to 3% Hct. However,
the CMS retired the measure of an Hb level less than 10 g/dL
in its later QIP requirements [10,11]; that is, dialysis facilities
would receive no penalties for patients with Hb levels lower
than 10g/dL, who might be spotted more often in the future.
The elimination of penalties for the lower bound of Hb levels
has indeed removed the financial incentives to provide costly
erythropoietin treatment, while raising some concerns about
patient care [12]. Nevertheless, it remains unclear whether
patients with an Hb level lower than 10 g/dL or an Hct level
lower than 30% have a higher risk of adverse events, which is
a logical inquiry that warrants further investigation.

Limited studies have reported cardiovascular events or mortality
associated with Hct levels lower than 30%. Studies comparing
dialysis patients with an Hct level maintained below 30% to
those with Hct levels maintained in the range of 30%-36%
showed no significant difference in adverse outcomes [13-15].
However, more recent studies [1-3] comparing the risk of
pushing Hct levels above 36% with those maintained between
30%-36% included a larger sample size of more than 1200

patients with a follow-up period of more than 14 months, in
contrast to the early studies with a relatively small sample size
of 152 patients or less and a short follow-up period of 6-9
months. Moreover, the design of these studies was not
specifically focused on assessing this question. Recently, the
change in the reimbursement policy of erythropoietin
administration to patients undergoing peritoneal dialysis by the
Taiwan National Health Insurance (NHI) system provides a
natural experimental venue for directly examining this clinical
research issue.

The incidence and prevalence rates of ESRD in Taiwan have
been ranked at the top internationally since 2001 [16], placing
an immense burden of caring and funding for ESRD patients
on the Taiwan NHI system. The low renal transplant rate, at
less than 1% annually [17], results in nearly all of Taiwan’s
ESRD patients relying on dialysis treatments to prolong their
lives, with more than 93.5% of ESRD patients receiving
hemodialysis treatments in 2004 [18]. To increase peritoneal
dialysis utilization, Taiwan’s NHI has introduced a series of
encouragement policies since 2005, including loosening the
reimbursement criteria. Before November 1, 2006, the treatment
of erythropoietin to a patient undergoing peritoneal dialysis
could only be reimbursed by the NHI if the patient’s Hct level
was ≤30% and they were receiving a maximal monthly
erythropoietin dosage of 20,000 U epoetin alfa/beta or 100 μg
darbepoetin alfa. After November 1, 2006, the Hct level at which
erythropoietin administration could be reimbursed was relaxed
to ≤36% with the same maximal monthly erythropoietin dosage
requirements. Subsequent to this relaxation of erythropoietin
administration criteria, the Hct levels for both prevalent and
incident peritoneal dialysis patients increased from 28%-29%
to 30%-31% [19-21].

The main purpose of this study was to analyze the impact of
loosening the erythropoietin administration criteria for patients
undergoing peritoneal dialysis in Taiwan with a focus on
exploring the risk of cardiovascular events when maintaining
Hct at 30%-31% as compared to 28%-29%.

Methods

Ethics Statement
Data were obtained from the National Health Insurance Research
Database [22], which are accessible to researchers after ethical
and scientific review processes. Prior to applying for this access,
this study was approved by the ethical review board of National
Taiwan University Hospital (NTUH-REC No. 201406018W).
There are 27 institutional review boards capable of issuing
approvals, and all are supervised and regulated by the Taiwan
Ministry of Health and Welfare. To protect individuals’
confidentiality, all datasets in the Data Science Centre are
pseudonymized. Personal ID, birth date, and names are
encrypted, and this deidentification process was approved by
an independent third party. We performed data analysis in the
branches of the Data Science Centre. The analyzed results were
also examined by the Data Science Centre before exporting.
The Institutional Review Board verified the anonymity of data
analysis performed in this study. All research procedures
followed the directives of the Declaration of Helsinki.

JMIR Med Inform 2020 | vol. 8 | iss. 12 |e18716 | p.162http://medinform.jmir.org/2020/12/e18716/
(page number not for citation purposes)

Hou et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Study Design
This was an observational study designed to compare the
cardiovascular events of two cohorts of newly treated (incident)
patients undergoing peritoneal dialysis before and after
relaxation of the NHI’s erythropoietin payment criteria. Cohort
1 included dialysis patients who started to receive maintenance
peritoneal dialysis treatments during a specified period of 28
months before relaxation of the NHI’s erythropoietin payment
criteria. To ensure an adequate observation period, this cohort
was followed up for an additional 14 months after the month
in which the last patient was enrolled in the study. Cohort 2
included incident dialysis patients who started to receive
maintenance peritoneal dialysis treatments within a 28-month
time interval after relaxation of the NHI’s erythropoietin
payment criteria. Additional 14-month follow-up observations
were also made after the month in which the last patient of this
cohort was enrolled in the study. We set a 6-month time lag
between the initiation of relaxing the erythropoietin payment
criteria and the time that the first patient was enrolled in cohort
2 to accommodate possible adaptations of the physician
prescribing practices to the new policy.

Because of potential imbalances in the distributions of many
measured and unmeasured baseline covariates between the two
cohorts, propensity score (PS) analysis, which was developed
by Rosenbaum et al [23], was used in this study. Thus, the
influence of any potential enrollment biases between these two
cohorts was attenuated through a PS-matching approach and
identification of patients with comparable characteristics in the
two cohorts. This study defined PS as the probability of a patient
having experienced a cardiovascular event. Patients in cohorts
1 and 2 were matched with PS scores estimated by age, sex,
and the comorbidity index with the Greedy nearest neighbor
algorithm [24]. The comorbidity index was developed by Liu
et al [25] specifically for the US Medicare dialysis population
and was subsequently validated for Taiwanese dialysis patients
[26].

After matching with the PS, patients were followed up until
experiencing either one of the following three events: (1) the
occurrence of cardiovascular endpoints, (2) change to
hemodialysis, or (3) the data cutoff point (October 31, 2006 for
cohort 1 and October 31, 2010 for cohort 2), whichever occurred
earlier. Survival analysis models were then employed to
investigate the differences in the risk of cardiovascular events
between the two cohorts of incident peritoneal dialysis patients.
Baseline demographics and comorbid conditions were used as
covariates in the statistical analyses. Monthly erythropoietin
doses administered to patients of cohort 1 and cohort 2 during
the follow-up period were compared to examine a difference
between the two cohorts of incident peritoneal dialysis patients.
In calculation of erythropoietin dosage, epoetin alfa and epoetin
beta were considered to be equivalent, whereas darbepoetin alfa
was converted to epoetin alfa based on the equivalence of 1 μg
of darbepoetin alfa to 200 U of epoetin alfa [27].

Cardiovascular risk could be affected by treatments with
concomitant medications related to cardiovascular comorbidities.
Therefore, patients taking medications related to cardiovascular
comorbidities during the follow-up period in the two cohorts

were also examined. The concomitant medications related to
cardiovascular comorbidities were identified by corresponding
Anatomical Therapeutic Chemical classification codes, including
acetylsalicylic acid (B01AC06) or clopidogrel (B01AC04),
angiotensin-converting enzyme inhibitors (C09A) or angiotensin
receptor blockers (C09C), beta blockers (C07), calcium channel
blockers (C08), and statins (C10AA). A patient who received
such medication for any of the 3 months during the follow-up
period would be considered to be under treatment of concomitant
medications related to cardiovascular comorbidities.

Finally, in addition to administering erythropoietin, because the
patient’s Hct level could also be affected by the use of iron and
red cell transfusion, the differences in iron and red cell
transfusion were compared between patients in the two cohorts.

Patient Selection
Incident peritoneal dialysis patients were identified from the
claim data of entire beneficiaries covered by the NHI system
from 2003 to 2010. Collection and analysis of the NHI claimed
data were approved by the National Taiwan University Hospital
Human Research Ethics Committee. The analyses were
performed on deidentified data extracted from the NHI research
database compiled by Taiwan National Health Research
Institutes. A patient receiving over 90-day consecutive dialysis
treatments and with peritoneal dialysis performed on day 90
and thereafter was considered to be an incident peritoneal
dialysis patient in this study. Cohort 1 included patients who
received dialysis as of the 90th day between May 1, 2003 and
August 31, 2005, and cohort 2 included patients who received
dialysis as of the 90th day between May 1, 2007 and August
31, 2009. Young patients (under 20 years) were excluded
because comorbidities differed between pediatric and adult
patients. There were 1759 patients in cohort 1 and 2981 patients
in cohort 2. After PS-based matching, each cohort contained
1754 patients.

Statistical Analyses
The primary outcome measure was a composite cardiovascular
endpoint, defined as myocardial infarction, heart failure
hospitalization, stroke, or death. Myocardial infarction was
defined by International Classification of Diseases, Ninth
Revision (ICD-9) codes 410 and 411 in the hospital discharge
diagnosis. Heart failure hospitalization was defined by ICD-9
hospital discharge diagnosis codes 398.91, 422, 425, 428,
402.x1, 404.x1, 404.x3, and V42.1. Stroke was defined by ICD-9
hospital discharge diagnosis codes 433, 434, 436, 437.0, and
437.1. For the primary outcome measure, all patients in both
cohorts were followed up until the occurrence of myocardial
infarction, heart failure hospitalization, stroke, or death,
whichever occurred earlier. Secondary outcomes were the
individual components of the composite primary outcome:
myocardial infarction, heart failure hospitalization, stroke, and
death. Each patient was followed up until the occurrence of
each cardiovascular event. Data on patients who did not have
an event were censored at the data cut-off point or date of
transition to hemodialysis, whichever occurred earlier.

The selection and analyses of primary and secondary endpoints
of cardiovascular risk in this study were the same as those
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adopted in previous large-scale studies [1-3]. In addition to
cardiovascular events, death was also considered an important
clinical endpoint in the evaluation of cardiovascular risk because
reducing mortality is an ultimate goal of reducing cardiovascular
risk. Using a composite primary endpoint with each component
evaluated as the secondary endpoint analysis is commonly
adopted by many clinicians [2,3], such as in pivotal studies of
new drug applications. This allows for a thorough evaluation
of the contribution of each component of the composite primary
endpoint and avoids any biases introduced by a dominating
component.

The Cox proportional hazards model was employed to estimate
the cardiovascular risk between the two cohorts. Estimated
hazard ratios (HRs) for cohort 2 relative to cohort 1 and 95%
CIs were calculated. To obtain more insightful results, patients

were further stratified by diabetes status; Cox regression
analyses for patients with and without diabetes were performed
separately. All analyses were performed using SAS software,
version 9.1.

Results

Patient Selection
Table 1 shows the baseline demographics and comorbid
conditions of the equal number (n=1754) of incident peritoneal
dialysis patients in the two cohorts. No statistically significant
differences were observed, suggesting that patients in the two
cohorts appeared to be similar in terms of age, gender, and
comorbid conditions at baseline. There were also no significant
differences in the usage of any concomitant medication related
to cardiovascular comorbidities between the two cohorts.

JMIR Med Inform 2020 | vol. 8 | iss. 12 |e18716 | p.164http://medinform.jmir.org/2020/12/e18716/
(page number not for citation purposes)

Hou et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 1. Baseline demographics and concomitant medications during the follow-up period in cohort 1 and cohort 2 after matching with the propensity
score.

P valuebMatched cohort 2 (n=1754)Matcheda cohort 1 (n=1754)Characteristic

.84991 (56.50)994 (56.67)Female, n (%)

.3352.87 (15.02)52.96 (15.36)Age (years), mean (SD)

Age group (years), n (%)

327 (18.64)326 (18.59)20-39

384 (21.89)390 (22.23)40-49

444 (25.31)431 (24.57)50-59

324 (18.47)320 (18.24)60-69

275 (15.68)287 (16.36)≥70

.802.52 (1.79)2.52 (1.72)Comorbidity index, mean (SD)

Comorbidity index, n (%)

401 (22.86)401 (22.86)0

269 (15.34)268 (15.28)1

323 (18.42)324 (18.47)2

243 (13.85)245 (13.97)3

182 (10.38)180 (10.26)4

148 (8.44)148 (8.44)5

94 (5.36)94 (5.36)6

50 (2.85)49 (2.79)7

23 (1.31)24 (1.37)8

10 (0.57)10 (0.57)9

11 (0.63)11 (0.63)≥10

Baseline comorbidity, n (%)

.49320 (18.24)327 (18.64)Atherosclerotic heart disease

>.99192 (10.95)192 (10.95)Congestive heart failure

.67268 (15.28)273 (15.56)Cerebrovascular accident/transient
ischemic attack

.76253 (14.42)250 (14.25)Peripheral vascular disease

.75223 (12.71)220 (12.54)Other cardiac disease

.59110 (6.27)106 (6.04)Chronic obstructive pulmonary dis-
ease

.65207 (11.80)212 (12.09)Gastrointestinal bleeding

.66204 (11.63)200 (11.40)Liver disease

.4856 (3.19)60 (3.42)Dysthymia

.80151 (8.61)149 (8.49)Cancer

.82584 (33.30)581 (33.12)Diabetes

.701305 (74.40)1297 (73.95)Hypertension

.3315 (0.86)19 (1.08)Atrial fibrillation

.59128 (7.30)134 (7.64)Coronary artery bypass graft

.8921 (1.20)22 (1.25)Myocardial infarction

Concomitant medications, n (%)

.391355 (77.3)1369 (78.05)Acetylsalicylic acid or clopidogrel

.38631 (35.97)637 (36.32)ACEIsc or ARBsd
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P valuebMatched cohort 2 (n=1754)Matcheda cohort 1 (n=1754)Characteristic

.48586 (33.41)589 (33.58)Beta blockers

.37693 (39.51)683 (38.94)CCBe

.32504 (28.73)509 (29.02)Statins

.6369 (3.93)72 (4.10)Oral iron usage, n (%)

.61772 (42.01)794 (45.27)Intravenous iron usage, n (%)

.09170 (9.69)194 (11.06)Red cell transfusions, n (%)

.030.044 (0.172)0.059 (0.216)Red cell transfusion units per patient per
month, mean (SD)

.2323.39 (125.0)25.06 (129.66)Oral iron dose per patient per month
(mg), mean (SD)

.1998.91 (89.38)106.54 (92.29)Intravenous iron dose per patient per
month (mg), mean (SD)

<.00112,379c (8580-14,570)10,588c (7750-13,280)dErythropoietinf usage per patient per
month (U), median (IQR)

aMatching with propensity score was based on age, sex, and comorbidity index using the Greedy method.
bMeans (SD) were compared with the t test, n (%) values were compared with the proportion z test, and medians (IQR) were compared with the Wilcoxon
rank-sum test.
cACEIs: angiotensin converting enzyme inhibitors.
dARBs: angiotensin receptor blockers.
eCCB: calcium channel blocker.
fIncluding epoetin alfa, epoetin beta, and darbepoetin alfa; epoetin alfa and beta were considered equivalent, and 100 μg darbepoetin was considered
equivalent to 20,000 U erythropoietin according to the reimbursement criteria of the Taiwan National Health Institute.

Erythropoietin Dosage
The median monthly erythropoietin dosage was significantly
higher in cohort 2 than in cohort 1 (12,739 U vs 10,588 U,
P<.001). The usage of iron supplements (both oral and
intravenous) and red cell transfusions were comparable in the
two cohorts (Table 1).

Endpoint Evaluation
For the composite cardiovascular endpoint, the risk in cohort 2
was significantly lower after adjusting for age, sex, comorbidity
index, diabetes mellitus, hypertension, history of coronary artery
bypass graft, and congestive heart failure (Table 2). For each
cardiovascular endpoint, the risk reduction in cohort 2 did not
reach statistical significance.

Table 2. Comparison of primary and secondary endpoints between the cohorts.

P valueHazard ratioa (95% CI)Matched cohort 2
(n=1754), n (%)

Matched cohort 1 (n=1754), n (%)Endpoint

.040.82 (0.69-0.98)261 (14.88)299 (17.05)Primary endpoint: cardiovascular compos-
ite events

Secondary endpoints

.200.81 (0.48-1.19)36 (2.05)40 (2.28)Myocardial infarction

.150.72 (0.50-1.12)45 (2.57)58 (3.31)Stroke

.170.76 (0.65-1.09)162 (9.24)173 (9.86)Heart failure hospitalization

.590.92 (0.68-1.24)89 (5.07)91 (5.19)Death

aAdjusted for age, sex, comorbidity index, diabetes, hypertension, history of coronary artery bypass graft, and congestive heart failure.

In the subgroup analysis (Table 3), for patients that did not have
diabetes, no significant difference in either the composite
cardiovascular endpoint or any individual cardiovascular
endpoint was observed between the two cohorts. However, for

patients with diabetes, the risk of the composite cardiovascular
endpoint was significantly lower in cohort 2. In addition, the
risks of stroke and heart failure hospitalization were significantly
lower in cohort 2 than those of cohort 1.
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Table 3. Subgroup analysis according to diabetes status in comparing the endpoints between matched cohort 1 and cohort 2.a

Patients without diabetescPatients with diabetesbEndpoint

P valueHazard ratiod (95% CI)P valueHazard ratiod (95% CI)

.820.97 (0.74-1.27).0060.74 (0.60-0.93)Primary endpoint: Cardiovascu-
lar composite

Secondary endpoints

.760.86 (0.33-2.25).190.67 (0.36-1.15)Myocardial infarction

.931.02 (0.51-2.04).040.61 (0.39-0.98)Stroke

.761.06 (0.74-1.51).040.72 (0.54-0.99)Heart failure hospitalization

.270.79 (0.49-1.26).731.07 (0.73-1.58)Death

aPatients in cohorts 1 and 2 were matched with the propensity score by age, sex, and comorbidity index using the Greedy method.
bCohort 1, n=581; cohort 2, n=584.
cCohort 1, n=1173; cohort 2, n=1170.
dAdjusted by age, sex, comorbidity index, hypertension, history of coronary artery bypass graft, and congestive heart failure.

Discussion

Summary
No statistically significant difference was observed for baseline
comorbidities and concomitant medications in the follow-up
period between the matched cohort 1 and cohort 2 (Table 1).
This suggests that both cohorts had similar cardiovascular risk
factors. After loosening erythropoietin payment criteria, the
erythropoietin dosage increased and the cardiovascular risk
decreased; however, the reduction in cardiovascular risk was
observed only in patients with diabetes. In addition, among
patients with diabetes, significant risk reduction was found not
only for the composite cardiovascular endpoint but also for the
individual secondary endpoints, including stroke and heart
failure hospitalization. Since similar percentages of patients in
matched cohort 1 and cohort 2 received oral and intravenous
iron, and the oral and intravenous iron dosage was comparable
between these two cohorts, it is reasonable to assume that the
higher Hct level in matched cohort 2 might have resulted from
the higher erythropoietin dosage. Similarly, the reduction in
cardiovascular risk in matched cohort 2 may be related to the
higher erythropoietin dosage and maintenance of an adequate
Hct range.

Comparison With Prior Work
Although previous findings that pushing Hct to more than 36%
compared to 30%-36% tends to increase cardiovascular risk
[1-3,7] have been widely accepted and recommended, there is
a lack of sufficient evidence to demonstrate a difference in
cardiovascular risk by maintaining Hct levels below 30%
relative to 30%-36%. A few studies with small sample sizes
and short follow-up periods showed no significant difference
in cardiovascular risk or mortality for patients maintaining Hct
below 30% compared to those maintaining Hct at 30%-36%
[13-15]. Thus, these limitations have prevented investigators
from detecting the potential difference in cardiovascular risk.
By contrast, our national study showed that a lower
cardiovascular risk is associated with increasing Hct from
28%-29% to 30%-31% for incident peritoneal dialysis patients
in Taiwan. The number of subjects in our study was 3508 and

the median follow-up duration was 23 months, which are
comparable to those of more recent large-scale studies [1-3]
with a sample size between 1265 and 4038 and median
follow-up duration between 14 and 29 months.

Principal Findings
Although the Hct data reported in the NHI beneficiaries claim
database did not directly link to observations of patients’ Hct
levels of this study, we used the data from the whole NHI
population (census) and government documents publishing Hct
statistics for dialysis patients supported by the NHI [19-21].
Moreover, from the governmental published data, the Hct levels
of both prevalent and incident peritoneal dialysis patients were
very similar (28.9% to 30.4% vs 29.1% to 30.4% from 2005 to
2008) and the Hct of both peritoneal dialysis patients with and
without diabetes mellitus were also very similar (28.5% to
30.6% vs 28.3% to 30.3% from 2003 to 2008). Therefore, we
assumed that the Hct levels of incident peritoneal dialysis
patients in our study were similar to those reported in the
government documents. After loosening the erythropoietin
payment criteria, the Hct level of both prevalent and incident
peritoneal dialysis patients increased from 28%-29% to
30%-31% [19-21].

In this study, the median erythropoietin dosage in cohort 2
(12,739 U) was significantly higher than that in cohort 1 (10,588
U); that is, there was a more than 20% increase in the dosage
after loosening the erythropoietin reimbursement criteria. Given
that the usage rates of iron supplements (both oral and
intravenous) and red cell transfusions were comparable in the
two cohorts, increased erythropoietin usage supports the
assumption that the Hct of incident peritoneal dialysis patients
also increased after loosening the erythropoietin payment
criteria.

Because the reduction in cardiovascular risk was observed only
in patients with diabetes, the difference in cardiovascular event
risk reduction between patients with and without diabetes might
not be the result of the Hct difference; indeed, the Hct was
similar between peritoneal dialysis patients with (28.5%-30.6%)
and without (28.3%-30.3%) diabetes from 2003 to 2008 [21].
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Therefore, rather than analyzing the two subgroups (with and
without diabetes) separately through a Cox proportional hazards
model, we reanalyzed the nonstratified data through a Cox
proportional hazards model with the addition of two more
variables: one dichotomous variable for differentiating patients
according to diabetes status and another interaction term
between diabetes status and cohort. The estimate of diabetes
status represented the cardiovascular risk of patients with
diabetes relative to that of patients without diabetes in the time
period of cohort 1, and the estimate of the interaction term
measured the change in cardiovascular risk of patients with
diabetes relative to that of patients without diabetes in the time
period of cohort 2 compared to the time period of cohort 1.
These results showed that the incident peritoneal dialysis
patients with diabetes had a significant 78% higher
cardiovascular risk than those of patients without diabetes.
Although there was no significant difference in cardiovascular
risk observed for our peritoneal dialysis patients without diabetes
in cohort 2 (HR 0.974, 95% CI 0.84-1.05), the cardiovascular
risk of the patients with diabetes in cohort 2 was significantly
reduced by 22% (HR 0.78, 95% CI 0.61-0.94). This means that
the cardiovascular risk of incident peritoneal dialysis patients
with diabetes mellitus was 39% (1.78×0.78=1.39) higher than
that of patients without diabetes in the time period of cohort 2,
and was reduced by 78% in the time period of cohort 1. There
was no significant difference in the erythropoietin dosages used
for patients in the two cohorts according to diabetes status in
either cohort (diabetes vs no diabetes median 10,726 U vs
10,525 U, P=.09 in cohort 1; 12,254 U vs 12,310 U, P=.17 in
cohort 2). Given these findings and the similar Hct levels
between the patients with and without diabetes, the observed
increases in erythropoietin dosage and the Hct levels from below
30% to above 30% might benefit peritoneal dialysis patients
with diabetes in terms of reducing the cardiovascular risk but
would have no impact on the cardiovascular risk of patients
without diabetes.

This finding has an important implication for policymakers for
making decisions as to how to allocate health care resources
and improve patient care in a cost-efficient manner, which is a
major challenge for policymakers worldwide, including Taiwan
and the United States. Based on these findings, Taiwan’s NHI
policymakers should reconsider the relaxation of NHI’s
reimbursement criteria to target only peritoneal dialysis patients
with diabetes rather than applying these criteria universally. In

this way, the NHI could spend less while improving diabetic
peritoneal dialysis patient care by reducing the cardiovascular
risk. With respect to policy decisions in the United States, it is
possible that more patients would have an Hb level below 10
g/dL (ie, Hct 30%) and thus a higher cardiovascular risk might
be incurred for ESRD patients with diabetes after eliminating
the QIP requirement of an Hb level <10 g/dL. Thus, determining
whether a lower bound of the Hct/Hg level should be restored
for ESRD patients with diabetes mellitus to reach a balance
between cost reduction and improvement of patient care is a
critical issue to be examined by US policymakers.

Limitations
A more clinically oriented inquiry may explain why the
peritoneal dialysis patients with diabetes showed a stronger
response to the increase in erythropoietin dosage and Hct levels
in terms of reducing cardiovascular risk. Our data do not enable
directly testing this clinical issue and thus more research to this
end is warranted. There are also limitations of this study. No
blood pressure or laboratory data, including serum albumin and
lipid profile, were available from the NHI claim database, which
prevented performing a comprehensive comparison of baseline
characteristics between the two cohorts. Although this might
have constrained detailed matching of patients in the two
cohorts, the patients matched in the two cohorts were
considerably comparable with respect to comorbid conditions
and concomitant medication related to cardiovascular risk.

Conclusions
After loosening the erythropoietin payment criteria, a
significantly lower risk of cardiovascular events, stroke, and
heart failure hospitalization was observed in matched cohort 2,
in particular for those with diabetes mellitus. This risk reduction
may be related to the higher erythropoietin dosage and
maintenance of an adequate Hct range. Further research is
needed to investigate why peritoneal dialysis patients with
diabetes mellitus are more sensitive to the increase in
erythropoietin dosage and Hct levels. Our findings support that
for these patients, maintaining an Hct level above 30% is crucial
for reducing the cardiovascular risk. This finding has
implications for policymakers to determine the allocation of
health care resources in a cost-effective manner while reducing
the potential cardiovascular risk for patients receiving peritoneal
dialysis.
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Abstract

Background: Given the increasing availability of the internet, it has become a common source of health information. However,
the effect of this increased access on health needs to be further studied.

Objective: This study aimed to investigate the correlation between online health information–seeking behavior and general
health dimensions in a sample of high school students in Iran.

Methods: A cross-sectional study was conducted in 2019. A total of 295 female students participated in the study. The data
were collected using two validated questionnaires: the e-Health Impact Questionnaire and the 36-Item Short Form Health Survey.
The collected data were analyzed through descriptive statistics and Pearson correlation coefficients using SPSS version 23 (IBM
Corp).

Results: The participants moderately used online information in their health-related decisions, and they thought that the internet
helped people in health-related decision making. They also thought that the internet could be used to share health experiences
with others. Participants had moderate confidence in online health information and stated that the information provided by health
websites was moderately understandable and reliable and moderately encouraged and motivated them to play an active role in
their health promotion. Nevertheless, the results showed that online health information–seeking experience had no significant
correlation with health-related quality of life.

Conclusions: This study provides insights into the effect of using internet information on the health of adolescents. It has
important implications for researchers and policy makers to build appropriate policies to maximize the benefit of internet access
for health.

(JMIR Med Inform 2020;8(12):e23854)   doi:10.2196/23854
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Introduction

Adolescence refers to the age range of 10 to 19 years [1]. It is
generally supposed that this period is an appropriate time to
maintain and promote health and prevent health-related adverse
effects in the following decades of life [2]. Despite this potential,
adolescents have special needs that are often not well met by
health systems [3]. Evidence suggests that many high-risk
behaviors that usually begin in adolescence cause an epidemic
of noncommunicable diseases in adulthood [4]; an 18-year
prospective study has shown that physical activity in
adolescence has a significant effect on one’s health in adulthood
[5]. Today, adolescents are facing multiple health-threatening
factors, various questions on different aspects of health, and
more complicated health challenges and problems than their
parents did [6]. Studies on adolescent health status highlight
the necessity of changing the assumption that adolescents are
generally healthy and need less attention [7]. Therefore, the
question is where adolescents can receive help or information
when faced with such challenges. Family, peers, teachers, health
specialists, and online resources are common sources from
which adolescents seek information and advice on health
challenges [8].

In general, people choose different ways to find answers to their
questions and doubts about health. Health information–seeking
behavior refers to seeking and receiving information to reduce
uncertainty and doubts and ensure health status [9]. As Wilson
suggests in his model, “information-seeking behaviour arises
as a consequence of a need perceived by an information user,
who, in order to satisfy that need, makes demands upon formal
or informal information sources or services, which result in
success or failure to find relevant information” [10].

Similar to most fields, health information seeking has changed
from traditional practices such as referring to books and
magazines and even direct expert advice to new methods such
as the use of the internet and social networks. Online resources
play an important role in providing health information, and
young people are increasingly using online information in
various domains. In their systematic review, Park and Kwon
(2018) showed that adolescents used the internet widely in
different countries [11].

According to another systematic review, 81% (21/26) of the
studies indicated that more than 50% of their samples used the
internet to obtain health information [12]. Studies show that
adolescents use the internet to find answers to their wide range
of health-related questions; on the other hand, they doubt the
comprehensibility and validity of online information [12-14].

Johnson et al (2015) found that youth with lower mental quality
of life used the internet more to gain health information [14].
Besides, studies have shown that adolescents with more health
risk factors and those with worse health status, higher health
literacy, and a chronic disease are more likely to use the internet
to search for health information [15]. In this regard, a question
that has remained as a main concern is whether adolescents
have sufficient ability to effectively search for, evaluate, and
use online health information in a way that promotes their health
[16,17]. Thus, the adolescents’ ability to access health

information online can be described as a double-edged sword
that may have a positive or negative impact on their health.

According to the 2016 census in Iran, adolescents make up 8%
of the country’s population of 12 million, half of whom are girls
[18]. Iran has one of the highest rates of internet access in its
region [19]. Since a high percentage of the Iranian population
is composed of adolescents and youths, and due to the cultural
and religious contexts of the country, some of the challenges
that adolescents face are not disclosed to their parents or
professionals. Therefore, the internet seems to provide an
opportunity through which they can seek answers to their
health-related questions. Hence, this study aimed to investigate
the relationship between online health information–seeking
behavior and general health status on a sample of high school
girls in Iran. We were particularly interested in studying the
online health information–seeking behavior and its correlations
with health outcomes among female students for several reasons.
First, according to statistics from the Ministry of Education,
girls make up half of all Iranian students [20]. Second,
adolescence is a critical period of life regarding health,
especially for health-promoting behaviors. Statistics show that
one fifth of the world’s population is between the ages of 10
and 19 years, and 85% of them live in developing countries.
Promoting adolescents’ health is one of the national
development goals, and satisfying the health needs of this
population is among the top priorities of health systems around
the world. Changing adolescents’ health-related behaviors and
their lifestyles requires providing them with appropriate and
complete health information [21]. Third, girls play an important
role in the health of today’s and future society, and investment
in improving their health is one of the most important strategies
to achieve global health goals [18]. The fourth reason is that
there is a growing body of research that explores the significance
of context in health information, demonstrating that gender is
a determinant of information-seeking behavior. Many authors
agree that health information seeking is influenced by gender
[22]. In a study by Rowley et al (2016), they confirmed gender
as a factor influencing the process of health information seeking
and evaluation [23]. In addition, some other studies have
reported important gender differences in health
information–seeking behavior [22-26]. Therefore, it is crucial
for societies to help female students to maintain and promote
their health, which was the aim of this study as well.

Methods

Overview
This cross-sectional questionnaire study was conducted in 2019.
A total of 295 female high school students in Ardekan city,
Yazd province, who had access to the internet and the experience
of health information seeking participated in the study. All
participants provided informed consent to participate in the
study and were assured that their personal information would
be kept confidential. The parents of the students were made
aware of the participation of their children in the study and had
the opportunity to not let their children participate in the study.
The school principal and students’ teachers approved the study.
All the study procedures were conducted in accordance with
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the ethical standards of the Declaration of Helsinki. In addition,
the ethics committee of Shahid Sadoughi University of Medical
Sciences approved the study (approval code:
IR.SSU.SPH.REC.1399.023). Questionnaires were completed
in class, and any students who were absent on the testing days
had the opportunity to participate in the study on the following
days. All the data were gathered using two validated
questionnaires: the e-Health Impact Questionnaire (eHIQ) and
the 36-Item Short Form Health Survey (SF-36).

eHIQ
The eHIQ was used to measure the online health
information–seeking behavior of participants. The eHIQ,
developed by Kelly et al in 2015 as an instrument to measure
the potential consequences of using websites containing different
types of material across a range of health conditions, is a 2-part
instrument with 37 items. eHIQ-Part 1 consists of 11 items
related to general views of using the internet in relation to health.
These 11 items have been grouped into 2 subscales named
“Attitudes towards online health information” (5 items) and
“Attitudes towards sharing health experiences online” (6 items).
eHIQ-Part 2 consists of 26 items related to the consequences
of using specific health-related online sources. The 26 items
have also been grouped into 3 subscales: “Confidence and
identification” (9 items), “Information and presentation” (8
items), and “Understanding and motivation” (9 items). In our
study, the participants were asked to respond to the 26 items of
eHIQ-Part 2 regarding the online sources from which they have
sought information in recent months. In addition, the participants
were asked to score all items from both parts on a 5-point scale
ranging from 1 (“never”) to 5 (“always”). We used a standard
“forward-backward” procedure to translate the eHIQ from
English into Persian. To demonstrate the content validity, we
used the content validity ratio to quantify the extent of the
experts’ agreement. The reliability of the translated version of
the eHIQ was confirmed using the Cronbach alpha coefficient,
which was calculated as 0.89 for the total scale and 0.81, 0.87,
0.94, 0.83, and 0.91 for “Attitudes towards online health

information,” “Attitudes towards sharing health experiences
online,” “Confidence and identification,” “Information and
presentation,” and “Understanding and motivation,”
respectively.

SF-36
The SF-36 is a popular instrument for assessing the
health-related quality of life. The SF-36 has 36 items, which
measure 8 subscales (ie, vitality, physical functioning, bodily
pain, general health perceptions, physical role functioning,
emotional role functioning, social role functioning, and mental
health). These 8 subscales of SF-36 are grouped into two distinct
dimensions, namely a physical dimension represented by the
physical component summary (PCS), which is the sum of
physical functioning, bodily pain, general health perceptions,
and physical role functioning, and a mental dimension
represented by the mental component summary (MCS), which
is the sum of vitality, emotional role functioning, social role
functioning, and mental health. After completing the
questionnaire, each scale is directly transformed into a 0-100
score on the assumption that each question carries equal weight.
The lower the score, the greater the disability; the higher the
score, the less the disability (ie, a score of 0 is equivalent to
maximum disability and a score of 100 is equivalent to no
disability). In this study, we used the Persian version of the
SF-36, which had been validated by Montazeri et al (2005) [27].
In addition, we used the original scoring system. The collected
data were analyzed through descriptive statistics (including
means and standard deviations) and Pearson correlation
coefficients, using SPSS version 23 (IBM Corp).

Results

Of the participants, 16 students were married, and the rest were
single. All of them had access to the internet at their home and
the experience of seeking health information in recent months
before the study. Demographic characteristics of the participants
are presented in Table 1.
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Table 1. Demographic characteristics of the participants (N=295).

n (%)Variable

Marital status

279 (94.6)Single

16 (5.4)Married

Religion

279 (94.6)Muslim

16 (5.4)Not available

Education level of parents

High school

104 (35.3)Fathers

116 (39.3)Mothers

Diploma and associate degree

122 (41.4)Fathers

108 (36.6)Mothers

Bachelor and higher

69 (23.4)Fathers

71 (24.1)Mothers

The findings regarding information-seeking behavior of the
participants are presented in Table 2, showing that the
participants have moderate scores on all subscales of eHIQ-Part
1 and Part 2. In this study, mean scores between 1 and 2.33,
between 2.34 and 3.66, and higher than 3.66 were defined as
low, moderate, and high levels, respectively. The moderate
scores obtained by the participants in the 2 subscales of
eHIQ-Part 1 indicated that the participants had used the internet
moderately in their health-related decisions and thought that
internet could be moderately useful to help people in their
health-related decision making. They also thought that internet
was a moderately good channel to share the health experiences
and communicate with some people with the same health
problems. In addition, the moderate score of participants

regarding confidence and identification revealed that they did
not have a sense of solidarity with other internet users in their
information-seeking journey; the internet did not give them a
sense of confidence to explain their health issues to others, and
they thought that online searching did not help them to better
manage their health-related conditions. Therefore, they did not
highly value the online health information. The moderate scores
of the participants regarding the last 2 subscales of eHIQ-Part
2, “Information and presentation” and “Understanding and
motivation,” showed that the information provided by health
websites had been moderately understandable and reliable for
the participants and moderately encouraged and motivated them
to play an active role in their health promotion.

Table 2. Mean scores for online health information–seeking behavior of the students.

Mean score (SD)Item

eHIQ-Part 1

2.46 (0.80)Attitudes towards online health information 

2.77 (0.90)Attitudes towards sharing health experiences online 

eHIQ-Part 2

2.52 (0.77)Confidence and identification 

2.90 (0.79)Information and presentation 

2.90 (0.88)Understanding and motivation 

2.71 (0.71)eHIQ (total)

The descriptive results regarding the students' health statuses
on the SF-36 subscales are presented in Table 3. As shown in
this table, the participants had moderate to good scores on the

SF-36 subscales. They obtained the highest and lowest scores
in physical functioning and emotional role functioning,
respectively.

JMIR Med Inform 2020 | vol. 8 | iss. 12 |e23854 | p.174https://medinform.jmir.org/2020/12/e23854
(page number not for citation purposes)

Kavosi et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Table 3. SF-36 scores of the students.

Mean score (SD)Item

83.67 (15.00)Physical functioning

75.94 (26.65)Physical role functioning

71.84 (23.27)Bodily pain

63.31 (19.53)General health perception

56.01 (38.58)Emotional role functioning

75.94 (26.65)Vitality

70.25 (25.34)Social role functioning

65.29 (22.54)Mental health

72.90 (16.20)Physical component summary

63.19 (22.26)Mental component summary

The correlation coefficients of online health information–seeking
behavior and its subscales with the main SF-36 subscales are
presented in Table 4. Based on the findings presented in this
table, eHIQ and its subscales showed no statistical correlation
with SF-36 subscales. These findings suggest that seeking health

information through online sources does not improve
health-related quality of life. This could have several
explanations. In the Discussion section, these explanations are
discussed and suggestions are provided.

Table 4. Correlations of online health information–seeking subscales with health status.

MCSPCSItem

P valuerP valuer

.550.04.510.04Attitudes towards online health information

.500.04.420.05Attitudes towards sharing health experiences online

.670.02.690.02Confidence and identification

.410.05.380.05Information and presentation

.840.01.650.03Understanding and motivation

.530.04.460.04eHIQ (total)

Discussion

Principal Findings
This study aimed to examine the correlation of online health
information–seeking behavior with health-related quality of life
in a sample of Iranian female students. Results showed that the
participants used online information moderately in their
health-related decisions and thought that the internet helped
people in health-related decision making and could be used to
share health experiences with others. Participants had a moderate
amount of confidence in online health information. They stated
that the information provided by health websites was moderately
understandable and reliable, and it moderately encouraged them
to play an active role in their health promotion.

Use of the internet to access health information has increased
in recent years for reasons such as accessibility, high volume
of information disseminated, confidentiality, low cost,
multimedia capabilities, and the ability to interact and gain
support [19,21,28]. Reports indicate that adolescents are
increasingly spending their time on using the internet. Using
the internet is part of young people's daily activities, and they

acquire and enhance many life skills, including health
management, through online information [28].

A US national survey has found that 75.0% (907/1209) of online
teens search health information [29]. A study in the United
States has also reported that 98.0% (200/204) of youth 12 years
and older use online resources to search for health information
[30]. Another survey at two US educational institutes [31], a
study at three Ghanaian universities [28], a study involving
international students in East Asia [32], and a study at six
colleges in Oman have reported similar results [33]. Therefore,
although internet access is still limited in some countries [34,35],
it seems that the internet is increasingly becoming one of the
main information sources in the majority of countries.

In Iran, as in other countries, using the internet for health-related
purposes has increased in recent years. A survey of adolescents
in Shiraz, Iran, has shown that the internet is among the top
sources of the respondents' health information, with 88%
(352/400) using the internet to find a kind of health information
[36]. Two other studies in Tehran high schools have reported
similar rates [37,38]. Another study on students aged 15-18
years from different schools in Isfahan [21], a study involving
430 students from Gonabad University [39], two other studies
at Gorgan and Kermanshah universities [40,41], and two other
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studies at Tabriz University and Tehran University of Medical
Sciences have reported similar results [19,42].

Overall, it seems that use of the internet as a source of health
information is expanding; however, the review of the literature
shows that searching for online health information is correlated
with some variables such as age, gender, education level, skills
and experience with internet use, health status, and availability
and reliability of sources [1,31,43].

Adolescents often seek health information with different
objectives and motives [36,40,42], and they typically seek
information related to a variety of health subjects such as healthy
eating, physical activity, exercise, weight control, risks and
complications of disease treatments, sexual and reproductive
health, sexual and physical abuse, consumption of alcohol and
other substances, tobacco use, mental health, accidents and
injuries, health care providers, and support groups
[21,29,31,34,42].

Due to the increasing use of the internet for health purposes,
many studies have been conducted on online health
information–seeking behavior in different demographic groups,
including students. Most of these studies have examined the
sources of health information used by different groups, attitudes
towards health information seeking, aims and motivations, types
of information sought, and factors related to health
information–seeking behavior [36]. However, few studies have
examined the actual effect of accessing online health information
on health status. In fact, the question of whether online health
information–seeking behavior significantly affects health status
or not has largely remained unanswered. Therefore, this study
aimed to explore the online health experience of Iranian female
students and its correlation with their health-related quality of
life.

The findings showed that the majority of the participants had
good or somewhat good general health status. Numerous studies
have been conducted on the general health status of adolescents
in Iran; most of them have reported approximately similar
findings [18].

In addition, the descriptive findings of the study regarding online
health information–seeking behavior showed that the
participants had moderate scores on all subscales of eHIQ.

Regarding attitudes about online health information and sharing
them, a similar study that aimed at explaining health information
behavior of adolescents in Shiraz has reported that the
participants’general attitude toward health information retrieved
from the internet is positive. The majority of the participants
also trusted in the quality of information and were interested in
retrieving health information from the internet twice [36].
Another study at Tabriz University has reported that the internet
is considered one of the trustable sources of health information
by participants [42]. At the same time, a study in Isfahan schools
has shown that 47.7% (3110/6519) of those who did not use the
internet to search for health information reported a lack of trust
in the internet information as the main cause of their decision
not to be an online health information seeker [21]. Regarding
the sharing of health information, a study in United States has
found that although 98.0% (200/204) of the participants were

online health information seekers, only 51.5% (105) of them
shared their health information and only 25% (51) of them
thought that social media could provide usable health
information. This study also reported that women had shared
their health information more than men, and adolescents between
the ages of 12 and 14 years had shared more than other age
groups. People with poor self-reported health and those who
thought online sources could help them in accessing health
information were also more likely to share their health
information [30]. Another study, which was conducted in India,
reported that most of its respondents shared online health
information with their friends and family [44]. In summary,
based on the available literature, it seems that trust in online
health information and interest in sharing it are different across
different socioeconomic contexts. The participants of our study
also thought that information provided by health websites was
moderately understandable. In this regard, many studies have
reported poor understandability of internet information as one
of the main challenges for online users.

This study was conducted among a non–English-speaking
female sample in a developing religious community. The unique
features of the research environment may affect the results.
Several studies show that contextual factors may affect different
aspects of information-seeking behavior. Dankasa (2017) found
in a study that geographical location, culture, and religious status
may influence the information-seeking behavior of the internet
users [45]. Lee and Cho (2011) and Chang and Lee (2001) have
also reported the same results [46,47]. Based on the findings of
these studies, contextual factors may encourage, determine, or
prevent information-seeking behavior [45]. In addition, Lee and
Cho (2011) found that social and cultural affiliations of
individuals influence the way they choose to exchange
information [46]. Therefore, our findings regarding the attitude
toward online information and attitude toward sharing the
information could be affected by the specific context of the
study. Furthermore, this study was conducted among a sample
of female students. Various studies have demonstrated that
demographic variables such as gender and age, together with
other factors such as income and education level, may influence
health information behavior. Among these factors, gender has
been widely identified as a factor affecting health information
behavior. Accordingly, most studies suggest that being female
and younger is associated with more frequent health-related use
of the internet, although a few studies have reported
contradictory findings [23,25,26,48]. The findings of this study
can also be discussed based on the participants’native language.
Few studies have investigated information-seeking behavior of
non–English language speakers or information-seeking behavior
using non-native language. Although an increasing number of
databases have now been created and made available in other
languages, including Persian, English is still the dominant
language of online information. Searching in different languages
might affect different aspects of information-seeking behavior
such as understanding of retrieved information, interpretation,
evaluation, and the relevant judgment [49]. In this regard, some
studies have reported differences between information seeking
in different languages [49], while some have not confirmed the
same differences [50]. There is no doubt that the users' language
skills can affect their information-seeking behavior. In this
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study, it seems that all the studied subscales of
information-seeking behavior include attitude toward online
information, attitude toward sharing of information, confidence
and trust, attitude toward the presentation, and understanding
of information. It is notable that many studies have identified
that the users’ attitude has a positive effect on their health
information–seeking behavior, similar to the trust they placed
in the information [23,26]. Therefore, it should be a priority to
improve the attitudes of our participants toward their confidence
in online health information.

Statistical tests also showed that different dimensions of online
health information–seeking behavior had no significant
correlations with health-related quality of life. On this subject,
in a survey of 400 school-age adolescents in Shiraz, respondents
stated that they believed that the retrieved online health
information affected their health status positively [36]. In
another study at Tabriz University, the participants approved
of the effects of their online health information seeking on some
health-related behaviors [43]. A study among Nigerian students
found that only 50% (20/400) of participants consulted with a
physician about their health after searching online health
information [34]. A study at three universities in Ghana also
reported that 72.4% (315/435) of respondents used retrieved
online information as a basis for lifestyle modifications, and
73.6% (320) of the students stated that access to online health
information improved or partially improved their health status,
while 1.1% (5) said that using the internet had no effect on their
overall health [28].

Overall, it seems that although internet technology has provided
a good opportunity to access health information, its practical
impact on health status is still controversial. This can have many
explanations. Challenges such as the lack of appropriate
information, inadequate quality of information, poor health
literacy of internet users, insufficient skills in searching for
information, lack of trust in online health information sources,
and concerns about security and confidentiality reduce the
potential of the internet in serving the health of population
[21,29,42]. The production and dissemination of health
misinformation is also a serious concern. Today, a great deal
of health misinformation is also produced and published online,
which is potentially a threat to public health [51]. Low internet
access is also an infrastructure challenge in some parts of the
world [34]. Therefore, it is necessary to formulate and apply
improvement strategies to maximize the health benefits of
internet. These strategies can be formulated in two levels:
supply-side strategies (eg, expanding internet access; providing
high-quality, appropriate, and understandable information;
monitoring online health content; engaging health professionals
in producing evidence-based information; ensuring safety;
paying attention to legal issues; and focusing on adolescent
health priorities [21,28,34,36]) and demand-side strategies (eg,
investigating the patterns of use, improving health literacy,
training search and information validation skills, and enhancing
information behavior [29,34,36,40]).

Based on the findings of this study, interventions such as
encouraging students to make more use of the internet as a

source of health information; expanding their access to reliable
online health sources; launching specific students’ health
websites containing relevant, reliable, and understandable
information by health authorities, especially in native language;
improving the English language skills of students (since it could
be a barrier for most of the participants in searching activities);
improving students’ internet skills; and familiarizing them with
search methods and specialized sources can be prioritized in
order to maximize the potential of use of the internet in
promoting the students’ health. It is also helpful to strengthen
the online culture by using social marketing in the school
environment. This study has several strengths. Few studies have
been conducted in Iran to investigate the correlations between
online health information–seeking behavior and the health status
of students. In addition, there are few studies investigating the
health information–seeking behavior of Persian language
speakers. Therefore, the study has implications for research and
practice. It contributes to research on health information–seeking
behavior as it brings out the association of health information
seeking with health outcomes that has not been given much
attention in the literature. In addition, the study provides health
and information professionals with information needed to make
health information understandable, available, and accessible for
students. The findings could also be used to develop appropriate
interventions to enhance the students’ internet skills, so that
they can make the best use of internet technology to promote
their health. The study, however, has some limitations; first, it
used a sample of female students, while some studies have
reported gender-based differences in health information–seeking
behavior that may affect the generalization of our findings to
other population groups. Also, the study was done in a specific
geographical, cultural, and religious context, which also makes
it difficult to generalize the findings to different contexts. The
results described have been extracted from research in a
developing country, and it is likely that there are differences
between countries.

Conclusion
Students have a variety of health issues and have an increased
demand for health information [36]. In the online era, the
landscape of health information has changed, and the internet
has increasingly become the main source of health information
[52]. As Smith et al have pointed out, the question is no longer
whether the internet can be an important source of information
or not, but how its potential can be maximized [29].

Although students' access to online sources has increased
substantially, they can only gain the most benefit from this
information source by being able to effectively search for,
evaluate, and use online information [29]. Moving forward,
various stakeholders, including policymakers, information
producers, health professionals, teachers, parents, and students
themselves, should play their role well. Our study demonstrated
the online health information–seeking behavior of a sample of
female students in an Islamic developing country. Findings
reported here have implications for communities with the same
sociocultural status, although it can have lessons for other
communities as well.
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Abstract

Background: Internet access in Korea has grown dramatically over the past two decades. However, disparities in internet use,
referred to as the second level of the digital divide, persist.

Objective: This study aims to examine opportunity, motivation, and health variables that indicate internet use among older
adults with diabetes.

Methods: Data were sourced from a nationally representative sample of people 65 years and older with diabetes (N=1919).
Logistic regression was used to explore potential differences in predictor variables between internet users and nonusers.

Results: Only 306 of the 1919 (15.95%) participants in the sample used the internet. They were more likely to be younger (odds
ratio [OR] 0.89, 95% CI 0.87-0.92), well-educated (OR 1.20, 95% CI 1.16-1.26), and able to afford leisure expenditures (OR
1.02, 95% CI 1.01-1.04). Additionally, they had more information and communications technology (ICT) training experience,
were motivated to learn, volunteered, and reported good physical and cognitive function. Participation in ICT education and better
health more positively correlated with a higher rate of internet use than did years of education or economic standing in older
adults with diabetes.

Conclusions: To support older adults with diabetes in the internet age, policies and health care providers should focus on digital
competency training as well as physical and cognitive function.

(JMIR Med Inform 2020;8(12):e19061)   doi:10.2196/19061

KEYWORDS

digital divide; internet use; older adults; diabetes; health; internet; Korea

Introduction

Internet access has grown dramatically over the past two decades
in Korea. However, disparities in internet use still persist [1,2].
This disparity is known as the second level of the digital divide,
which refers to a gap in access (the first level), use (the second
level), and outcomes (the third level) of information and
communications technology (ICT). Digital competency enables
older adults to live more convenient lives and plays an important

role in maintaining quality of life, health care, independent
living, and relationships and in reducing isolation [3,4].

With a rapid increase in Korea’s older adult population, in which
chronic diseases are prevalent, addressing aging-related
problems is important [5]. Diabetes mellitus is one of the most
common chronic diseases affecting lifestyle, and its prevalence
is increasing worldwide. In Korea, 25.1% of older adults 65
year and older have diabetes, and their mortality rate due to
diabetes or cerebrovascular disease is higher than the
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Organisation for Economic Co-operation and Development
average, partly because of the vulnerability related to preventing
deaths from treatable conditions [2]. An unhealthy lifestyle
contributes to diabetes to a great extent, and one of the mainstays
of diabetes treatment and prevention is adopting a healthy
lifestyle. As there is no cure for diabetes, recently,
self-management by mobile health or eHealth has begun to play
a vital role in the digital era.

Many systematic reviews and meta-analyses have indicated that
eHealth tools are effective in self-management both for disease
management and lifestyle changes in daily life [5-7], and limited
internet use and low eHealth literacy can indirectly cause health
problems [8]. Problems with eHealth literacy due to low
cognitive function make it difficult for older adults to manage,
prevent, and treat diseases. This in turn leads to health problems
[9], poor management of chronic diseases [10], and lower
participation in treatment interventions. Low eHealth literacy
is also associated with medical service misuse, which can be
fatal [11]. Furthermore, the second digital divide, the gap in
internet use, alienates older adults, leading to losses in
self-employment opportunities, social exchanges, advantageous
purchases, and investments. It also contributes to health
problems caused by social network loss [12].

Internet underutilization by older adults is due primarily to
limited opportunity and motivation [13]. Limited opportunity
affects individuals who do not access the internet due to
socioeconomic problems or lack of information. In a study of
urban dwellers, only 27% of older adults were found to use
computers, and age, years of education, occupation, income
level, self-rated health, and volunteer work were the affecting
factors [14]. Limited motivation indicates individuals who have
not voluntarily chosen internet use and do not accept new
technologies because they have no incentive or interest in them.
In general, older adults lack ICT knowledge and skills and are
often unaware of the need for it [15]. Moreover, older adults
lack the confidence or support needed to learn how to use new
equipment or acquire new knowledge. This low intention to

acquire new knowledge results in a low level of internet use
[16]. In addition to opportunities and motivation, aging and
health problems involving physiological and cognitive functions
also determine internet use, as do daily activities and chronic
diseases [17,18]. Internet use has increased in Medicare-eligible
patients but remains very low among the frailest older adults.
Therefore, functional ability is more indicative of internet
avoidance than chronic illness, self-rated health, or age [19].

Barriers to access and use include financial restrictions (ie,
equipment and subscription costs are too high), medical and
disability-related constraints (ie, the technology is not accessible
or intuitive), and digital complexity (ie, accessing and navigating
the internet is too complex) [20]. Scheerder et al [21]
systematically reviewed 126 papers and distinguished 7 factors
contributing to the digital divide: demographics, economics,
social networks, cultural context, physical activity, home access
and device availability, and attitudes toward online technology.
Leisure activity and voluntary work were the affecting factors
of internet use, and low levels of internet use affected social
networking [12,21].

Although internet use among older adults is less prevalent than
in the general public and is associated with aging or health
problems [22], some older adults, such as those in the baby
boomer generation, use the internet effectively because they are
highly educated and were gradually exposed to smartphones
and digital devices [20]. They use the internet to search for
health-related information and exhibit confidence and
satisfaction regarding eHealth [23].

As older adults are vulnerable to aging-related issues and chronic
diseases, studies of internet usage among older adults with health
problems or chronic diseases are needed. Furthermore, there is
limited information on the predictors of internet use among
older adults with diabetes, a chronic disease that demands
continuous lifestyle modification and self-care. The aim of this
study was to examine opportunity, motivation, and health-related
factors that determine internet use among older adults with
diabetes in South Korea (Figure 1).

Figure 1. Factors related to internet use. ICT: information and communications technology.
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Methods

Design and Sample
The data for this study came from the 2017 Survey of Living
Conditions and Welfare Needs of Korean Older Persons from
the Korea Institute for Health and Social Affairs, which was
based on a nationally representative sample of participants 65
years and older who were recruited using a stratified 2-stage
cluster sampling design. The survey collected information
through face-to-face interviews, and all participants provided
written informed consent [2]. The sample for this study included
1919 (of 10,299) respondents with diabetes who reside in the
community. The inclusion criteria were age of 65 years or older,
official diagnosis of diabetes for more than 3 months with
treatment, and response to a survey on internet use. We excluded
individuals who did not respond to the survey on internet use
and those younger than 65 years. The design was considered
exempt from ethical review by the institutional review board
of Yonsei University (approval no. 7001988-202001-
HR-777-01E), as the data were anonymized.

Measurements
Internet use was assessed with 1 item: the use or nonuse of the
internet or mobile phones to browse for information. Participants
were asked, “Is it possible for you to use smart phones,
computers, tablet PCs, and internet television to search for
information?” to which they answered with either “yes” or “no.”
Participants provided demographic and socioeconomic
information such as age, sex, and years of education. Leisure
activity expenditure was assessed according to monthly average
expenditure on leisure activities in Korean won to determine
participants’economic standing [24]. Having previous or current
volunteer experience was classified as either “yes” or “no.”
Participation in ICT education was assessed by the question
“Have you participated in ICT education during the last five
years?” Participants responded with either “yes” or “no.”
Intention to learn was measured on a 5-point Likert scale (1=no

intention; 5=very eager to learn). Health-related factors included
self-rated health, physical function, and cognitive function.
Self-rated health was assessed by one question: “How do you
feel about your health?” It was scored from 1 to 5 (1=not good
at all; 5=very good). The higher the number, the higher the
self-rated health score. Physical function was assessed using
the 11-item Korean Instrumental Activities of Daily Living
(K-IADL) questionnaire (ability to use a telephone, go shopping,
prepare food, perform housekeeping and laundry, handle
medication and finances, use transportation, and drive); total
scores range from 11 and 33. The higher the score on the
K-IADL, the lower the physical function [25]. A score of 33 on
the K-IADL represents physical dependency. Cognitive function
was assessed using the Korean version of the Mini-Mental State
Examination for Dementia Screening (MMSE-DS); total scores
range from 0 to 30. The higher the score, the better the cognitive
function [26].

Data Analysis
Stata 15.1 (StataCorp) was used to conduct data analyses.
Univariate analyses were performed to identify associations
between internet use and factors related to opportunity,
motivation, and health. Independent variables with significant
group differences in the univariate analyses were included in a
multivariate logistic regression analysis, which was performed
to calculate the adjusted odds ratios (ORs) for internet users
and nonusers.

Results

Of the 1919 respondents, only 306 (15.95%) used the internet
to search for information (Table 1). Internet users were more
likely to be male, younger, and more educated; have a higher
leisure activity expenditure; volunteer more; have ICT education
experience; have a lower intention to learn; and have better
self-rated health, physical function, and cognitive function than
internet nonusers.
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Table 1. Participant characteristics (N=1919).

P valueF test (df)t testa (df)Internet nonusersInternet usersTotalCharacteristics and variables

Dependent variable

N/AN/AN/Ab1613 (84.0)306 (16.0)1919 (100.0)Internet use, n (%)

Opportunity factors

<.001N/A11.06 (1)75.75 (0.14)71.96 (0.27)75.15 (5.66)Age (years), mean (SD)c

<.00164.27 (1)N/AGender, n (%)

1043 (64.7)269 (87.9)1312 (68.4)Male

570 (35.3)37 (12.1)307 (31.6)Female

<.001N/A–16.03 (1)6.71 (0.11)11.06 (0.21)7.40 (4.64)Education (years), mean (SD)d

<.001N/A–14.83 (1)4.55 (0.20)14.18 (1.06)6.08 (11.00)Leisure expenditure (in ₩10,000)e,
mean (SD)

Motivational factors

<.00141.98 (1)N/AParticipation in ICTf education, n (%)

4 (0.3)12 (3.9)16 (0.8)Yes

1609 (99.7)294 (96.1)1903 (99.2)No

<.001N/A9.96 (1)4.09 (0.02)3.49 (0.06)2.01 (0.98)Intention to learn, mean (SD)

<.00184.36 (1)N/AVoluntary work, n (%)

191 (11.8)99 (32.4)290 (15.1)Yes

1422 (88.2)207 (67.6)1629 (84.9)No

Health-related factors

<.001N/A–8.50 (1)2.49 (0.02)2.97 (0.05)2.57 (0.92)Self-rated health, mean (SD)g

<.001N/A7.30 (1)11.29 (0.06)10.21 (0.06)11.12 (2.42)K-IADLh dependency, mean (SD)

<.001N/A–13.32 (1)24.46 (0.10)27.47 (0.13)24.94 (3.78)MMSE-DSi, mean (SD)

a2-tailed t tests.
bN/A: not applicable.
cAge range was 69 to 95 years.
dEducation range was 0 to 20 years.
eA currency exchange rate of ₩1084.74=US $1 is applicable.
fICT: information and communications technology.
gSelf-rated health range was 1 to 5.
hK-IADL: Korean Instrumental Activities of Daily Living (range of 11-33).
iMMS-DS: Mini-Mental State Examination for Dementia Screening (range of 0-30).

Prior to multivariate logistic regression, multicollinearity was
assessed and the variance inflation factor of all the individual
variables did not exceed 10.0 (1.06-2.10). The logistic regression
analysis (Table 2) revealed that internet use was independently
associated with younger age (OR 0.89, 95% CI 0.87-0.92),
higher educational level (OR 1.20, 95% CI 1.16-1.26), and
higher leisure activity expenditure (OR 1.02, 95% CI 1.01-1.04).
Internet users had more experience with ICT education and
were more motivated to learn than nonusers. The ORs showed

that the odds of participation in ICT education were about 10
times higher (OR 9.75, 95% CI 2.39-39.84) and the odds of
voluntary work were over 2 times higher (OR 2.09, 95% CI
1.48-2.94) for internet users compared with nonusers. Users
were also more likely to have better K-IADL scores (OR 0.78,
95% CI 0.66-0.92), higher MMSE-DS scores (OR 1.19, 95%
CI 1.12-1.27), and better perceived health status (OR 1.27, 95%
CI 1.08-1.50).
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Table 2. Logistic regression model predicting internet use among older adults with diabetes mellitus (N=1919).

P valueORa (95% CI)Characteristics and variables

Opportunity factors

<.0010.89 (0.87-0.92)Age (years)

<.0011.20 (1.16-1.26)Education (years)

<.0011.02 (1.01-1.04)Leisure expenditure (₩)

Motivational factors

.0029.75 (2.39-39.84)Participation in ICTb education (reference: none)

<.0011.39 (1.20-1.60)Intention to learn

<.0012.09 (1.48-2.94)Voluntary work (reference: no)

Health-related factors

.0041.27 (1.08-1.50)Self-rated health

.0030.78 (0.66-0.92)K-IADLc dependency

<.0011.19 (1.12-1.27)MMSE-DSd (score)

aOR: odds ratio.
bICT: information and communications technology.
cK-IADL: Korean Instrumental Activities of Daily Living.
dMMSE-DS: Mini-Mental State Examination for Dementia Screening.

Discussion

Principal Findings
This study attempted to provide basic data on indicators of
internet use among older adults with diabetes in South Korea
by identifying relevant variables related to opportunity,
motivation, and health. Age, years of education, economic
standing, ICT education, volunteer experience, physical
function, and cognitive function were identified as major
predictors of ICT use among older adults with diabetes.

Only 15.95% (306/1919) of the participants used the internet
to search for information in this study. In South Korea, 38.5%
of people aged 60 to 89 years use ICT [27]. A study on US
residents showed that 27% of urban residents used computers
and 38% of patients receiving kidney transplants used the
internet [13,28]. These results are in line with studies showing
that older adults with chronic diseases use the internet less than
younger populations [22]. Some studies have shown that
individuals frequently use the internet to search for health
information, even when patients had chronic diseases [28]. It
is necessary to exercise caution in interpreting whether chronic
diseases predict internet use. In this study, more than 80%
(1613/1919, 84.05%) of the participants did not use the internet,
indicating a need for social policies to bridge the digital divide
and improve internet use among older adults with diabetes.

Internet use among older adults is closely related to age, sex,
and years of education [29], and the same results were
demonstrated for the older adults with diabetes in this study;
age was a predictor of internet use in older adults with diabetes.

In Korea, internet access has grown over the past two decades
(Multimedia Appendix 1). Over 90% of the population has
internet access through national support and various policies

[1]. In this study, according to the leisure activity expenditure,
the economic predictor of internet use signifies that a digital
divide still exists among older adults with diabetes. Therefore,
it is important to approach the digital divide in older adults with
diabetes from the perspective of accessibility.

Participation in ICT education can be a possible predictor of
internet use among older adults with diabetes. This result was
in line with previous research, which found that older adults
who knew how to use computers before they were 65 years old
were 9 times more likely to use the internet than those who did
not [30]. Therefore, the capabilities of using the internet and
the ICT skills of older adults with diabetes should be assessed
by health care providers prior to digital interventions or
individualized education programs.

The focus of research on the digital divide has recently shifted
from accessibility to utilization and outcomes. Many studies
have shown that personal preferences and motivations, in
addition to opportunities and structural aspects, influence active
internet use [20]. This study revealed that internet nonusers
were more willing to receive information on service education.
It could thus be inferred that internet nonuse correlates with
fewer technology training opportunities and that more training
is needed for frail older adults and their caregivers to effectively
use the internet to engage in care [24]. Therefore, individualized
education programs for older adults with diabetes should include
disease-related and ICT education.

In this study, volunteer activities as a type of social participation
or activity predicted internet use. The results are consistent with
studies that show that internet or mobile phone use by older
adults is strongly related to social activities, social support, and
self-esteem [27]. Leisure activity expenditure is a good proxy
for economic status [24] and was a good predictor of internet
use among older adults with diabetes in this study. Oh [31]
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encouraged leisure activities among older adults, such as
shopping and watching entertainment shows and performances,
cultural activities, videos, and movies, because these activities
significantly influenced active internet use and search
capabilities among older generations. It is necessary to
encourage older adults with diabetes to engage in leisure and
hobby activities because it may improve their digital health
literacy.

In this study, physical and cognitive function were identified
as predictors of internet use; internet use decreases when health
and instrumental activities of daily living are degraded by
physical function [19]. Instrumental activities of daily living
require high levels of physical function in everyday behavior
to live independently and indicate the possibility of returning
to society [25]. The results showed that K-IADL score is a
predictor of internet use. Having good physical functional status
could encourage older adults with diabetes to participate in
social activities, making them more likely to have a chance to
use the internet in society [22]. Thus, functional limitations
should be considered in strategies to reduce the digital divide
among older adults with chronic diseases.

Cognitive function was one of the predictors of internet use
among older adults with diabetes. With age, adults experience
a decline in both cognitive and physical function and become
restricted in activities such as delicate muscle movement,
reading, and interpreting large quantities of information. Internet
use requires extensive cognitive information processing and
learning and can therefore burden older adults [32]. Thus,
developing functions and programs that can be more easily
accessed and handled by older adults with reduced cognitive
function is essential in enhancing internet use and reducing the
digital divide.

Implications
Although the digital divide can be defined based on various
aspects, such as access, usability, and utilization, this study
focused on predictors of internet use among older adults with
diabetes. We expect that improved internet use will improve
self-care among this population; however, there is still a gap in
internet use due to economic, social, physical, and cognitive
factors [6]. In the current information age, health care systems

are increasingly embracing eHealth and digital services. South
Korea has created a national patient portal to provide health
information through electronic devices. Meanwhile, other
countries have developed digital aids using health-related
applications, virtual reality, and games [33]. The weaknesses
and strengths among older adults with diabetes should be
properly identified to assist in the creation of individualized
mediation plans. This will prevent the digital divide from
separating older adults with diabetes from digital health care
trends.

Due to the limitations of secondary data analysis, this study did
not reflect the characteristics of the participants’ diabetes, so
future research should include the relationship between diabetes
characteristics and internet use. Another limitation of this study
is that although it used nationally representative data, there may
be errors in generalization due to the small number of
participants; therefore, it is necessary to be cautious when
interpreting the results.

Conclusions
Internet use has dramatically increased in South Korea during
the past two decades but remains very low among older adults
with diabetes. Our results suggest that years of education, leisure
activity expenditure, participation in education, intention of
education, voluntary work, self-rated health, and MMSE-DS
scores were positively correlated predictors of internet use,
while age and K-IADL dependency were negatively correlated
predictors of internet use. While prior studies of the digital
divide in health care have highlighted demographics and
socioeconomic status, our study demonstrates the additional
impact of motivational factors and health-related factors in older
adults with diabetes. Health care providers need to formulate
digital health interventions to prevent the most frail and
vulnerable older adults from being left out of consideration in
online patient portals and eHealth. Policies and health care
providers should focus on digital competency training and
volunteer activities among older adults with diabetes. For
functionally limited older adults, user-friendly digital aids may
improve internet use. For cognitively impaired older adults,
caregivers or family members should be included in the
intervention. Future studies should examine more strategies to
reduce the digital divide among older adults with diabetes.
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Abstract

Background: Asthma is a major chronic disease that poses a heavy burden on health care. To facilitate the allocation of care
management resources aimed at improving outcomes for high-risk patients with asthma, we recently built a machine learning
model to predict asthma hospital visits in the subsequent year in patients with asthma. Our model is more accurate than previous
models. However, like most machine learning models, it offers no explanation of its prediction results. This creates a barrier for
use in care management, where interpretability is desired.

Objective: This study aims to develop a method to automatically explain the prediction results of the model and recommend
tailored interventions without lowering the performance measures of the model.

Methods: Our data were imbalanced, with only a small portion of data instances linking to future asthma hospital visits. To
handle imbalanced data, we extended our previous method of automatically offering rule-formed explanations for the prediction
results of any machine learning model on tabular data without lowering the model’s performance measures. In a secondary analysis
of the 334,564 data instances from Intermountain Healthcare between 2005 and 2018 used to form our model, we employed the
extended method to automatically explain the prediction results of our model and recommend tailored interventions. The patient
cohort consisted of all patients with asthma who received care at Intermountain Healthcare between 2005 and 2018, and resided
in Utah or Idaho as recorded at the visit.

Results: Our method explained the prediction results for 89.7% (391/436) of the patients with asthma who, per our model’s
correct prediction, were likely to incur asthma hospital visits in the subsequent year.

Conclusions: This study is the first to demonstrate the feasibility of automatically offering rule-formed explanations for the
prediction results of any machine learning model on imbalanced tabular data without lowering the performance measures of the
model. After further improvement, our asthma outcome prediction model coupled with the automatic explanation function could
be used by clinicians to guide the allocation of limited asthma care management resources and the identification of appropriate
interventions.

(JMIR Med Inform 2020;8(12):e21965)   doi:10.2196/21965
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Introduction

Background
About 8.4% of Americans have asthma [1]. Each year in the
United States, asthma costs over US $50 billion and results in
more than 2 million emergency department (ED) visits, about
half a million inpatient stays, and more than 3000 deaths [1,2].
A major goal in managing patients with asthma is to reduce
their hospital visits, including ED visits and inpatient stays. As
employed by health plans in 9 of 12 metropolitan communities
[3] and by health care systems such as Intermountain Healthcare,
Kaiser Permanente Northern California [4], and the University
of Washington Medicine, the state-of-the-art method for
achieving this goal is to employ a predictive model to predict
which patients with asthma are highly likely to have poor
outcomes in the future. Once identified, such patients are
enrolled in care management. Care managers then call these
patients on the phone regularly and help them make
appointments for health and related services. By offering such
tailored preventive care properly, up to 40% of future hospital
visits by patients with asthma can be avoided [5-8].

A care management program has limited enrollment capacity
[9]. As a result, the effectiveness of the program depends
critically on the accuracy of the predictive model. Not enrolling
a patient who is likely to have future hospital visits in the
program is a missed opportunity to improve the patient’s
outcomes. Unnecessarily enrolling a patient who is likely to
have no future hospital visit would increase health care costs
and waste scarce care management resources with no potential
benefit. The current models for predicting hospital visits in
patients with asthma are inaccurate, with published sensitivity
of ≤49% and an area under the receiver operating characteristic
curve (AUC) ≤0.81 [4,10-22]. When employed for care
management, these models miss more than half of the patients
who will have future hospital visits and erroneously label many
other patients as likely to have future hospital visits [23]. To
address these issues, we recently built an extreme gradient
boosting (XGBoost) [24] machine learning model to predict
asthma hospital visits in the subsequent year in patients with
asthma [23]. Compared with previous models, our model raised
the AUC by at least 0.049. However, like most machine learning
models, our model offers no explanation of its prediction results.
This creates a barrier for use in care management, where care
managers need to understand why a patient is at risk for poor
outcomes to make care management enrollment decisions and
identify suitable interventions for the patient.

Objectives
To overcome the abovementioned barrier, this study aims to
develop a method to automatically explain the prediction results
of our model and recommend tailored interventions without
lowering any of the performance measures of our model, such
as AUC, accuracy, sensitivity, specificity, positive predictive
value, and negative predictive value.

In the following sections, we describe our methods and the
evaluation results. A list of abbreviations adopted in this paper
is provided at the end of the paper.

Methods

We used the same patient cohort, data set, prediction target,
cutoff threshold for binary classification, method for data
preprocessing, including data cleaning and data normalization,
and method for partitioning the whole data set into the training
and test sets that we described in our prior paper [23].

Ethics Approval and Study Design
This study consists of a secondary analysis of retrospective data
and was evaluated and approved by the institutional review
boards of the University of Washington Medicine, University
of Utah, and Intermountain Healthcare.

Patient Population
Our patient cohort included all patients with asthma who
received care at any Intermountain Healthcare facility between
2005 and 2018 and resided in Utah or Idaho as recorded at the
visit. Intermountain Healthcare is the largest health care system
in Utah and southeastern Idaho. It operates 185 clinics and 22
hospitals and provides care for approximately 60% of people
living in that region. A patient was considered asthmatic in a
specific year if in the encounter billing database, the patient had
one or more asthma diagnosis codes during that year
(International Classification of Diseases, ninth revision [ICD-9]:
493.0x, 493.1x, 493.8x, 493.9x; International Classification of
Diseases, tenth revision [ICD-10]: J45.x) [12,25,26]. The only
exclusion criterion from the analysis in any given year was
patient death during that year.

Data Set
We used a structured clinical and administrative data set
provided by the enterprise data warehouse of Intermountain
Healthcare. The data set covered all visits by the patient cohort
within Intermountain Healthcare between 2005 and 2018.

Prediction Target (the Dependent or Outcome
Variable)
For each patient identified as asthmatic in a specific year, the
outcome was whether any asthma hospital visit occurred in the
subsequent year. In this paper, an asthma hospital visit refers
to an ED visit or an inpatient stay at an Intermountain Healthcare
facility with a principal diagnosis of asthma (ICD-9: 493.0x,
493.1x, 493.8x, 493.9x; ICD-10: J45.x). For training and testing
the XGBoost model and automatic explanation method, data of
every patient with asthma up to the end of every year were used
to predict the patient’s outcome in the subsequent year.

Predictive Model and Features (Independent
Variables)
Our recent XGBoost model [23] uses 142 features to predict
asthma hospital visits in the subsequent year in patients with
asthma. As listed in the multimedia appendix in our previous
study [23], these features were computed from the structured
attributes in our data set covering a wide range of categories,
such as patient demographics, visits, medications, laboratory
tests, vital signs, diagnoses, and procedures. Each input data
instance for our model has these 142 features, targets a pair of
a patient with asthma and a year, and is employed to predict the
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patient’s outcome in the subsequent year. We set the cutoff
threshold for binary classification at the top 10% of patients
with asthma having the largest predicted risk. These patients
were predicted to incur asthma hospital visits in the subsequent
year.

Automatic Explanation Method
Previously, we developed an automated method to offer
rule-formed explanations for any machine learning model’s
prediction results on tabular data and recommend tailored
interventions without lowering the performance measures of
the model [27,28]. Our method was initially demonstrated to
predict the diagnosis of type 2 diabetes [27]. Later, other
researchers successfully applied our method to predict death or
lung transplantation in patients with cystic fibrosis [29], predict
cardiac death in patients with cancer, and use predictions to
manage preventive care, heart transplant waiting list, and
posttransplant follow-ups in patients with cardiovascular
diseases [30]. In our method, each rule used for providing
explanations has a performance measure termed confidence that
must be greater than or equal to a given minimum confidence
threshold cmin. Our original automatic explanation method [27]
was designed for reasonably balanced data, where distinct values
of the outcome variable appear with relatively similar
frequencies. Recently, we outlined an extension of this method
[31,32] to handle imbalanced data, where one value of the
outcome variable appears much less often than another. This
data imbalance exists when predicting asthma hospital visits in
patients with asthma, where only about 4% of the data instances
are linked to future asthma hospital visits [23]. In our extended
method, each rule used for providing explanations has a second
performance measure termed commonality, which must be
greater than or equal to a given minimum commonality threshold
mmin. To date, no technique has been developed to efficiently
mine the rules with commonality greater than or equal to mmin,
compute their confidence, and eliminate those rules with
confidence less than cmin in the extended method, despite such
techniques being essential for handling large data sets. No
guideline exists for setting the values of the parameters used in
the extended method, although they greatly impact the
performance of the extended method. The extended method has
never been implemented in computer code. Moreover, the
effectiveness of the extended method has not been evaluated or
demonstrated.

In this study, we made the following innovative contributions:

1. We provide several techniques for efficiently mining the
rules with commonality greater than or equal to mmin,
computing their confidence, and eliminating those rules
with confidence less than cmin in the extended automatic
explanation method. This completes our extended method.
Although our extended method was designed for imbalanced
data, it can also be used on reasonably balanced data to
improve the efficiency of mining the rules needed to provide
automatic explanations. Among the existing automatic
explanation methods for machine learning prediction results,
our method is the only one that can automatically

recommend tailored interventions [33,34]. This capability
is desired for many medical applications.

2. We present a guideline to set the values of the parameters
used in the extended method (see the Discussion section).

3. We completed the first computer coding implementation
of the extended method and explained it in this paper.

4. We demonstrate the effectiveness of the extended method
in predicting asthma hospital visits in patients with asthma.

Review of Our Original Automatic Explanation Method

Main Idea

Our automatic explanation method separates explanation and
prediction by employing 2 models concurrently, each for a
distinct purpose. The first model is used to make predictions
and can be any model that takes continuous and categorical
features as its inputs. Usually, we adopt the most accurate model
as the first model to avoid lowering the performance measures
of the model. The second model uses class-based association
rules [35,36] mined from historical data to explain the prediction
results of the first model rather than to make predictions. Before
using a standard association rule mining method like Apriori
to mine the rules [36], each continuous feature is first
transformed into a categorical feature through automatic
discretization [35,37]. Each rule shows a feature pattern
associated with a value w of the outcome variable in the form
of q1 AND q2 AND … AND qn→w. The values of n and w can
change across rules. For binary classification distinguishing
poor versus good outcomes, w is usually the poor outcome value.
Every item qi (1≤i≤n) is a feature-value pair (f, u) showing
feature f has value u or a value within u, depending on whether
u is a value or a range. The rule points out that a patient’s
outcome variable is inclined to have value w if the patient fulfills
q1, q2, ..., and qn. An example rule is as follows:

• The patient had ≥12 ED visits in the past year

AND the patient had ≥21 distinct medications in all asthma
medication orders in the past year

→the patient will incur one or more asthma hospital visits in
the subsequent year.

The Association Rule Mining and Pruning Processes

The association rule mining process is controlled by 2
parameters: the minimum support threshold smin and the
minimum confidence threshold cmin [36]. For any rule l: q1 AND
q2 AND … AND qn→w, the percentage of data instances
satisfying q1, q2, ..., and qn and linking to w is termed l’s support
showing l’s coverage. Among all data instances satisfying q1,
q2, ..., and qn, the percentage of data instances linking to w is
termed l’s confidence reflecting l’s precision. Our original
automatic explanation method uses rules with support ≥smin and
confidence ≥cmin. For binary classification distinguishing poor
versus good outcomes, we usually focus on the rules that have
right-hand sides containing the poor outcome value.

Usually, numerous association rules have support and
confidence ≥smin and ≥cmin, respectively. To avoid overwhelming
the users of the automatic explanation function with too many
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rules, we used 4 techniques to reduce the number of rules in the
second model. First, only features adopted by the first model
are used to form rules. Second, a clinician in the automatic
explanation function’s design team checks all possible values
and value ranges of these features and marks those that could
possibly have a positive correlation with the values of the
outcome variable reflecting poor outcomes. Only those marked
values and value ranges of these features are allowed to show
up in the rules. Third, the rules are limited to having no more
than a given small number of items on their left-hand sides, as
long rules are hard to understand. A typical value of this number
is 4. Fourth, each more specific rule is dropped when there exists
a more general rule with confidence that is not lower by more
than a given threshold τ≥0. More specifically, consider 2 rules,
l1 and l2, whose right-hand sides have the same value. The items
on the left-hand side of l2 are a superset of those on the left-hand
side of l1. We drop l2 if l1’s confidence is ≥l2’s confidence-τ.

For the association rules remaining after the rule-pruning
process, a clinician in the automatic explanation function’s
design team gathers zero or more interventions targeting the
reason the rule presents. A rule is called actionable if one or
more interventions are compiled for it. Usually, each
intervention links to one of the feature-value pair items on the
rule’s left-hand side. Such an item is called actionable. Thus,
an actionable rule contains at least 1 actionable item. To expedite
the intervention compilation process, the clinician can identify
all of the actionable items and compile interventions for each
of them. All of the interventions linking to the actionable items
on a rule’s left-hand side are automatically connected to the
rule.

Our automatic explanation method uses 2 types of knowledge
manually compiled by a clinician: the values and value ranges
of the features that could possibly have a positive correlation
with the outcome variable’s values reflecting poor outcomes
and the interventions for the actionable items. Our automatic
explanation method is fully automatic, except for the knowledge
compilation step.

The Explanation Method

For each patient for whom the first model predicts a poor
outcome, we explain the prediction result by listing the
association rules in the second model whose right-hand sides
have the corresponding poor outcome value and whose left-hand
sides are fulfilled by the patient, whereas ignoring the rules in
the second model whose right-hand sides have a value that
differs from the corresponding poor outcome value and whose
left-hand sides are fulfilled by the patient. Every rule listed
offers a reason why the patient is predicted to have a poor
outcome. For each actionable rule listed, the linked interventions
are displayed next to it. This helps the user of the automatic
explanation function find tailored inventions suitable for the
patient. Typically, the rules in the second model describe
common reasons for poor outcomes. However, some patients
will have poor outcomes for rare reasons not covered by these
rules. Consequently, the second model can provide explanations
for most, but not all, of the patients for whom the first model
predicts poor outcomes.

The Previously Outlined Extension of the Original
Automatic Explanation Method
Our original automatic explanation method was designed for
reasonably balanced data and is unsuitable for imbalanced data,
where one value of the outcome variable appears much less
often than another. If the minimum support threshold smin is
large on imbalanced data, we cannot obtain enough association
rules for the outcome variable's rare values. Consequently, for
a large portion of the first model's prediction results on these
values, we cannot give any explanation. Conversely, if smin is
too small, the rule mining process will generate too many rules
as intermediate results, most of which will be filtered out in the
end. This easily exhausts computer memory and makes the rule
mining process extremely slow. In addition, many overfitted
rules will be produced in the end, making it difficult for
clinicians to examine the mined rules.

In our recently outlined extension of the original automatic
explanation method [31,32] to handle imbalanced data, we
replace support with value-specific support termed commonality
[38]. For any rule l: q1 AND q2 AND ... AND qn→w, among
all data instances linking to w, the percentage of data instances
satisfying q1, q2, ..., and qn is termed l’s commonality showing
l’s coverage within the context of w. Moreover, we replace the
minimum support threshold smin with the minimum commonality
threshold mmin. Instead of using rules whose support is ≥smin

and whose confidence is ≥ the minimum confidence threshold
cmin, we used rules whose commonality is ≥mmin and whose
confidence is ≥cmin.

Each value of the outcome variable falls into one of 2 possible
cases. In the first case, the value is interesting and represents
an abnormal case. The prediction results of this value require
attention and explanations. In the second case, the value is
uninteresting and represents a normal case. The prediction
results of this value require neither special attention nor
explanation. Typically, each interesting value is a rare one
reflecting poor outcomes. The second model contains only the
association rules related to interesting values. To mine these
rules, we proceeded in 2 steps:

• Step 1: For each interesting value w, we applied a standard
association rule mining method like Apriori [36] to the set
Sw of data instances linking to w to mine the rules related
to w and with support on Sw ≥ the minimum commonality
threshold mmin. These rules have commonality ≥mmin on the
set Sall of all data instances. As Sw is much smaller than Sall,
mining these rules from Sw is much more efficient than first
applying the association rule mining method to Sall to obtain
the rules with support on Sall ≥mmin×|Sw|/|Sall|, and then
filtering out those rules unrelated to w. Here, |S| denotes
the cardinality of set S.

• Step 2: For each rule mined from Sw, we compute its
confidence on Sall. We keep it only if its confidence on Sall

is ≥ the minimum confidence threshold cmin.

Techniques for Efficiently Mining the Association Rules
Whose Commonality is ≥mmin, Computing Their
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Confidence, and Eliminating Those Rules Whose
Confidence is <cmin in the Extended Automatic
Explanation Method
When the set Sall of all data instances includes many data
instances and features, we often find that the set Sw of data
instances linking to an interesting value w contains many data
instances, and the first model adopts many features. Without
limiting the number of data instances in Sw and the number of
features, numerous (eg, several billion) association rules would
be mined from Sw in Step 1. This makes the computer easily
run out of memory and the rule mining process extremely slow.
In addition, many rules will be produced at the end, making it
difficult for clinicians to examine them. To address this issue,
we can use one or more of the following approaches:

1. We take a random sample of data instances Ssample from Sall

and use Ssample rather than Sall to mine the rules [39].
2. Before the rule mining process starts, each data instance is

transformed into a transaction. To reduce its size, we
remove from the transaction those values and value ranges
that the clinician in the automatic explanation function’s
design team marks as not allowed to show up in any of the
rules.

3. Instead of using all of the features adopted by the first
model, we use only the top features to mine the rules.
Usually, the top features contain most of the predictive
power possessed by all features adopted by the first model
[23]. If the machine learning algorithm used to build the
first model is like XGBoost [24] or random forest, which
automatically computes each feature’s importance value,
the top features are those with the highest importance
values. Otherwise, if the machine learning algorithm used
to build the first model does not automatically compute
each feature’s importance value, we can use an automatic
feature selection method [40] such as the information gain
method to choose the top features. Alternatively, we can
use XGBoost or random forest to construct a model,
automatically compute each feature’s importance value,
and choose the top features with the highest importance
values.

In the following, we focus on the case of using the set Sall of all
data instances to mine the association rules. The case of using
a random sample of data instances Ssample from Sall to mine the
rules can be handled in a similar way. To compute the rules’
confidence values, we transformed Sall to the matrix format,
with each row of the matrix linking to a distinct data instance
and each column of the matrix linking to a distinct value or
value range of a feature. For medical data, the matrix is often
not very sparse. In this case, we can use a separate bitmap to
represent each column of the matrix in a condensed manner.
For each rule l: q1 AND q2 AND ... AND qn→w, we performed
efficient bitmap operations to pinpoint the data instances
satisfying q1, q2, ..., and qn and needed for computing l’s
confidence.

Among all the mined association rules related to an interesting
value w, we needed to identify those whose confidence on the

set Sall of all data instances is ≥ the minimum confidence
threshold cmin. To expedite the identification process, we
proceeded as follows: for each rule l: q1 AND q2 AND ... AND
qn→w, let lw denote the number of data instances satisfying q1,
q2, ..., and qn and linking to w, and l¬w denote the number of
data instances satisfying q1, q2, ..., and qn and not linking to w.

Our key insight was that l’s confidence on Sall lw/(lw+l¬w) is

<cmin if and only if l¬w is >Tl lw×(1-cmin)/cmin. We partitioned
Sall into 2 subsets: Sw containing all of the data instances linking
to w and S¬w containing all of the data instances not linking to
w. Using the bitmap method mentioned above, we went over
all of the data instances in Sw to compute lw. Then, we went over
the data instances in S¬w one by one to count the data instances
satisfying q1, q2, ..., and qn and not linking to w. Once this count
is >Tl, we know l’s confidence on Sall is <cmin, stop the counting
process, and drop l. This saves the overhead of going through
the remaining data instances in S¬w to compute l¬w. Otherwise,
if this count is ≤Tl when we reach the last data instance in S¬w,
we keep l, obtain l¬w, and compute l’s confidence on Sall, which
must be ≥cmin.

Computer Coding Implementation
We implemented our extended automatic explanation method
in computer code, using a hybrid of the C and R programming
languages. As R is an interpreted language and inefficient at
handling certain operations on large data sets, we wrote several
parts of our code in C to improve our code’s execution speed.
Considering that our asthma outcome variable is hard to predict,
we limited the association rules to have at most 5 items on their
left-hand sides (see the guideline in the Discussion section).
We set the minimum confidence threshold cmin to 50% and the
minimum commonality threshold mmin to 0.2%.

Data Analysis

The Training and Test Set Partitioning
As outcomes came from the subsequent year, our data set
included 13 years of effective data (2005-2017) during the 14
years between 2005 and 2018. To mirror the practical use of
our XGBoost model and our extended automatic explanation
method, the 2005 to 2016 data were used as the training set to
train our XGBoost model and mine the association rules used
by our extended method. The 2017 data were used as the test
set to evaluate the performance of our XGBoost model and
extended method. We used the full set of 142 features to make
predictions and the top 50 features that our XGBoost model
[23] ranked with the highest importance values to mine the
association rules. Our XGBoost model reached an AUC of 0.859
using the full set of 142 features [23] and an AUC of 0.857
using the top 50 features.

Presenting 5 Example Association Rules Used in the
Second Model
To give the reader a concrete feeling of the association rules
used in the second model, we randomly chose 5 example rules
to present in this paper.
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Performance Metrics
We evaluated the performance of our extended automatic
explanation method in several ways. The main performance
metric that we used to show our extended method’s explanation
capability was the percentage of patients for whom our extended
method could provide explanations among the patients with
asthma whom our XGBoost model correctly predicted to incur
asthma hospital visits in the subsequent year. We reported both
the average number of rules and the average number of
actionable rules fitting such a patient. A rule fits a patient if the
patient fulfills all of the items on its left-hand side.

As shown in our previous study [27], multiple rules fitting a
patient frequently differ from each other by a single
feature-value pair item on their left-hand sides. When many
rules fit a patient, the amount of nonredundant information
embedded in them is often much less than the number of these
rules. To give a full picture of the information richness of the
automatic explanations provided for the patients, we present 3
distributions of the patients with asthma whom our XGBoost

model correctly predicted to incur asthma hospital visits in the
subsequent year: (1) by the number of rules fitting a patient, (2)
by the number of actionable rules fitting a patient, and (3) by
the number of distinct actionable items appearing in all of the
rules fitting a patient.

Results

Our Patient Cohort’s Demographic and Clinical
Characteristics
Every data instance targets a distinct pair of a patient with
asthma and a year. Table 1 lists the demographic and clinical
characteristics of our patient cohort between 2005 and 2016,
which included 182,245 patients. Table 2 lists the demographic
and clinical characteristics of our patient cohort in 2017, which
included 19,256 patients. These 2 sets of characteristics are
reasonably similar. Between 2005 and 2016, 3.59%
(11,332/315,308) of data instances were related to asthma
hospital visits in the subsequent year. In 2017, this percentage
was 4.22% (812/19,256).
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Table 1. Demographic and clinical characteristics of the Intermountain Healthcare patients with asthma between 2005 and 2016.

Data instances
(n=315,308), n (%)

Data instances related to asthma hospital
visits in the subsequent year (n=11,332),
n (%)

Data instances related to no asthma hospi-
tal visit in the subsequent year
(n=303,976), n (%)

Characteristics

Gender

188,091 (59.65)6163 (54.39)181,928 (59.85)Female

127,217 (40.35)5169 (45.61)122,048 (40.15)Male

Age (years)

46,881 (14.87)621 (5.48)46,260 (15.22)≥65

177,439 (56.27)5003 (44.15)172,436 (56.73)18 to 65

53,162 (16.86)2590 (22.86)50,572 (16.64)6 to <18

37,826 (12.00)3118 (27.52)34,708 (11.42)<6

Ethnicity

252,599 (80.11)8157 (71.98)244,442 (80.41)Non-Hispanic

29,293 (9.29)2279 (20.11)27,014 (8.89)Hispanic

33,416 (10.60)896 (7.91)32,520 (10.70)Unknown or not reported

Race

282,626 (89.63)9420 (83.13)273,206 (89.88)White

4288 (1.36)411 (3.63)3877 (1.28)Native Hawaiian or other Pacific
Islander

5751 (1.82)460 (4.06)5291 (1.74)Black or African American

2197 (0.70)77 (0.68)2120 (0.70)Asian

2509 (0.80)214 (1.89)2295 (0.76)American Indian or Alaska Na-
tive

17,937 (5.69)750 (6.62)17,187 (5.65)Unknown or not reported

Duration of asthma (years)

80,476 (25.52)3666 (32.35)76,810 (25.27)>3

234,832 (74.48)7666 (67.65)227,166 (74.73)≤3

Insurance

28,513 (9.04)1902 (16.78)26,611 (8.75)Self-paid or charity

80,154 (25.42)3238 (28.57)76,916 (25.30)Public

206,641 (65.54)6192 (54.64)200,449 (65.94)Private

Smoking status

260,453 (82.60)8952 (79.00)251,501 (82.74)Never smoker or unknown

19,304 (6.12)569 (5.02)18,735 (6.16)Former smoker

35,551 (11.28)1811 (15.98)33,740 (11.10)Current smoker

Comorbidity

20,892 (6.63)471 (4.16)20,421 (6.72)Sleep apnea

14,756 (4.68)592 (5.22)14,164 (4.66)Sinusitis

5542 (1.76)440 (3.88)5102 (1.68)Premature birth

36,291 (11.51)1076 (9.50)35,215 (11.58)Obesity

56,196 (17.82)1309 (11.55)54,887 (18.06)Gastroesophageal reflux

4927 (1.56)443 (3.91)4484 (1.48)Eczema

458 (0.15)11 (0.10)447 (0.15)Cystic fibrosis

12,887 (4.09)391 (3.45)12,496 (4.11)Chronic obstructive pulmonary
disease
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Data instances
(n=315,308), n (%)

Data instances related to asthma hospital
visits in the subsequent year (n=11,332),
n (%)

Data instances related to no asthma hospi-
tal visit in the subsequent year
(n=303,976), n (%)

Characteristics

429 (0.14)35 (0.31)394 (0.13)Bronchopulmonary dysplasia

56,961 (18.07)1716 (15.14)55,245 (18.17)Anxiety or depression

4715 (1.50)181 (1.60)4534 (1.49)Allergic rhinitis

Asthma medication prescription

136,642 (43.34)7324 (64.63)129,318 (42.54)Systemic corticosteroid

129,528 (41.08)7545 (66.58)121,983 (40.13)Short-acting, inhaled beta-2 ago-
nist

121 (0.04)7 (0.06)114 (0.04)Mast cell stabilizer

1813 (0.58)69 (0.61)1744 (0.57)Long-acting beta-2 agonist

35,507 (11.26)2320 (20.47)33,187 (10.92)Leukotriene modifier

44,992 (14.27)2196 (19.38)42,796 (14.08)Inhaled corticosteroid/long-act-
ing beta-2 agonist combination

78,105 (24.77)4539 (40.05)73,566 (24.20)Inhaled corticosteroid
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Table 2. Demographic and clinical characteristics of the Intermountain Healthcare patients with asthma in 2017.

Data instances
(n=19,256), n (%)

Data instances related to asthma hospi-
tal visits in the subsequent year
(n=812), n (%)

Data instances related to no asthma hos-
pital visit in the subsequent year
(n=18,444), n (%)

Characteristics

Gender

11,440 (59.41)439 (54.06)11,001 (59.65)Female

7816 (40.59)373 (45.94)7443 (40.35)Male

Age (years)

3879 (20.14)46 (5.67)3833 (20.78)≥65

10,265 (53.31)386 (47.54)9879 (53.56)18 to 65

3235 (16.80)181 (22.29)3054 (16.56)6 to <18

1877 (9.75)199 (24.51)1678 (9.10)<6

Ethnicity

16,860 (87.56)618 (76.11)16,242 (88.06)Non-Hispanic

2212 (11.49)192 (23.65)2020 (10.95)Hispanic

184 (0.96)2 (0.25)182 (0.99)Unknown or not reported

Race

17,706 (91.95)681 (83.87)17,025 (92.31)White

346 (1.80)47 (5.79)299 (1.62)Native Hawaiian or other Pacific
Islander

403 (2.09)42 (5.17)361 (1.96)Black or African American

205 (1.06)10 (1.23)195 (1.06)Asian

159 (0.83)13 (1.60)146 (0.79)American Indian or Alaska Native

437 (2.27)19 (2.34)418 (2.27)Unknown or not reported

Duration of asthma (years)

8123 (42.18)389 (47.91)7734 (41.93)>3

11,133 (57.82)423 (52.09)10,710 (58.07)≤3

Insurance

1278 (6.64)142 (17.49)1136 (6.16)Self-paid or charity

5128 (26.63)208 (25.62)4920 (26.68)Public

12,850 (66.73)462 (56.90)12,388 (67.17)Private

Smoking status

14,539 (75.50)583 (71.80)13,956 (75.67)Never smoker or unknown

2326 (12.08)83 (10.22)2243 (12.16)Former smoker

2391 (12.42)146 (17.98)2245 (12.17)Current smoker

Comorbidity

3003 (15.60)78 (9.61)2925 (15.86)Sleep apnea

780 (4.05)34 (4.19)746 (4.04)Sinusitis

476 (2.47)41 (5.05)435 (2.36)Premature birth

3505 (18.20)116 (14.29)3389 (18.37)Obesity

3548 (18.43)71 (8.74)3477 (18.85)Gastroesophageal reflux

307 (1.59)34 (4.19)273 (1.48)Eczema

95 (0.49)1 (0.12)94 (0.51)Cystic fibrosis

1056 (5.48)23 (2.83)1033 (5.60)Chronic obstructive pulmonary dis-
ease
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Data instances
(n=19,256), n (%)

Data instances related to asthma hospi-
tal visits in the subsequent year
(n=812), n (%)

Data instances related to no asthma hos-
pital visit in the subsequent year
(n=18,444), n (%)

Characteristics

15 (0.08)3 (0.37)12 (0.07)Bronchopulmonary dysplasia

3946 (20.49)131 (16.13)3815 (20.68)Anxiety or depression

392 (2.04)10 (1.23)382 (2.07)Allergic rhinitis

Asthma medication prescription

12,020 (62.42)693 (85.34)11,327 (61.41)Systemic corticosteroid

13,785 (71.59)739 (91.01)13,046 (70.73)Short-acting, inhaled beta-2 agonist

8 (0.04)0 (0.00)8 (0.04)Mast cell stabilizer

52 (0.27)5 (0.62)47 (0.25)Long-acting beta-2 agonist

3573 (18.56)209 (25.74)3364 (18.24)Leukotriene modifier

4400 (22.85)222 (27.34)4178 (22.65)Inhaled corticosteroid/long-acting
beta-2 agonist combination

7241 (37.60)424 (52.22)6817 (36.96)Inhaled corticosteroid

For each demographic or clinical characteristic, Table 3 presents
the statistical test results on whether the data instances related
to asthma hospital visits in the subsequent year and those related
to no asthma hospital visit in the subsequent year had the same

distribution. When the P value was ≥.05, the 2 sets of data
instances had the same distribution. Otherwise, they had
different distributions. All P values <.05 are shown in italics in
Table 3.
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Table 3. For each demographic or clinical characteristic, the statistical test results on whether the data instances related to asthma hospital visits in the
subsequent year and those related to no asthma hospital visit in the subsequent year had the same distribution.

P value for the 2017 dataP value for the 2005-2016 dataCharacteristics

.002 a<.001 a, bGender

<.001 c<.001 cAge (years)

<.001 a<.001 aEthnicity

<.001 a<.001 aRace

<.001 c<.001 cDuration of asthma (years)

<.001 a<.001 aInsurance category

<.001 a<.001 aSmoking status

Comorbidity

<.001 a<.001 aSleep apnea

.91a.006 aSinusitis

<.001 a<.001 aPremature birth

.004 a<.001 aObesity

<.001 a<.001 aGastroesophageal reflux

<.001 a<.001 aEczema

.20a.21aCystic fibrosis

<.001 a<.001 aChronic obstructive pulmonary disease

.02 a<.001 aBronchopulmonary dysplasia

.002 a<.001 aAnxiety or depression

.13a.38aAllergic rhinitis

Asthma medication prescription

<.001 a<.001 aSystemic corticosteroid

<.001 a<.001 aShort-acting, inhaled beta-2 agonist

>.99a.29aMast cell stabilizer

.11a.67aLong-acting beta-2 agonist

<.001 a<.001 aLeukotriene modifier

.002 a<.001 aInhaled corticosteroid/long-acting beta-2 agonist combination

<.001 a<.001 aInhaled corticosteroid

aP values obtained by performing the chi-square two-sample test.
bP values <.05 marked in italics.
cP values obtained by performing the Cochran-Armitage trend test [41].

The Number of Association Rules Left at Different
Phases of Rule Mining and Pruning Processes
The association rules used in the second model were mined on
the training set. Using the top 50 features that were ranked by
our XGBoost model with the highest importance values, we
obtained 559,834 association rules. Figure 1 presents the number
of rules left versus the confidence difference threshold τ. Recall

that each more specific rule is dropped when there exists a more
general rule whose confidence is not lower by more than τ.
Initially, when τ is small, the number of rules left decreases
quickly as τ increases. Once τ becomes 0.15 or larger, the
number of rules left approaches an asymptote. Accordingly, in
our computer coding implementation, we set τ to 0.15, resulting
in 132,816 remaining rules.
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Figure 1. The number of association rules left versus τ.

A clinical expert on asthma (MJ) in our team marked the values
and value ranges of the top 50 features that could possibly have
a positive correlation with future asthma hospital visits. After
dropping the rules including any other value or value range,
124,506 rules were left. Each rule explains why a patient is
predicted to incur one or more asthma hospital visits in the
subsequent year. Almost all (124,502/124,506, 100.00%) of

these rules were actionable. The left-hand sides of these rules
contain various combinations of 208 distinct items related to
50 features.

Example Association Rules in the Second Model
Table 4 presents 5 sample association rules randomly chosen
from the 124,502 actionable rules used in the second model.
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Table 4. Five sample association rules.

Intervention compiled for the itemImplication of the itemItem on the left-hand side of the rule

Rule 1: The patient had ≥12 EDa visits in the past year AND the patient had ≥21 distinct medications in all of the asthma medication orders
in the past year → the patient will incur one or more asthma hospital visits in the subsequent year.

Implement control strategies to avoid the
need for emergency care

Having many ED visits reflects poor asthma
control

The patient had ≥12 ED visits in the past year

Tailor prescribed asthma medications and
help the patient maximize asthma control
medication adherence

Using many asthma medications reflects poor
asthma control

The patient had ≥21 distinct medications in all of the
asthma medication orders in the past year

Rule 2: The patient had ≥9 distinct asthma medication prescribers in the past year AND the block group where the patient lives has a national
health literacy score [42] ≤244 AND the patient had ≥21 distinct medications in all of the asthma medication orders in the past year → the
patient will incur one or more asthma hospital visits in the subsequent year.

Provide the patient with social resources
to address social chaos that leads to inef-
fective access to health care

Having many asthma medication prescribers re-
flects poor care continuity, which often leads to
poor outcomes

The patient had ≥9 distinct asthma medication pre-
scribers in the past year

Improve education access in the area
where the patient lives to help increase
health literacy

Having low health literacy is correlated with
poor outcomes

The block group where the patient lives has a national
health literacy score ≤244

Rule 3: The patient had a total of ≥25 units of systemic corticosteroids ordered in the past year AND the patient had ≥12 ED visits in the past
year AND the patient is Hispanic → the patient will incur one or more asthma hospital visits in the subsequent year.

Tailor prescribed asthma medications and
help the patient maximize asthma control
medication adherence

Systemic corticosteroids are one type of asthma
medication intended for short-term use to relieve
acute asthma exacerbations. Using a lot of sys-
temic corticosteroids reflects poor asthma control

The patient had a total of ≥25 units of systemic corticos-
teroids ordered in the past year

—bIn the US, Hispanic people have a disproportion-
ately high rate of poor asthma outcomes

The patient is Hispanic

Rule 4: The patient had ≥4 major visits for asthma in the past year AND the patient is between 11 and 35 years old AND the patient had no
outpatient visit in the past year AND the average length of an inpatient stay of the patient in the past year is >1.75 and ≤2.95 days → the
patient will incur one or more asthma hospital visits in the subsequent year.

Implement control strategies to avoid the
need for emergency care

As defined in our paper [23], a major visit for
asthma is an inpatient stay or ED visit having
an asthma diagnosis code, or an outpatient visit

The patient had ≥4 major visits for asthma in the past
year

having a primary diagnosis of asthma. Intuitive-
ly, all else being equal, a patient having major
visits for asthma has a higher likelihood of incur-
ring future asthma hospital visits than a patient
having only outpatient visits with asthma as a
secondary diagnosis

Implement control strategies to avoid the
need for emergency care

Having inpatient stays reflects poor asthma
control

The average length of an inpatient stay of the patient in
the past year is >1.75 and ≤2.95 days

Help the patient obtain a primary care
provider if the patient does not already
have one

For good asthma management, a patient with
asthma is supposed to see the primary care
provider regularly. Having no outpatient visit
often implies that the patient has no primary care
provider

The patient had no outpatient visit in the past year

Rule 5: The patient had ≥4 major visits for asthma in the past year AND the patient's last ED visit is within the last 49 days AND the patient
had between 6 and 8 distinct asthma medication prescribers in the past year AND the patient had a total of ≥36 units of asthma medications
ordered in the past year AND >23.7% and ≤33.3% of families in the block group where the patient lives are below 150% of the federal
poverty level → the patient will incur one or more asthma hospital visits in the subsequent year.

Implement control strategies to avoid the
need for emergency care

Having a recent ED visit reflects poor asthma
control

The patient’s last ED visit is within the last 49 days

Tailor prescribed asthma medications and
help the patient maximize asthma control
medication adherence

Taking many asthma medications reflects poor
asthma control

The patient had a total of ≥36 units of asthma medica-
tions ordered in the past year

Provide living wage programs in the area
where the patient lives to increase re-
sources for health care

Poverty correlates with poor outcomes>23.7% and ≤33.3% of families in the block group
where the patient lives are below 150% of the federal
poverty level

aED: emergency department.
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bNot applicable.

Performance Measures Reached by the Extended
Automatic Explanation Method
Our extended automatic explanation method was assessed on
the test set. This method explained the prediction results for
92.4% (182/197) of the adults with asthma (age ≥18 years) and
87.5% (209/239) of the children with asthma (age <18 years)
for whom our XGBoost model correctly predicted the
occurrence of asthma hospital visits in the subsequent year.
Combined, our extended method explained the prediction results
for 89.7% (391/436) of the patients with asthma whom our
XGBoost model correctly predicted to incur asthma hospital
visits in the subsequent year. For each such patient, our extended
method offered an average of 974.01 (SD 1600.48) explanations,
974.00 (SD 1600.47) of which were actionable. Each
explanation came from 1 rule. When confined to using
actionable rules, our extended method explained the prediction
results for 89.7% (391/436) of the patients with asthma for
whom our XGBoost model correctly predicted the occurrence
of asthma hospital visits in the subsequent year.

For the patients for whom our extended automatic explanation
method could offer explanations of our XGBoost model’s

correct prediction results of incurring asthma hospital visits in
the subsequent year, the average number of distinct actionable
items appearing in all of the rules fitting a patient was 21.50
(SD 8.71). This number is much less than 974.01, the average
number of actionable rules fitting such a patient.

For the patients with asthma whom our XGBoost model
correctly predicted to incur asthma hospital visits in the
subsequent year, Figure 2 shows the distribution of patients by
the number of rules fitting a patient. This distribution has a long
tail and is highly skewed toward the left. As the number of rules
fitting a patient becomes larger, the number of patients to each
of whom this number of rules apply is inclined to drop
nonmonotonically. The largest number of rules fitting a patient
is high, 9223, although only 1 patient fits such a high number
of rules.

For the patients with asthma whom our XGBoost model
correctly predicted to incur asthma hospital visits in the
subsequent year, Figure 3 shows the distribution of patients by
the number of actionable rules fitting a patient. This distribution
is similar to that shown in Figure 2. The largest number of
actionable rules fitting a patient is high, 9223, although only 1
patient fits such a high number of actionable rules.

Figure 2. Distribution of patients by the number of rules fitting a patient for the patients with asthma whom our extreme gradient boosting model
correctly predicted to incur asthma hospital visits in the subsequent year. (a) When no limit is placed on the number of rules fitting a patient. (b) When
the number of rules fitting a patient is ≤250.
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Figure 3. Distribution of patients by the number of actionable rules fitting a patient for the patients with asthma whom our extreme gradient boosting
model correctly predicted to incur asthma hospital visits in the subsequent year. (a) When no limit is placed on the number of actionable rules fitting a
patient. (b) When the number of actionable rules fitting a patient is ≤250.

For the patients with asthma whom our XGBoost model
correctly predicted to incur asthma hospital visits in the
subsequent year, Figure 4 exhibits the distribution of patients
by the number of distinct actionable items appearing in all of
the rules fitting a patient. The largest number of distinct
actionable items appearing in all of the rules fitting a patient is
35, much smaller than the largest number of (actionable) rules
fitting a patient. Frequently, 2 or more actionable items
appearing in the rules fitting a patient link to the same set of
interventions. For example, the intervention of tailoring
prescribed asthma medications and helping the patient maximize

asthma control medication adherence links to several value
ranges of multiple medication-related features.

Our extended automatic explanation method could offer
explanations for 69.2% (562/812) of patients with asthma who
will incur asthma hospital visits in the subsequent year.

To evaluate the generalizability of our extended automatic
explanation method for predicting asthma hospital visits, we
tested our method on the University of Washington Medicine
data and Kaiser Permanente Southern California data. The
results we obtained are similar to the abovementioned results
and are detailed in 2 separate papers [43,44].

Figure 4. Distribution of patients by the number of distinct actionable items appearing in all of the rules fitting a patient for the patients with asthma
whom our extreme gradient boosting model correctly predicted to incur asthma hospital visits in the subsequent year.

Discussion

Principal Findings
We developed a method to automatically offer rule-formed
explanations for any machine learning model’s prediction results
on imbalanced tabular data without lowering the performance
measures of the model. We showed that this method explained
the prediction results for 89.7% (391/436) of the patients with
asthma whom our XGBoost model correctly predicted to incur
asthma hospital visits in the subsequent year. This percentage

is high enough for routine clinical use of this method. After
further improvement of its accuracy, our asthma outcome
prediction model coupled with the automatic explanation
function could be used for decision support to guide the
allocation of limited asthma care management resources. This
could help boost asthma outcomes and reduce resource use and
costs.

Our extended automatic explanation method could offer
explanations for 69.2% (562/812) of the patients with asthma
who will incur asthma hospital visits in the subsequent year.
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This percentage is smaller than the success rate of 89.7%
(391/436) for our extended automatic explanation method to
explain the correct prediction results of our XGBoost model of
incurring asthma hospital visits in the subsequent year. One
possible reason is that the prediction results of the association
rules are correlated with the prediction results of our XGBoost
model. Among the patients with asthma who will incur asthma
hospital visits in the subsequent year and on whom our XGBoost
model gave incorrect predictions, many are difficult cases for
any model to correctly predict or explain their outcomes. Among
the patients with asthma whom our XGBoost model correctly
predicted to incur asthma hospital visits in the subsequent year,
many are easy cases for using association rules to explain the
outcomes of these cases.

Asthma in adults differs from asthma in children. As shown in
a previous study [23], the AUC of our XGBoost model for adults
with asthma was 0.034 higher than that for children with asthma,
that is, the outcome is easier to predict for adults with asthma
than for children with asthma. Intuitively, the degree of difficulty
in predicting the outcome is positively correlated with that of
using association rules to explain the prediction results of the
model, as each rule is a small predictive model. Hence, our
extended automatic explanation method explained the prediction
results for a larger portion of the adults with asthma than the
children with asthma for whom our XGBoost model correctly
predicted the occurrence of asthma hospital visits in the
subsequent year.

A Guideline for Setting the Values of the Parameters
Used in Our Extended Automatic Explanation Method
Our extended automatic explanation method has 4 parameters:
the maximum number of items lmax allowed on the left-hand
side of an association rule, the minimum commonality threshold
mmin, the minimum confidence threshold cmin, and the confidence
difference threshold τ. These parameters significantly affect the
performance of the method. Our previous papers [31,32]
outlined the method but gave no guideline for setting the values
of these parameters. We offer such a guideline here.

The maximum number of items lmax allowed on the left-hand
side of an association rule is usually small, as long rules are
difficult to understand [35]. Our previous study [27] showed
that for an outcome variable that is relatively easy to predict,
an lmax of 4 works well for automatic explanation. When the
outcome variable is hard to predict, we can increase lmax slightly
to a number such as 5. Without making the rules too complex
to understand, this helps ensure that the second model can
provide explanations for a large portion of the data instances
that the first model correctly predicts to take one of the
interesting values of the outcome variable.

In the original paper [38] that proposed the concept of
commonality for class-based association rules, mined rules were
used to build a classifier. To maximize the accuracy of the
classifier, the minimum commonality threshold mmin was set to
14%. However, this value is too high for automatic explanation.
With such a high value, we cannot obtain enough rules for the
outcome variable’s rare values. Consequently, for a large portion
of the first model’s prediction results on these values, we cannot

give any explanation. In addition, the mined rules tend to be
too general and have low confidence, causing the users of the
automatic explanation function to have little trust in the
automatically generated explanations. To avoid these problems,
for automatic explanation, we recommend setting mmin to a value
much smaller than 14%. More specifically, our paper [27]
showed that on reasonably balanced data, a minimum support
threshold smin of 1% and a minimum confidence threshold cmin

of 50% work well for automatic explanation. By definition,
commonality is a value-specific support. Thus, we would expect
mmin and smin to have relatively similar optimal values.
Accordingly, we set mmin to a value close to 1% and cmin to a
value close to 50%. Although a value close to 50% may not
seem so high, it is already much larger than the percentage of
data instances linking to an interesting value of the outcome
variable. For instance, in our case of predicting asthma hospital
visits in patients with asthma, this percentage is 4% [23].
Moreover, a value close to 50% is also much larger than our
XGBoost model’s positive predictive value of 22.65%. The
concrete values of mmin and cmin depend on the data set and are
chosen to meet 2 goals simultaneously and as much as possible.
First, the second model can provide explanations for a large
portion of the data instances that the first model correctly
predicts to take one of the interesting values of the outcome
variable. Often, the harder the outcome variable is to predict,
the smaller mmin and cmin need to be to meet this goal. Second,
cmin is high enough for users of the automatic explanation
function to trust the automatically generated explanations.

Recall that during the rule-pruning process, each more specific
rule is dropped when there is a more general rule whose
confidence is not lower by more than the confidence difference
threshold τ. To determine the value of τ, we plot the number of
rules left versus τ. As our previous paper [27] shows, initially
when τ is small, the number of rules left decreases quickly as
τ increases. Once τ becomes sufficiently large, the number of
rules left approaches an asymptote. This is the place to set the
value of τ to strike a balance between cutting the number of
rules and retaining high-confidence rules.

Five Clarifications on Using the Automatic Explanation
Function
In practice, our automatic explanation method could produce a
paradox. Two patients both fulfilled the left-hand side of the
same rule linking to a poor outcome. The first model correctly
predicts one of them to have a poor outcome. The automatic
explanation function displays the rule to explain this prediction
result. Simultaneously, the first model correctly predicts a good
outcome on the other patient, for whom the automatic
explanation function shows nothing. In this case, one should
not think that the automatic explanation function acts incorrectly
because it behaves differently in these 2 patients; rather, this
difference occurs because the second patient fulfills some items
that are not in the rule. These items counter the risk induced by
those on the rule’s left-hand side and reduce the second patient’s
risk of having a poor outcome to a low level.

When using the automatic explanation function, one needs to
remember that the function is intended to serve as a reminder
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system for decision support rather than a replacement for clinical
judgment. The function is used to help the user quickly identify
some reasons why a patient is predicted to have a poor outcome
and some tailored interventions suitable for the patient. If
successful, this helps the clinical user avoid substantial time
laboriously reviewing the records of the patient to assess risk
factors and devise interventions. This also helps reduce the
number of interventions that are suitable for the patient, but the
user forgets to consider. In the end, it is still the user who uses
his or her own judgment to decide whether to use the prediction
result of the first model and apply suggested interventions to
the patient. If there is doubt about the appropriateness of the
output of the function, the clinical user can always check the
records of the patient to resolve the doubt before making the
final decisions with the patient.

Different health care systems have different properties and
practice patterns. Consequently, the association rules mined
from the data of one health care system may or may not directly
apply to or work well for another health care system. However,
our automatic explanation method is general. It relies on no
special property of a specific disease, patient cohort, prediction
target, or health care system and can be applied to various
predictive modeling problems and health care systems
[27,29,30,43,44], regardless of whether the rules mined from
the data of 1 health care system generalize to the data of another
health care system. For any health care system, we would
recommend mining rules from its own data whenever possible,
rather than reusing the rules mined from the data of another
health care system.

In our test case, the second model contained 124,506 association
rules. The left-hand sides of these rules contain various
combinations of 208 distinct items related to 50 features. Within
1 day, a clinician in our team (MJ) finished manually compiling
the 2 types of knowledge needed by the automatic explanation
function: the values and value ranges of the top 50 features that
could possibly have a positive correlation with future asthma
hospital visits and the interventions for the actionable items.
The amount of time needed to perform this manual compilation
is moderate and acceptable to the clinicians in our team.

Although many association rules could fit a patient, the total
number of distinct items included on their left-hand sides is not
large: at most 35. To avoid overwhelming the automatic
explanation function’s user, we can use the rule diversification
method in our paper [27] to rank these rules. The top few rules
are likely to contain nonredundant information and are displayed
by default.

Related Work
As described in a survey paper [33] and a book [34], other
researchers previously proposed various methods for
automatically explaining the prediction results of machine
learning models. These methods often lower the performance
measures of the model by replacing the original model with a
less accurate model and usually give nonrule-formed
explanations. Many of these methods work for only a specific

machine learning algorithm rather than for all algorithms.
Moreover, none of these methods can automatically recommend
tailored interventions. In comparison, our extended automatic
explanation method not only offers rule-formed explanations
for the prediction results of any machine learning model on
tabular data but also recommends tailored interventions without
lowering the performance measures of the model [27].
Compared with nonrule-formed explanations, rule-formed
explanations are easier to comprehend and can more directly
recommend tailored interventions.

Hatwell et al [45] proposed a method to automatically provide
rule-formed explanations for the prediction results of an
AdaBoost model. This method does not work for non-AdaBoost
machine learning algorithms. The rules are unknown before the
prediction time and hence cannot be used to automatically
recommend tailored interventions at prediction time. In
comparison, the rules used in our extended automatic
explanation method are precompiled beforehand and used to
automatically recommend tailored interventions at prediction
time.

Limitations
This study has 2 limitations that give interesting directions for
future work:

1. Our data set contained no information on health care use
of the patients outside of Intermountain Healthcare.
Consequently, the features were computed using incomplete
clinical and administrative data [46-49]. In addition, the
prediction target was limited to asthma hospital visits at
Intermountain Healthcare rather than asthma hospital visits
anywhere. It would be interesting to see how the
automatically generated explanations of the prediction
results of the model would differ if we have access to more
complete clinical and administrative data [50].

2. Our study used 1 predictive modeling problem, predicting
asthma hospital visits as the test case. Although our original
automatic explanation method [27] has been successfully
applied to several predictive modeling problems [29,30],
the generalizability of our extended automatic explanation
method to other predictive modeling problems beyond
predicting asthma hospital visits has not been evaluated.
Conducting such evaluations would help inform the utility
and refine the implementation of our extended method.

Conclusions
Using asthma outcome prediction as a demonstration case, this
study shows for the first time the feasibility of automatically
offering rule-formed explanations for the prediction results of
any machine learning model on imbalanced tabular data without
lowering the performance measures of the model. After further
improvement, our asthma outcome prediction model coupled
with the automatic explanation function could be used for
decision support to guide the allocation of limited asthma care
management resources. This could simultaneously help improve
asthma outcomes and reduce resource use and cost.
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Abstract

Background: Patients’ family history (FH) is a critical risk factor associated with numerous diseases. However, FH information
is not well captured in the structured database but often documented in clinical narratives. Natural language processing (NLP) is
the key technology to extract patients’FH from clinical narratives. In 2019, the National NLP Clinical Challenge (n2c2) organized
shared tasks to solicit NLP methods for FH information extraction.

Objective: This study presents our end-to-end FH extraction system developed during the 2019 n2c2 open shared task as well
as the new transformer-based models that we developed after the challenge. We seek to develop a machine learning–based solution
for FH information extraction without task-specific rules created by hand.

Methods: We developed deep learning–based systems for FH concept extraction and relation identification. We explored deep
learning models including long short-term memory-conditional random fields and bidirectional encoder representations from
transformers (BERT) as well as developed ensemble models using a majority voting strategy. To further optimize performance,
we systematically compared 3 different strategies to use BERT output representations for relation identification.

Results: Our system was among the top-ranked systems (3 out of 21) in the challenge. Our best system achieved micro-averaged
F1 scores of 0.7944 and 0.6544 for concept extraction and relation identification, respectively. After challenge, we further explored
new transformer-based models and improved the performances of both subtasks to 0.8249 and 0.6775, respectively. For relation
identification, our system achieved a performance comparable to the best system (0.6810) reported in the challenge.

Conclusions: This study demonstrated the feasibility of utilizing deep learning methods to extract FH information from clinical
narratives.

(JMIR Med Inform 2020;8(12):e22982)   doi:10.2196/22982

KEYWORDS

family history; information extraction; natural language processing; deep learning

Introduction

Patients’ family history (FH) is a critical risk factor associated
with numerous diseases [1-3] such as diabetes [4], coronary
heart disease [5], and multiple types of cancers [6-9]. For
example, a previous study showed that if a female patient has
both her mother and sister having breast cancer, her relative
risk [10] of having breast cancer increased 3.6 times compared

with people without such FH [11]. Knowing the FH of patients
can greatly help the prevention, diagnosis, and treatment of
various diseases. However, FH is not well structured in current
electronic health record databases but often documented as free
text in clinical notes. Manually extracting patients’ FH
information is a labor-intensive and time-consuming procedure
that cannot be scaled up. Natural language processing (NLP) is
the key technology to build automated computational models
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to extract patients’FH from clinical narratives in their electronic
health records.

In the past 2 decades, researchers have invested a significant
amount of effort into developing various methods and tools to
extract patients’ information from clinical narratives [12-14].
The clinical NLP community has organized a series of shared
tasks for retrieving various patients’ information from clinical
narratives including diseases or disorders [15-17], adverse drug
events [18,19], and medical temporal relations [20]. Both
rule-based and machine learning–based methods have been
examined, and clinical NLP systems such as MetaMap [21],
cTAKES [22], and CLAMP [23] have been developed. More
recently, deep learning–based approaches have demonstrated
superior performances in many NLP tasks [24]. For example,
the long short-term memory-conditional random fields
(LSTM-CRFs) architecture [25], which is a modified
implementation of the recurrent neural network, has been widely
adopted for named entity recognition (NER) tasks in both
general and clinical domains. Later, a newly emerged
bidirectional encoder representations from transformers (BERT)
model achieved state-of-the-art performances in 20 NLP
benchmarks in the general English domain [26] and
demonstrated promising results in several clinical NLP tasks
[27-29]. However, there are only a handful of studies focused
on extracting FH of patients [30-32], which is more complicated
than merely extracting information of the patients as it relates
to various family members of the patient. FH often contains
information from different aspects of the patients, including
family members, their living status, and their diseases or
disorders. Furthermore, patient’s family members need to be
characterized by family role (eg, mother) and family side (eg,
maternal). Besides, there are limited clinical corpora annotated
for FH. The 2018 BioCreative/OHNLP Challenge [33,34] is
the first shared task focusing on FH extraction. During that
challenge, Shi et al [35] explored a joint deep learning approach
and achieved the best performance among all participated teams.

In 2019, the National NLP Clinical Challenge (n2c2) organized
shared tasks to solicit advanced NLP methods for extracting
FH information from clinical text. The 2019 n2c2 open shared
task consisted of 2 subtasks: (1) NER for family members and
observations (ie, diseases or disorders); and (2) identifying
relations between family members, observations, and living
status. Participants were required to identify mentions of FH
and present a family member as a combination of family role
(eg, mother) and family side (eg, maternal) and living status as
a score derived from the healthy and alive state.

This paper presents our end-to-end FH extraction system
developed during the 2019 n2c2 open shared task as well as
new transformer models we developed after the challenge.
During this challenge, we adopted an LSTM-CRF model for
NER and a BERT-based model for relation identification. Our
best submission was ranked fifth in subtask 1 and third in
subtask 2. After the challenge, we further explored a
BERT-based model for NER and demonstrated better
performances in both subtasks.

Methods

Data
This study used the data set developed by the 2019 n2c2 open
shared task organizers consisting of 216 clinical notes extracted
from the Mayo Clinic data warehouse. The organizers split the
corpus into a training set of 99 notes and a test set of 117 notes.
Three types of concepts were annotated, including family
members, observations (ie, diseases and disorders), and living
status. There are also 2 types of relations annotated among
family members, observations, and living status. The organizers
provided annotations at (1) entity level (ie, the words and
phrases about FH), and (2) document level, where the multiple
mentions of the same FH were aggregated. Table 1 shows the
descriptive statistics of the corpus.

Table 1. Descriptive statistics of the challenge data set.

2019 n2c2 family history challenge corpusCorpus information, annotation type, and annotation category

Test setTraining set

11799Number of notes

Entity-level annotation

Concept

N/A803Family members

N/A978Observations

N/A415Living status

Document-level annotation

Concept

638667Family members

983930Observations

Relation

755740Family members—observations

349376Family members—living status
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The Family History Extraction System
Figure 1 shows the system architecture for our end-to-end FH
extraction system. Our system has 5 modules including
preprocessing, NER, classification, relation identification, and
postprocessing. The preprocessing module contains standard
NLP procedures including tokenization, sentence boundary

detection, and data format transformation. In the NER module,
we explored state-of-the-art NLP models, including
LSTM-CRFs and BERT to identify FH concepts. The relation
identification module applied deep learning models to determine
the relations among FH concepts. The postprocessing module
aggregated the entity-level results to the document level for
both concept extraction and relation identification subtasks.

Figure 1. Overview of our family history extraction system.

Extracting Family History Concepts
The concept extraction subtask focused on detecting the
mentions of family members and observations. We approached
this subtask as a typical NER problem and applied deep
learning–based models. Following the standard machine
learning–based NER procedure, we converted the annotations
using the beginning-inside-outside (BIO) tagging scheme
[36,37], where “B” indicates the first token of a concept, “I”
indicates tokens inside of a concept, and “O” indicates tokens
that do not belong to any concepts. Thus, we converted
information extraction problem into a sequence labeling task
to assign each word with one of the predefined NER labels (“B,”
“I,” or “O”). We explored 2 deep learning–based models
including LSTM-CRFs and BERT.

Previous studies [38-41] have shown that adopting an ensemble
method could further improve the clinical NER performances.

Thus, we adopted the majority voting strategy to integrate the
different NER models as shown in Figure 2. More specifically,
we randomly (based on a random seed) split the training data
into a short training data and a validation data at a 9:1 ratio. We
trained deep learning models using the short training data and
selected the best checkpoints based on the model performance
on the validation data. By repeating the procedure 5 times with
different random seeds, we obtained 5 different models. In each
training procedure, we used different short training data and
validate data but the same hyperparameters (ie, the optimized
hyperparameters used for training the single BERT NER model).
Then, the majority voting strategy was used to vote among the
5 models. Here, we use a suffix “-EN” to indicate the ensemble
method. For example, we used “LSTM-CRFs-EN” to denote
the ensemble model of LSTM-CRFs, and “BERT-EN” to denote
the ensemble model of using BERT.
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Figure 2. The majority voting strategy to ensemble NER models. BERT: bidirectional encoder representations from transformers; NER: named entity
recognition.

Determining Family Role and Family Side
This task is to determine the family role and family side for the
mentions of FH. There are a total number of 15 types of family
roles defined in this challenge, including father, mother, sister,
parent, brother, grandmother, grandfather, grandparent, daughter,
son, child, cousin, sibling, aunt, and uncle. There are 3
predefined family sides including maternal, paternal, and not
applicable. We approached the 2 tasks as classification
problems. Previous studies [35,42] approached the 2 tasks using
rule-based methods; here, we applied deep learning–based
classification methods as machine learning–based methods have
shown a better generalizability.

Relation Identification
Typically, relation identification consists of 2 steps: (1)
determine whether there is a relation between 2 entities; and (2)
classify the correct relation type. In this study, we formulated
the relation identification as a binary classification problem.
We presented each relation as a pair of 2 entities and used
contextual information around the entities to classify these pairs
into categories as “in-relation” or “nonrelation” (no relation
between entities). Then, we further categorized the “in-relation”

entity pairs into either “family member—living status” group
or “family member—observation” group based on the entity
types: if 1 of the entities in an entity pair is observation, we
classify it as “family member—observation”; if one of the
entities in an entity pair is living status, we classify it as “family
member—living status.”

Candidate Concept Pairs Generation
Theoretically, there might be relations between any pair of FH
concepts. Thus, a naïve way is to generate candidate pairs from
all combinations of clinical concepts in document level.
However, a previous study [43] has reported that this method
often generates too many negative samples (ie, nonrelation),
causing an extremely imbalanced positive-to-negative sample
ratio. To alleviate this issue, we applied the following heuristic
rule to reduce the combinations: only keep the concept pairs
composed of a family member entity as the first element and a
nonfamily member entity as the second element. We also looked
into the cross-distance of pairs—defined as the number of
sentence boundaries between the 2 entities (eg, 0 for
single-sentence relations, and 1 for relations across 2 sentences).
In the training set, the cross-distance ranges from 0 to 10 and
we found that 96% of the annotated relations have
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cross-distances less than 3. Therefore, we only consider
candidate pairs with cross-distances less than 3. Previous studies
[44,45] developed individual classifiers to handle relations with
different cross-distance; here, we developed a unified
BERT-based classifier to handle all candidate pairs with various
cross-distances as the BERT model is able to learn both token-
and sentence-level representations.

Handling Negations
In this study, we approached negation detection as a binary
classification problem—classify the observation entity into 2
predefined categories including “negated” and “non-negated.”
We developed a BERT-based classifier for negation detection.
In our system, we performed the negation detection for each
observation entity and then integrated the results into relations.
We only used the negation annotations from the challenge data
set and did not use any external resources.

Assessing the Living Status Scores
For the relations between “family member—living status,” the
participants were required to assess the living status using scores
of 0, 2, or 4, where 0 indicates not alive, 2 indicates alive but
not healthy, and 4 indicates alive and healthy. We approached
this task as a classification task—to categorize a living status
entity into one of 3 score categories (ie, 0, 2, and 4). We
developed a BERT-based classifier to classify each living status
entity into a category according to its context.

Deep Learning Models

LSTM-CRFs
In this study, we adopted an LSTM-CRFs architecture proposed
by Lample et al [25]. The model has 2 bidirectional LSTM
layers: one for learning representations at the character level
and the other for learning those at the word level. The model
utilizes a CRFs layer to decode the LSTM hidden states to BIO
tags. We screened 4 different word embeddings following a
similar procedure reported in our previous study [46] and found
that the Common Crawl embeddings—released by Facebook
and trained using the fastText on the Common Crawl data set
[47]—achieved better performance compared to other
embeddings on a validation data set. Thus, we used the Common
Crawl embeddings for all LSTM-CRFs models.

BERT
The BERT model is a multilayer transformer encoder model
implemented using the self-attention mechanism [48], which is
pretrained by combining the masked language modeling method
and the next sentence prediction task. BERT has 2 versions

featuring different model sizes, including a BASE version with
12 transformer layers and 110 million parameters, and a LARGE
version with 24 transformer layers and 340 million parameters
[26]. There are 2 steps to apply BERT for various downstream
NLP, including (1) pretraining a BERT model using large
unlabeled corpora and (2) fine-tuning the pretrained model using
task-specific annotated corpora. In this study, we adopted the
general pretrained BERT-LARGE model and fine-tuned it
individually for each subtask (ie, concept extraction and relation
identification) using the annotated data set developed in this
challenge. We denoted the BERT-based NER model as
BERT-ner, and the BERT-based family member attributes (ie,
family role, side of family, negation, living status) classification
module as BERT-cls and relation extraction module as
BERT-rel.

Figure 3 illustrates the fine-tuning procedure for BERT. For
token Toki, its input embedding and contextual representation
are denoted as Embi and Ti. The [CLS] and [SEP] are 2 special
symbols designed to format the input sequences. In this study,
we also introduced a pair of entity marker including [S] and [E]
to differentiate the target entity from other entities in the same
sentence, where [S] indicates the start position and [E] indicates
the end position. For NER (Figure 3A), the input for BERT
model is a sequence of tokens, and the output is a sequence of
distributed representation. Then, we used a linear layer to
calculate a score for each BIO tag. Based on the entities, we
developed classifiers to determine related attributes (Figure 3B).
To distinguish between the target entity and other entities in the
same sentence, we inserted entity markers (ie, [S] and [E]) in
front of and after the target entity. For example, the input
sequenced in Figure 3B contains the target entity (ie, Tok1 and
Tok2) surrounded by the entity markers and other entities (eg,
Tokn). Then, we concatenated the representations corresponding
to the [CLS] and [S] tokens and calculated a score for each
predefined class label using a linear layer. For relation
identification (Figure 3C), we determined the relation type based
on the contextual information of 2 concepts in a relation.
Therefore, the input consisted of 2 sentences linked by the
special token [SEP], where each sentence contains 1 of the 2
entities in the relation. We used 2 sets of entity markers (ie,
[S1], [E1], and [S2], [E2]) to label the entities. If the 2 entities
of a relation are in the same sentence, then the 2 model-input
sentences are the same but with different entity markers. To
determine the relation category, we concatenated the
representations from [CLS] and 2 start position entity makers
([S1] and [S2]) and used a linear layer to calculate a score for
each predefined relation type.
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Figure 3. Illustration of BERT models for (A) NER, (B) family member attributes (including side and role of family members, negation of observations,
and living scores) classification, and (C) relation extraction. BERT: bidirectional encoder representations from transformers; NER: named entity
recognition.

Experiments and Evaluations
In this study, we reused the LSTM-CRFs model developed in
our previous study [49] and implemented the BERT-based
models on top of the Transformers library [50] implemented in
PyTorch [51]. We used the following parameters to initialize
the LSTM-CRFs: the character embedding dimension was 25,
the word embedding dimension was 100, the character-level

bidirectional LSTM layer dimension was 25, the word-level
bidirectional LSTM layer was 100 with a dropout probability
of 0.5, the learning rate was fixed at 0.005, and the stochastic
gradient descending applied a gradient clapping at [–5.0, 5.0].
The character embeddings were randomly initialized and the
word embeddings were initiated using embeddings from fastText
[47] (ie, containing 2 million word vectors trained on Common
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Crawl). We initialized all BERT-based models using the
BERT-LARGE pretrained on the general English corpus and
fine-tuned them with the default model parameter settings. To
train NER models, we randomly (using random seeds for
reproducibility) split the original training set (99 notes) into a
short training set of 89 notes and a development set of 10 notes.
The best NER models were selected according to the
performance on the development set. We optimized 2

hyperparameters, including the number of epochs and batch
size, via fivefold cross-validation. Table 2 summarizes the
optimized hyperparameters. We conducted all experiments using
2 NVIDIA P6000 graphics processing units (GPUs). We used
the official evaluation script provided by the 2019 n2c2 open
shared task organizers to calculate the evaluation scores on the
test set. Evaluation metrics as micro-averaged precision, recall,
and F1 score were used for both subtask 1 and subtask 2.

Table 2. The optimized hyperparameters of BERT-based models for various tasks.

Learning rateBatch sizeNumber of epochsPretrained modelTask

1.00 × 10–05430BERTb-LARGENERa

1.00 × 10–0585BERT-LARGENegation classification

1.00 × 10–05410BERT-LARGESide of family classification

1.00 × 10–0585BERT-LARGERole of family classification

1.00 × 10–0586BERT-LARGELiving status classification

2.00 × 10–051612BERT-LARGERelation identification

aNER: named entity recognition.
bBERT: bidirectional encoder representations from transformers.

Results

Table 3 compares our 4 systems for conception extraction and
relation identification. Our best submission during the original
challenge (LSTM-CRFs-EN + BERT-cls +BERT-rel) achieved
F1 scores of 0.7944 and 0.6544 for subtask 1 and subtask 2,
respectively, which is the third best system of this challenge
among 17 participants. After the challenge, we further explored
the BERT model for NER and the combination of

BERT-ner-EN, BERT-cls, and BERT-rel achieved better F1
scores of 0.8249 and 0.6775 for the 2 subtasks, respectively.
Compared to our best system developed during the challenge
(LSTM-CRFs-EN + BERT-cls + BERT-rel), the new system
(BERT-ner-EN + BERT-cls + BERT-rel) improved the F1
scores by 0.0305 and 0.0235 for the 2 subtasks, respectively.
Our best relation identification performance was comparable
to the best result reported in this challenge (0.6775 from us
versus 0.6810 reported in this challenge).

Table 3. The micro-average performances for concept extraction and relation identification.a

Subtask 2 (relation identification)Subtask 1 (concept extraction)Models

F1 scoreRecallPrecisionF1 scoreRecallPrecision

0.62660.54650.73430.79200.80870.7760LSTMa-CRFsb + BERTc-cls + BERT-rel

0.65440.61840.69950.79440.79200.7969LSTM-CRFs-EN + BERT-cls + BERT-reld

0.66670.6252e0.71400.80830.81050.8060BERT-ner + BERT-cls + BERT-rel

0.6775e0.62330.7421e0.8249e0.8198e0.8301eBERT-ner-EN + BERT-cls + BERT-rel

aLSTM: long short-term memory.
bCRFs: conditional random fields.
cBERT: bidirectional encoder representations from transformers.
dOur best system developed during the challenge.
eThe best performances.

Table 4 compares the detailed performance of LSTM-CRFs and
BERT-ner for FH extraction. Compared with LSTM-CRFs, the
BERT-ner model achieved a remarkably higher F1 score for
the observation concepts (0.8094 for BERT-ner versus 0.7833
for LSTM-CRFs), but marginally lower performance for the
family member concepts (0.8066 for BERT-ner versus 0.8069

for LSTM-CRFs). Table 4 also demonstrated that our ensemble
strategy improved the performance of FH extraction. For
example, the BERT-ner-EN, which was ensembled from 5
different BERT-ner models, outperformed the single BERT-ner
model by about 2% for family members and about 1.5% for
observations.
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Table 4. A comparison of LSTM-CRFs and BERT for subtask 1 (concept extraction).

F1 scoreRecallPrecisionModel and concept

LSTM-CRFsa,b

0.80690.76860.8480Family member

0.78330.83420.7382Observation

LSTM-CRFs-EN

0.81490.78680.8451Family member

0.78170.79530.7685Observation

BERTc-ner

0.80660.80720.8059Family member

0.80940.81270.8061Observation

BERT-ner-EN

0.82610.82290.8294Family member

0.82410.81780.8306Observation

aLSTM: long short-term memory.
bCRFs: conditional random fields.
cBERT: bidirectional encoder representations from transformers.

Table 5 compares the performance of relation identification for
each relation category. Similar to the concept extraction results,
the BERT-ner-EN + BERT-cls + BERT-rel system achieved
the best F1 scores of 0.6821 and 0.6760 for the “family

member—living status” and “family member—observation”
relations, respectively. Compared to the LSTM-CRFs, the
BERT-ner–based systems achieved better recalls.

Table 5. The category-level performances for subtask 2 (relation identification).

F1RecallPrecisionModel and relation

LSTM-CRFsa,b + BERTc-cls + BERT-rel

0.65540.61320.7039Family member—living status

0.61740.52690.7452Family member—observation

LSTM-CRFs-EN + BERT-cls + BERT-rel

0.67240.66760.6773Family member—living status

0.64870.59930.7071Family member—observation

BERT-ner + BERT-cls + BERT-rel

0.66570.67340.6583Family member—living status

0.66700.61110.7341Family member—observation

BERT-ner-EN + BERT-cls + BERT-rel

0.68210.67340.6912Family member—living status

0.67600.60860.7603Family member—observation

aLSTM: long short-term memory.
bCRFs: conditional random fields.
cBERT: bidirectional encoder representations from transformers.

Discussion

Overview
Patients’ FH is a critical risk factor associated with numerous
diseases. Clinical NLP systems that automatically extract FH
from clinical narrative are needed for many clinical studies and
applications. The 2019 n2c2 organized shared tasks to assess

current NLP methods for FH information extraction from
clinical narratives. We participated in both subtasks and our
system (LSTM-CRFs-EN + BERT-cls + BERT-rel) achieved
the third best performance (F1 of 0.6544) among all the 21
submitted systems from 17 teams that participated in subtask
2. After the challenge, we further explored the BERT models
for the concept extraction and improved our system in both
concept extraction and relation identification.
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Principal Findings
We observed that the BERT-ner model achieved both better
precision (0.8060 versus 0.7760) and recall (0.8105 versus
0.8087) for clinical concept extraction compared to the
LSTM-CRFs, which is consistent with a recent study by Si et
al [52]. We also noticed that the single BERT-ner mode even
achieved a higher F1 score of 0.8083 than the ensembled
LSTM-CRFs model (LSTM-CRFs-EN with F1 score of 0.7944).
Ensemble is an effective strategy to further improve the
performance of NER. For example, the ensembled BERT model
(ie, BERT-ner-EN, which was ensembled from 5 individual
BERT-ner models) improved the concept extraction
performance to 0.8249, compared to the single BERT model
(F1 score of 0.8083). The performance improvement of the
ensembled model was mainly in precision, suggesting that the
ensembled models may reduce the classification errors in NER.
However, further studies should examine whether our
observation is related to the size of training corpus (relatively
small, only 99 notes).

Most of the previous studies applied rule-based solutions to
determine the family roles and family sides [34]. In this study,
we adopted a pure machine learning–based solution. The
experimental results showed that the BERT-based classifiers
were feasible to determine the family roles, family sides,
negation of observations, and living status scores. Another
advantage of our method is that machine learning–based models
generally have a better generalizability than rule-based systems
and are easy to scale up. FH information has many variations
from one patient to another, which makes the development of
rules time-consuming and expensive.

In our system, we only used the sentences containing the
concepts to classify the family member attributes. We also
examined a strategy to include both the proceeding and
following sentences. However, the experimental results based
on the fivefold cross-validation on the training set showed that
adding the context information did not improve the performance.
One potential reason may be that most of the key information
for classifying the family member attributes is located in the
same sentence where the concepts (ie, family member or
observation) are located. Besides, there might be potential noises
brought in when including the context sentences.

A previous study [53] examined various input encoding and
output representation of using BERT for relation extraction,
and concluded that using representations aggregated from the

start position entity markers (eg, [S1] and [S2] in Figure 3C)
was the best practice. In this study, we re-evaluated 3 types of
BERT output representations, including (1) the representation
of the [CLS] only, (2) the representations aggregated from the
start position entity markers, and (3) the representations
aggregated from the [CLS] and the start position entity markers.
Our results showed that option (3) led to a remarkably higher
averaged F1 score (0.8975) compared to the other 2
representations (0.8851 and 0.8904). A possible reason is that
the representations captured in the special token [CLS] and the
representations of the start position markers contain contextual
information that is complement to each other. Further studies
are needed to continue examining more efficient methods for
encodings and representations.

This study has limitations. First, there are limited clinical
corpora for FH-related information extraction as annotating
clinical notes is expensive and time-consuming. A potential
solution is to use data augmentation techniques such as
generative adversarial networks, which have been applied for
medical imaging data [54,55]. There are preliminary research
works demonstrating that generative adversarial networks could
be utilized to synthesize clinical text [56]. Second, our system
is a 2-stage pipeline where the errors generated in the NER will
be propagated to relation extraction. We will explore potential
solutions such as joint learning algorithms to alleviate this issue
in our future work.

Error Analysis
Table 6 shows the confusion matrix generated for the concept
extraction (subtask 1) based on our best NER model (ie,
BERT-ner-EN). The confusion matrix showed that our system
could efficiently identify family member entities. However, it
is challenging for our system to differentiate the nonconcept
terms for both family members and observations. For concept
extraction, our system had relatively lower performances for
“parent,” “grandparent,” “child,” and “siblings.” One possible
reason is that the training set contains limited annotations of
these entities. For example, the “parent” entity only appeared
once and the “grandparent” entities appeared 6 times in the
training data set. We also found that our system identified some
observations not annotated in the test set. For example, in the
sentence “The father also had a history of vascular surgery, a
long history of smoking, and has had hip replacement,” our
system extracted observations of “vascular surgery,” “smoking,”
and “hip replacement,” which were annotated in the challenge
corpus.
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Table 6. The confusion matrix table for the NER (subtask 1).a

Model predictionEntity type

NCdOBcFMb

1130525FM

1787990OB

N/Ae163108NC

aFM, OB, and NC are considered gold standard.
bFM: family members.
cOB: observations.
dNC: not a concept.
eN/A: not applicable.

Conclusions
Extracting patients’ FH information from clinical narratives is
a challenging NLP task. This study demonstrated the efficiency
of deep learning–based NLP models for extraction of FH. Our

system and pretrained models can be accessed at [57]. We
believe our system could help other researchers to extract and
leverage patient’s FH documented in clinical narratives in their
studies.
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Abstract

Background: With the popularity of electronic health records (EHRs), the quality of health care has been improved. However,
there are also some problems caused by EHRs, such as the growing use of copy-and-paste and templates, resulting in EHRs of
low quality in content. In order to minimize data redundancy in different documents, Harvard Medical School and Mayo Clinic
organized a national natural language processing (NLP) clinical challenge (n2c2) on clinical semantic textual similarity
(ClinicalSTS) in 2019. The task of this challenge is to compute the semantic similarity among clinical text snippets.

Objective: In this study, we aim to investigate novel methods to model ClinicalSTS and analyze the results.

Methods: We propose a semantically enhanced text matching model for the 2019 n2c2/Open Health NLP (OHNLP) challenge
on ClinicalSTS. The model includes 3 representation modules to encode clinical text snippet pairs at different levels: (1)
character-level representation module based on convolutional neural network (CNN) to tackle the out-of-vocabulary problem in
NLP; (2) sentence-level representation module that adopts a pretrained language model bidirectional encoder representation from
transformers (BERT) to encode clinical text snippet pairs; and (3) entity-level representation module to model clinical entity
information in clinical text snippets. In the case of entity-level representation, we compare 2 methods. One encodes entities by
the entity-type label sequence corresponding to text snippet (called entity I), whereas the other encodes entities by their
representation in MeSH, a knowledge graph in the medical domain (called entity II).

Results: We conduct experiments on the ClinicalSTS corpus of the 2019 n2c2/OHNLP challenge for model performance
evaluation. The model only using BERT for text snippet pair encoding achieved a Pearson correlation coefficient (PCC) of 0.848.
When character-level representation and entity-level representation are individually added into our model, the PCC increased to
0.857 and 0.854 (entity I)/0.859 (entity II), respectively. When both character-level representation and entity-level representation
are added into our model, the PCC further increased to 0.861 (entity I) and 0.868 (entity II).

Conclusions: Experimental results show that both character-level information and entity-level information can effectively
enhance the BERT-based STS model.

(JMIR Med Inform 2020;8(12):e23357)   doi:10.2196/23357
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Introduction

Background
Electronic health record (EHR) systems have been widely used
in hospitals all over the world for convenience to health
information storage, share, and exchange [1]. In recent years,
EHRs have become a key data source for medical research and
clinical decision support. Therefore, the quality of EHRs is
crucial. However, copy-and-paste and templates are very
common in EHR writing [2,3], resulting in EHRs of low quality
in content. How to detect copy-and-paste and templates in
different documents has become increasingly important for the
secondary use of EHRs. This can be regarded as a clinical
semantic textual similarity (ClinicalSTS) task, which is also
applied to clinical decision support, trial recruitment, tailored
care, clinical research [4-6], and medical information services,
such as clinical question answering [7,8] and document
classification [9].

In the past few years, some shared tasks on STS, such as
Semantic Evaluation (SemEval), have been launched by
different organizers [10-14]. These shared tasks mainly focus
on general domains, including newswire, tutorial dialog system,
Wikipedia, among others. There has been almost no study on
STS in the clinical domain. To boost the development of
ClinicalSTS, Wang et al [15] constructed a clinical STS corpus
of 174,629 clinical text snippet pairs from Mayo Clinic. Based
on a part of this corpus, BioCreative/OHNLP organizers held
the first ClinicalSTS shared pilot task (challenge) in 2018 [16].
A corpus of 1068 clinical text snippet pairs with similarity
ranging from 0 to 5 was provided for this shared task. In 2019,
the n2c2/OHNLP organizers extended the 2018 shared task
corpus and continued to hold ClinicalSTS shared task [17]. The
extended corpus is composed of 2055 clinical text snippet pairs.

In this paper, we introduce our system developed for the 2019
n2c2/OHNLP shared task on ClinicalSTS. The system is based
on bidirectional encoder representation from transformers
(BERT) [18] and includes the 2 other types of representations
besides BERT: (1) character-level representation to tackle the
out-of-vocabulary (OOV) problem in natural language
processing (NLP) and (2) entity-level representation to model
clinical entity information in clinical text snippets. In the case
of entity-level representation, we apply 2 entity-level
representations: one encodes entities in a text snippet by the
corresponding entity label sequence (called entity I) and the
other one encodes entities with their representation on Mesh
[19] (called entity II). Our system achieves the highest Pearson
correlation coefficient (PCC) of 0.868 on the corpus of the 2019

n2c2/OHNLP track on ClinicalSTS, which is competitive with
other state-of-the-art systems.

Related Work
A model for STS usually consists of 2 modules: a module to
encode text snippet (or sentence) pairs and a module for
prediction (classification or regression). According to sentence
pair encoding, STS models can be classified into the following
2 categories: sentence encoding models and sentence pair
interaction models. The sentence encoding models first use
Siamese neural network to individually encode 2 sentences with
2 neural networks of the same structure and shared parameters
[20-23], then combine the 2 sentences’ representation through
concatenation, element-wise product, or element-wise difference
operations, and finally make a classification or regression
prediction via a specific layer such as multilayer perceptron
(MLP) [24]. The main limitation of the sentence pair encoding
models is that they ignore word-level interactions. The sentence
pair interaction models adopt matching-aggregation architectures
to encode word-level interactions [25,26]. These models first
build an interaction matrix and then use a convolutional neural
network (CNN) [27] and long short-term memory [28] with
attention mechanism [29,30] and hierarchical architecture [31]
to obtain aggregated matching representation for final prediction.

In recent years, pretrained language models good at capturing
sentence-level semantic information, such as BERT [18], XLNet
[32], RoBERTa [33], have been proved to significantly improve
downstream tasks. However, most pretrained language models
are at the token level. In order to tackle the inherent OOV
problem of NLP, character-level representation is also
considered in various NLP tasks, such as named entity
recognition [34-36] and entity normalization [37], and brings
improvements. Besides, researchers have started investigating
how to use entity-level representation in NLP tasks [38,39].

Methods

Data Set
The n2c2/OHNLP organizers manually annotated a total of
2055 clinical text snippet pairs by 2 medical experts for the
ClinicalSTS task, where 1643 pairs are used as the training set
and 412 as the test set. The similarity of each clinical text snippet
pair is measured by PCC ranging from 0 to 5, where 0 means
that 2 clinical text snippets are absolutely different, and 5 means
that 2 clinical text snippets are entirely semantically equal. All
clinical text snippets are selected from deidentified EHRs. Table
1 gives examples of each score.
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Table 1. Examples of ClinicalSTSa.

Example of clinical text snippet pairScore

The 2 sentences are completely dissimilar0

S1: The patient has missed 0 hours of work in the past seven days for issues not related to depression.

S2: In the past year the patient has the following number of visits: none in the hospital none in the er and one as an outpatient.

The 2 sentences are not equivalent but have the same topic1

S1: There is no lower extremity edema present bilaterally.

S2: There is a 2+ radial pulse present in the upper extremities bilaterally.

The 2 sentences are not equivalent but share some details2

S1: I met with the charge nurse and reviewed the patient's clinical condition.

S2: I have reviewed the relevant imaging and medical record.

The 2 sentences are roughly equivalent but some important information differs3

S1: I explained the diagnosis and treatment plan in detail, and the patient clearly expressed understanding of the content reviewed.

S2: Began discussion of diagnosis and treatment of chronic pain and chronic fatigue; patient expressed understanding of the content.

The 2 sentences are mostly equivalent and only a little detail is different4

S1: Albuterol [PROVENTIL/VENTOLIN] 90 mcg/Act HFA Aerosol 2 puffs by inhalation every 4 hours as needed.

S2: Albuterol [PROVENTIL/VENTOLIN] 90 mcg/Act HFA Aerosol 1-2 puffs by inhalation every 4 hours as needed #1 each.

The 2 sentences mean the same thing, they are absolutely equivalent5

S1: Goals/Outcomes: Patient will be instructed in a home program, demonstrate understanding, and state the ability to continue
independently.

S2: Patient will be instructed in home program, demonstrate understanding, and state ability to continue independently-ongoing.

aClinicalSTS: clinical semantic textual similarity.

Models
Figure 1 presents an overview architecture of our model. In this
model, we first use 3 representation modules at different levels

to encode input text snippet pairs, that is, character-level,
sentence-level, and entity-level representation modules, and
then feed them to MLP for prediction.

Figure 1. Overview architecture of our model for the ClinicalSTS track of the 2019 n2c2/OHNLP challenge. BERT: bidirectional encoder representation
from transformers; ClinicalSTS: clinical semantic textual similarity; CNN: convolutional neural network; MLP: multilayer perceptron; PCC: Pearson
correlation coefficient; [CLS]: the representation of sentence pair with BERT.
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Character-Level Representation
In order to tackle the OOV problem in NLP, following [34-37],
given a pair of clinical text snippets (a, b), we first apply
character-level CNN on each token to obtain its character-level
representation, and then apply max pooling operation on all
tokens in a and b to obtain the character-level representation of
(a, b), denoted by C. We model the character-level
representation with CNN, because there is no significant
difference in using CNN and long short-term memory, according
to previous studies [40,41].

Sentence-Level Representation
We use BERT to encode the input clinical text snippet pair (a,
b) and obtain its sentence-level representation, denoted by S =
BERT(a, b).

Entity-Level Representation
We first deploy cTAKES [42], a popular clinical NLP tool, to
extract entity mentions from text snippets, and then propose 2
methods to obtain the entity-level representations of the text
snippets according to the extracted entity mentions, as shown
in Figure 2. cTAKES can extract 9 kinds of entities:
AnatomicalSiteMention, DiseaseDisorderMention,
FractionAnnotation, MedicationMention, Predicate,
ProcedureMention, RomanNumeralAnnotation,
SignSymptomMention, and Temporal Information.

Figure 2. Entity-level representation.

In the first method for entity-level representation (entity I), we
convert text snippet a and b into entity-type sequences
corresponding to them, and then deploy attention-based CNN
[27] on the pair of the entity-type sequences in the following
way:

E = BCNN(esa, esb) (1)

where esa is the entity label sequence of text snippet a, esb is
the entity label sequence of text snippet b, BCNN is basic
bi-CNN, and E is the entity-level representation of (esa, esb).
For example, given a text snippet b “Zocor 40 mg tablet 1 tablet
by mouth one time daily.” shown in Figure 2, cTAKES first
extracts 3 medication mentions {“Zocor”, “tablet”, “tablet”}
and 1 anatomical mention {“mouth”}, and then we obtain the
entity-type sequence corresponding to text snippet b:
“MedicationMetion O O MedicationMetion O
MedicationMetion O AnatomicalSiteMention O O O O”. In
this entity-type sequence, “O” stands for “Other.”

The second method for entity-level representation (entity II)
first directly adopts entity representation learned by TransE [43]
on an external knowledge graph (KG; Mesh in this study), and
then applies average pooling operation on all entities
individually in sentences a and b to get entity-level
representations of a (denoted by ega) and b (denoted by egb)
respectively, and finally aggregates their representations using
equation 2.

E = tanh (We[ega – egb; ega * egb] + be) (2)

where “[;]” denotes concatenation operation, We is a weight
matrix, and be is a bias vector.

MLP Layer
To aggregate the information of 3 modules, we concatenate
them together:

f = [S; C; E] (3)
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Then, we use MLP (as shown in equation 4) to predict the STS
score pscore of (a, b) as follows:

pscore = MLP(Wf + b) (4)

where W is a weight matrix, and b is a bias vector.

The loss function used in our model is the minimum square
error (MSE) function:

Loss = MSE(pscore – gscore) (5)

where gscore is the gold-standard score.

Experimental Setting
Before conducting experiments, we preprocess the corpus using
the following simple rules: (1) convert clinical text snippets
into lowercase; (2) tokenize clinical text snippets using special
symbols, such as “[”, “]”, “/”, “,”, and “.”, and keep them
unstained in some situations such as “.” in decimals. The
hyperparameters of our model are shown in Table 2. Other
parameters are optimized via fivefold cross validation on the
training set. The pretrained BERT model used for text snippet
pair representation in our experiments is [BERT-Base, Uncased]
[44]. We train all model parameters simultaneously, set epochs
as 12, and save the last checkpoints as the final models. The
performance of all models is measured by PCC.

Table 2. Hyperparameters setting of our model.

ValueParameters

2 × 10–5Learning rate

380Sequence length of BERTa

12Epochs

20Batch size

100Knowledge graph embedding dimension d

3Character-level kernel size

50Convolution kernels of BCNNb

3Kernel size of BCNN

50Word embedding dimension of entity I

aBERT: bidirectional encoder representation from transformers.
bBCNN: Basic bi-CNN.

Results

Table 3 shows the overall results of our proposed model. Our
model achieves the highest PCC of 0.868, which is competitive
with other state-of-the-art models proposed for the 2019
n2c2/OHNLP track on ClinicalSTS. The model using entity II
is better than that using entity I by 0.007 in PCC, indicating that
entity II is a better supplement to BERT than entity I. When
character-level representation is removed, the PCC of our model
decreases to 0.859 (entity I) and 0.854 (entity II). When
entity-level representation is removed, the PCC of our model
decreases to 0.858. When both types of representations are
removed, the PCC of our model further decreases to 0.848. The
results indicate that both character-level representation and
entity-level representation are supplementary to BERT.
Although the improvements individually from entity I and
character-level text snippet representation are more remarkable
than entity II, the improvement from the combination of entity

I and character-level representation is much smaller than the
combination of entity II and character-level representation. It
is because both character-level representation and entity I come
from text snippets, whereas entity II comes from external KG.
The diversity between character-level representation and entity
II is much larger than that between character-level representation
and entity I. It is interesting that our model is not further
improved when both entity I and entity II are considered in our
model at the same time, which may be also because of the
diversity.

Moreover, we investigate the effect of the domain-specific
pretrained BERT models [45,46] on our model. We replace the
pretrained BERT model in the general domain, [BERT-Base,
Uncased] [44], by the pretrained BERT model in the clinical
domain [45] to obtain a new model. The highest PCC of the
new model is 0.872, which is slightly better than our previous
model, indicating that the domain-specific pretrained BERT
model is beneficial to our model.
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Table 3. Pearson correlation coefficient of our model on the test set.

PCCaModel and setting

Our model

0.861Entity I

0.868bEntity II

0.862Entity I + Entity II

Without character -level text snippet representation

0.859Entity I

0.854Entity II

0.858Without entity-level representation

0.848Without both

aPCC: Pearson correlation coefficient.
bThe highest PCC.

Discussion

Error Analysis
Although the proposed model achieves competitive performance,
there are also some errors. To analyze these errors, we look into
samples for which the difference between the predicted STS
score and gold-standard similarity score is greater than 1.0 and
find that the main errors can be classified into 2 types.

The first type of error is related to polarity of clinical text
snippets as our model is insensitive to positive and negative
words. For example, as shown in Table 4, because both clinical
text snippets in example 1 depict coughing up, their STS score
predicted by our model is 2.5, but their gold-standard STS score
is 1.0 as the polarity of the first text snippet is positive, whereas
that of the second text snippet is negative. The second type of
error is related to prescriptions that include medication names,
usages, and dosages. For example, the gold-standard STS score
of example 2 in Table 4 is 1.0 as the medications in the 2 text

snippets are completely different, but the STS score of the
example predicted by our model is 2.5 as some other words are
the same in the 2 text snippets. Just because our model cannot
extract medical information comprehensively, there are lots of
errors of the second type. For further improvement, we need a
comprehensive information extraction module to extract polarity
information and medications with usage and dosage attributes
besides the current 9 kinds of clinical entities. A possible way
is to integrate the existing tools specifically for polarity
information extraction (such as SenticNet [47]) or medication
extraction (such as MedEx [48]) into our model. We also find
that the scores of mispredictions are close to 2.5, which may be
caused by the different STS score distributions of the training
and test sets. As shown in Figure 3, the STS scores of most
sentence pairs in the training set concentrate in [2.5, 3.5],
whereas those in the test set concentrate in [0.5, 1.5]. The
difference is remarkable. It is reasonable to obtain the STS
scores of mispredictions around the average score of the training
set.

Table 4. Examples of errors on the test set.

ExampleNumber

1 • Sentence 1:respiratory: positive for coughing up mucus (phlegm), dyspnea and wheezing.
• Sentence 2: negative for coughing up blood and dry cough.
• Gold-standard: 1.0
• Predicted: 2.5

2 • Sentence 1: ibuprofen [motrin] 800 mg tablet 1 tablet by mouth four time a day as needed.
• Sentence 2: lisinopril 10 mg tablet 1 tablet by mouth one time daily.
• Gold-standard: 1.0
• Predict: 2.4
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Figure 3. Similarity interval distribution in the training and test data sets.

Effect of Entity-Level Representation
Although the results in Table 3 show that any one of the 2
entity-level representations enhances the BERT-based model,
some limitations also exist. In the case of entity I, we only
consider type semantic information, but no entity semantic
information. In the case of entity II, only about 20% (220/1080)
of clinical entities recognized by cTAKES [42] can be mapped
to Mesh via dictionary look-up. There are 2 directions for
improvement: (1) introduce entity semantic information into
entity I, and (2) improve entity mapping performance in entity
II and find a larger KG instead of Mesh.

Conclusions
In this paper, we propose an enhanced BERT-based model for
ClinicalSTS by introducing a character-level representation and
an entity-level representation. Experiments on the 2019
n2c2/OHNLP track on ClinicalSTS in 2019 indicate that both
the character-level representation and the entity-level
representation can enhance the BERT-based ClinicalSTS model,
and our enhanced BERT-based model achieves competitive
performance with other state-of-the-art models. In addition,
domain-specific pretrained BERT models are better than general
pretrained BERT models.
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Abstract

Background: Electronic health records store large amounts of patient clinical data. Despite efforts to structure patient data,
clinical notes containing rich patient information remain stored as free text, greatly limiting its exploitation. This includes family
history, which is highly relevant for applications such as diagnosis and prognosis.

Objective: This study aims to develop automatic strategies for annotating family history information in clinical notes, focusing
not only on the extraction of relevant entities such as family members and disease mentions but also on the extraction of relations
between the identified entities.

Methods: This study extends a previous contribution for the 2019 track on family history extraction from national natural
language processing clinical challenges by improving a previously developed rule-based engine, using deep learning (DL)
approaches for the extraction of entities from clinical notes, and combining both approaches in a hybrid end-to-end system capable
of successfully extracting family member and observation entities and the relations between those entities. Furthermore, this
study analyzes the impact of factors such as the use of external resources and different types of embeddings in the performance
of DL models.

Results: The approaches developed were evaluated in a first task regarding entity extraction and in a second task concerning
relation extraction. The proposed DL approach improved observation extraction, obtaining F1 scores of 0.8688 and 0.7907 in the
training and test sets, respectively. However, DL approaches have limitations in the extraction of family members. The rule-based
engine was adjusted to have higher generalizing capability and achieved family member extraction F1 scores of 0.8823 and 0.8092
in the training and test sets, respectively. The resulting hybrid system obtained F1 scores of 0.8743 and 0.7979 in the training and
test sets, respectively. For the second task, the original evaluator was adjusted to perform a more exact evaluation than the original
one, and the hybrid system obtained F1 scores of 0.6480 and 0.5082 in the training and test sets, respectively.

Conclusions: We evaluated the impact of several factors on the performance of DL models, and we present an end-to-end
system for extracting family history information from clinical notes, which can help in the structuring and reuse of this type of
information. The final hybrid solution is provided in a publicly available code repository.

(JMIR Med Inform 2020;8(12):e22898)   doi:10.2196/22898

KEYWORDS

natural language processing; rule-based; deep learning; contextual embeddings; word embeddings; family medical history;
information extraction; clinical notes; electronic health record
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Introduction

Background
For many years, the rapid progress in technology has continually
pushed the field of medicine forward, striving for the
improvement of health care quality. Novel tools provide new
possibilities, such as access to new types of information (eg,
medical imaging and genome sequencing) and larger amounts
of data, along with associated challenges such as how to store
and organize the resulting vast amounts of multimodal medical
information. The electronic health record (EHR) solves this by
providing an electronic infrastructure for storing structured and
unstructured information generated throughout time [1], thus
maintaining the patient trajectories by maintaining a longitudinal
view over the medical history of patients. Such data can then
be explored for applications such as cohort selection [2] or to
provide medical entities with clinical decision support [3-5].

Despite being harder to explore, unstructured data can contain
relevant information that is not obtainable elsewhere [6], which
is particularly evident in clinical notes, where medical narratives
allow for more accurate and complete descriptions of medical
situations [7]. As there is significant interest in exploring and
reusing information from clinical notes, a possible approach is
to process free text and extract relevant information that can be
stored as structured data [7]. This process has historically been
manual, consisting of having clinical experts review clinical
notes in search for relevant information. However, heavy
reliance on a manual component greatly limits the potential and
usability of this process as it cannot scale with the increasing
volumes of information [5].

Another possible solution for these cost and scalability issues
is the development of automatic systems capable of annotating
and extracting relevant content from clinical notes, which has
led to greater research efforts in the field of clinical natural
language processing (NLP) in the past years. These efforts have
led to the creation of international challenges that provide
appropriate data sets and enable performance benchmarking of
new methods and solutions. The importance of these challenges
is widely acknowledged because of the current lack of adequate
resources [8], which impedes the development of more advanced
solutions [5]. As such, despite the acknowledged interest and
value of automated solutions, their development is very complex
as it must cope with the challenging nature of working with
clinical free text and with the lack of publicly available
resources.

Owing to the flexible nature of clinical notes, developed
solutions can target the extraction of different types of
information from clinical narratives. This process of extracting
information is usually split in named entity recognition (NER),
named entity normalization (NEN), and relation extraction (RE).
NER has the objective of detecting entities of interest in the
text, such as diseases or family relatives, whereas NEN is
responsible for mapping these entities to normalized concepts
in coding standards, such as systematized nomenclature of
medicine clinical terms [9] or RxNorm [10] in the case of
medical text. RE is focused on detecting relationships between
the entities (eg, detecting connections between drugs and adverse

drug events) and is very important as it allows the leap from
concept extraction to concept understanding [5].

This study focuses on the extraction of the family history
component from clinical notes, which can provide insight into
disease susceptibility and is important for the prevention,
diagnosis, and treatment of specific diseases [11,12]. A
demonstration example is the work by Wang et al [13] in which
they used a text corpus containing 3 million clinical notes to
analyze the patient family history, focusing on family members,
medical problems, and their associations, and discovered (1)
considerable compliance between positive and negative medical
issues mentioned in the reports considering the diagnosis and
family history and (2) the existence of medical problems a
decade before the diagnosis dates of the determined problem.
This study extends a previous contribution [14] by exploring
deep learning (DL) approaches for the detection of family
history entities in clinical notes and integrating this component
in an improved version of the previously developed solution,
creating a hybrid system for extracting entities and relations
from family history information. The final hybrid solution is
provided in a publicly available code repository [15].

The main contributions of this study are as follows:

• This study proposes a strategy to automatically annotate
large amounts of EHRs, allowing quick detection of
comorbidities with family relations.

• We evaluate the impact of using different DL architectures
and embeddings in clinical information extraction.

• We improved the family history information extraction
pipeline by combining automatic concept annotations with
DL and rule-based architectures to discover entities and
relations in the clinical notes.

Related Work
This study is focused on performing NER on clinical notes to
extract family history information, namely, family members
and observations such as disease mentions, and on detecting
associations between detected entities. Correctly detecting
family relatives in clinical notes is far from a straightforward
task as the following situations must be considered: (1) notes
frequently have cascaded information regarding family relatives
(eg, “The patient’s grandmother had cancer in her late 60s [she
had a cousin who died from cancer] but his grandfather has no
history of cancer.”); (2) notes can mention family members with
no blood relations, such as the partners of the patients and their
relatives; or (3) the relationship of the family member may not
be directly expressed. The existence of such situations where
the relationship is complex to understand because of the
numerous kinship degrees can eventually lead computational
systems to lose context, failing to correctly determine the
relationship between the detected entity and the patient. In
contrast, disease observations can also be troublesome to detect,
as, for instance, they can be mentioned as a sequence of several
complex terms or even by disjoint mentions.

Existing solutions typically follow rule-based or machine
learning-based approaches; however, it is also possible to
combine both approaches in hybrid systems. Furthermore, owing
to the reckoned potential of DL approaches in the medical field
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[16], recent years have shown the emergence of DL-based
solutions [5].

For many years, rule-based models were the preferred
architecture when developing solutions for extracting family
history information, supported by the rationale that, in theory,
a good set of rules can manage good concept coverage, thus
producing excellent results. Goryachev et al [17] proposed a
rule-based algorithm and demonstrated the success of this kind
of architecture, whereas Friedlin et al [18] used a rule-based
model to extract and code clinical data from clinical reports.

With the growing interest in the development of NLP solutions,
generic frameworks such as unstructured information
management application [19] and general architecture for text
engineering [20] were created to provide support in the
development of information extraction systems, from which
popular solutions such as clinical text analysis and knowledge
extraction system were derived [21]. Despite aiming to offer
modular flexible processing workflows that can be reused, these
frameworks have the drawback of requiring a deep
understanding of the tools given their high-level abstractions.

In contrast with the previous frameworks, toolkits were
developed with the goal of providing a set of stand-alone tools
that can be easily combined in a processing pipeline. Examples
of popular toolkits are the Natural Language Toolkit (NLTK)
[22], Apache OpenNLP [23], Stanford CoreNLP [24], and
Clinical Language Annotation, Modelling and Processing [25].
Despite the interest in these toolkits, they were developed
considering general text instead of biomedical or clinical text,
which commonly require specialized tools. Neji was developed
to tackle this limitation, providing a modular architecture that
integrates specialized modules for biomedical NLP. Thus, it
combines the benefits of general frameworks and toolkits with
those of specialized tools [26]. These modules can apply
different methodologies, such as rule-based models, dictionary
matching, and machine learning models. Moreover, Neji
provides configurable web services that enable easy integration
of its annotation capabilities in external tools [27].

More recently, with the success of DL approaches in text
processing problems, DL is being adopted in solutions designed
for biomedical and clinical text. One of the key areas where DL
has impacted is representation learning, for instance, with the
creation of dense representations such as word embeddings.
These can be fine-tuned to specific domains and can be easily
integrated in other learning algorithms, helping them achieve
improved performances in NLP tasks [28]. BioWordVec is an
example of publicly available biomedical and clinical word
embeddings [29]. However, these embeddings still have the
limitation of not considering context, which results in the same
word having the same representation when used in completely
different contexts (eg, suits in your offer suits our needs and he
always wears suits). This was addressed by the development
of contextual embeddings such as Embeddings from Language
Models [30] and bidirectional encoder representations from
transformers (BERT) [31]. These embeddings can also be

fine-tuned to specific domains, resulting in the creation of
variations such as BioBERT [32] and clinicalBERT [33].

Embeddings are widely used in DL solutions because the
resulting dense representations can be easily explored by various
DL model architectures. One particular architecture that achieves
state-of-the-art results in biomedical and clinical text problems
such as NER is the bidirectional long short-term memory
(BiLSTM) network coupled with conditional random fields
(CRF). Dai et al [34] compared the use of word embeddings
(word2vec) and BERT for NER in clinical notes, with a
BiLSTM-CRF model, and demonstrated better performance
when using BERT to represent clinical text. Li et al [35] used
character embeddings, medical dictionaries, and part-of-speech
features in a BiLSTM-Att-CRF model, which consists of a
BiLSTM with an attention layer bridging the BiLSTM and CRF.
This architecture was used to perform clinical NER in EHR
notes, and it obtained interesting results, demonstrating the
potential of attention mechanisms [35]. More recently, Shi et
al [36] used a deep joint learning architecture based on
BiLSTMs with word and part-of-speech embeddings for
extracting family history information, such as entities and
relations from clinical text. Although the demonstrated success
of DL approaches at extracting entities and relations from
clinical notes, particularly when using BiLSTM-CRF derived
architectures, has led to a rapid growth in such solutions, these
frequently fail to provide system implementations that hinder
their adoption and reproducibility.

Methods

Data Set
This work was originally developed under the scope of the 2019
national NLP clinical challenges (n2c2)/open health NLP track
on family history extraction, which had the objective of
extracting family history information from EHR clinical notes
[37]. This challenge track was split into 2 subtasks: the first one
being oriented to named entities and the second one focusing
on extracting relations between those entities. More detailed
descriptions of each subtask are provided in this section. The
second subtask directly depended on the first one, as the
challenge had the objective of evaluating developed systems as
end-to-end family history summarization solutions.

Training and test data sets were provided by challenge
organizers. The training data set consisted of 99 unannotated
clinical notes, manual annotations of entities and relations for
each clinical note, and a gold standard file with eligible entities
and relations for the full training set; the test data set consisted
of 117 unannotated clinical notes (a gold standard file with
eligible entities and relations for the full test set was only
provided after the challenge terminated). Both gold standard
files contained the annotations for each document without
providing any additional information (eg, annotation span or
respective line in document). More detailed statistics of data
sets are provided in Table 1.
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Table 1. Detailed data set statistics.

TotalTestTrainingType

216 (100)117 (54.2)99 (45.8)Clinical notes, n (%)

Annotated entities, n (%)

1250 (100)583 (46.6)667 (53.4)Family member

1836 (100)906 (49.4)930 (50.7)Observation

Annotated relations, n (%)

725 (100)349 (48.1)376 (51.9)Family member: living status

1495 (100)755 (50.50)740 (49.50)Family member: observation

The first subtask had the objective of identifying family member
entities and disease mentions in the clinical notes. When
extracting family member entities, it was required to extract
both the family relationship (eg, son, father, or uncle) and the
family side (eg, maternal). The list of relationships considered
was provided by organizers and comprised the following: father,
mother, parent, brother, sister, son, daughter, child, grandfather,
grandmother, grandparent, cousin, sibling, uncle, and aunt. Any
relationship outside the provided list (eg, nephew or great
grandparent) should be considered invalid. Moreover, clinical
notes could contain family member mentions related to the
patient and to the patient’s partner. As the challenge was focused
on the patient, all partner-associated family relationships should
be discarded.

The second subtask focused on extracting relations between the
previously extracted entities and considered 2 types of relations.
The first type involved detecting living status mentions, which

should be used to assign a living status score to the respective
family member entity. This living status score was computed
by multiplying the properties of being alive and healthy, where
each property could have a value from 0 to 2 (0: no, 1: not
applicable, and 2: yes). The second type of relations involved
assigning relations between detected disease mentions and the
corresponding family members, taking into consideration if the
observation was negated or not (eg, nonnegated: the patient has
diabetes and negated: there are no reports of cancer).

Shortest Dependency Path and Coreference Resolution
The first approach, which was originally used in the challenge
submission, combined handcrafted rules and dictionary matching
with dependency parsing and coreference resolution. First, a
preprocessing step based on Stanford CoreNLP dependency
parsing and coreference resolution annotators was applied to
all documents. Figure 1 illustrates the result of applying these
annotators to an example text fragment.

Figure 1. Illustrative example of dependency parsing and coreference resolution from Stanford CoreNLP. amod: adjectival modifier; cop: copula;
coref: coreference; det: determiner; DT: determiner; JJ: adjective; nmod: nominal modifier; NN: noun; nsubj: nominal subject, obj: object; PRP$:
possessive pronoun; VBZ: verb third person singular present.

For the first subtask, the process of entity extraction was divided
into 2 subproblems targeting family members and disease
mention extraction separately. To extract family member
entities, a lexicon was compiled that included all family
relationships considered for the challenge, expanded with lexical
variants and plural forms, along with others identified by
examining an extended family tree, such as partner, great
grandmother, nephew, and half-uncle. Although the latter family
members should not be considered in the final evaluation, their
inclusion was necessary at this stage to avoid erroneous
associations with other family members during the following
step.

The next step consisted of coreference resolution, for which a
coreference graph was created to add the corresponding family
member annotations to coreferencing pronouns. Considering
the example presented in Figure 1, the family member

annotation assigned to the mention wife is carried over to the
pronoun her based on the coreference relation. In the example,
this also means that the maternal aunt mention gets associated
to the wife family member. In addition, a process of family
relationship resolution was performed by applying a set of rules
to map extracted mentions to the corresponding family link,
with the resulting family link inheriting the family side if it had
been extracted. In the same example sentence, the aunt’s son is
mapped to cousin, and this carries over the family side mention,
leading to the final annotation of (wife’s) maternal cousin.
Finally, the resulting list of extracted family members was
filtered to remove family links other than those targeted in the
challenge.

The process of extracting disease mentions consisted of a
simpler pipeline, in which a dictionary was first compiled from
the unified medical language system Metathesaurus [38]. This
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dictionary consisted of a filtered version of the Metathesaurus,
containing entries only from the Anatomy and Disorders
semantic groups, and was used to configure a Neji annotation
service. Once the service was set up, all documents were
annotated through the web service and a list of extracted
mentions per document was created. As this annotation
mechanism could introduce many irrelevant entries (false
positives) resulting in a lower precision, a false positive list was
created by automatically annotating the corpus provided in the
SemEval task on Analysis of Clinical Text [39] and identifying
false positives against the gold standard annotation. The
resulting false positive list was then used to filter the disease
mentions extracted in the n2c2 subtask.

For the second subtask, the objective was to extract 2 types of
relations for the previously obtained entities. First, a small
lexicon regarding living status was extracted from the training
corpus, resulting in the following list: alive, alive and well,
dead, deceased, died, doing well, generally healthy, good
general health, good health, healthy, living, living and well,
otherwise healthy, passed away, stillborn, well, and without
problems. This lexicon was used to extract living status mentions
from the documents, which were then mapped into an integer
value using the scale previously described in the data set
subsection. Finally, the dependency graph created in the first
subtask was used to extract the shortest dependency path that
associated each disease mention/living status with a family
member. This approach disregarded the negation component in
observations; therefore, all disease-family member relations
were considered nonnegated.

Rule-Based Engine
The second approach used in the official submissions for the
n2c2 challenge track followed a different strategy and consisted
of a rule-based engine. This solution involved the creation of
rules for family member recognition and dictionaries for
observation extraction and processed both subtasks as an
end-to-end system outputting the required submission files for
both subtasks. After the challenge contribution, this approach
was adapted and improved as described further in this section.

The engine processed each sentence in a document sequentially,
aiming to link sentences when one of the system processing
flows did not detect family members in a sentence. Therefore,
using this approach, we created a system that tried to answer
the following 3 questions:

1. Who is the subject of the sentence?
2. Which observations are in the sentence?
3. Is the subject alive?

Although answering these 3 questions does not entirely solve
the proposed problem, managing to correctly answer them
simplifies the process of establishing relations between extracted
concepts. The first step in the processing flow splits the
document into sentences and removes a considerable set of
words. This set was composed of the most common English
verbs and the most common conjugations, several adjectives,
and names. This procedure preserved relevant words and
reduced the distance between words that allowed the correct
identification of family members and their respective family

side. For instance, for a rule-based system, it is easier to find
the family member cousin in the cleaned sentence patient’s
uncle son than in the original sentence the patients’ uncle has
one son. In this example, this could be erroneously processed
as a sentence where the primary subject is the patient’s uncle,
instead of the cousin.

After cleaning the sentences, the system applied rules that enable
the identification of the subject in the most trivial cases, using
exact matching. When no subject was identified, the system
processed this using another component, with more complex
rules. In this case, rules have more properties such as a set of
words that should exist before and after the detected family
member, and if this should be discarded or not. These properties
enable the generation of very precise rules, which, if used, can
increase the potential of the system for the specifications of the
challenge at the cost of reducing its reuse in other scenarios (ie,
trade-off specificity-generalizing capability).

When no family member was detected with the previous rules,
the system executed another component that tried to identify if
the sentence currently being processed was related to the
previous sentence. If the sentence being processed was the first
sentence in the document, the system considered by default that
it was related to the patient. Finally, the system ran a last
component, which was always executed, to discover whether
the sentence was related to the patient or the patient’s partner.
If the sentence was associated with the partner, the system
discarded the family member entity as required by the challenge
guidelines.

Observation extraction consisted of a simpler process than that
of family member detection. However, it followed the same
principles and used the initial preprocessing for cleaning a set
of words. For the challenge, we created a vocabulary based on
the observations annotated in the training set and used it in the
test set. Simultaneously, the system applied rules to map the
detected observation to the identified subject in the sentence.
When it was not possible to identify a relation in a sentence,
the system did not discard the extracted observations as they
were still important for the first subtask.

Living status identification was performed using 2 sets of rules:
one targeting deceased subjects and the other targeting healthy
and alive subjects. Owing to time constraints, we did not try to
identify cases where subjects were alive but not healthy because
based on a statistical analysis, mentions for this group of entries
represented only 12.2% (46/376) of the living status entries in
the gold standard of the training set.

The rule-based engine pipeline processes documents individually
and sentence by sentence following a sequential flow. In this
pipeline, the detected words have different levels of importance.
For instance, terms like partner and patient coexisting in the
same sentences are weighted differently. These weights were
considered by the complementary rules during subject
identification in a sentence. Disambiguation was performed
using a set of verbs and specific words in situations where it
was not clear whether the sentence was related to the patient,
the patient's relatives, the patient’s partner, or the partner's
relatives. Figure 2 shows an excerpt of a clinical note that

JMIR Med Inform 2020 | vol. 8 | iss. 12 |e22898 | p.237http://medinform.jmir.org/2020/12/e22898/
(page number not for citation purposes)

Silva et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


illustrates clearly how the system processes original sentences and what is the result of this processing.

Figure 2. The 3 left concepts represent the main points that the system tries to identify in the text on the right. Highlighted on the right are relevant
words for the system to be able to make decisions. Auxiliary words that help identify the subject are represented in green. The words used to identify
if the relatives are related to the patient or the partner are highlighted in purple. Blue represents annotated family members, and yellow is used for
diseases. Red is used to highlight words concerning subject living status.

This engine managed good results in the annotation of the family
members of the patient. However, the methodology used to
extract observations was not the best, regardless of possible
improvements to produce more accurate results. Therefore, in
a postchallenge contribution, we removed the components for
detecting observations and improved components responsible
for extracting the family members of the patient and their living
status. The living status component was reused with small
adjustments to be more generic and compatible with different
data sets, yet maintaining the same philosophy of trying only
to identify whether the patient is healthy and alive or dead.

The family members annotator was rebuilt following the initial
principles but without specific sets of rules that were generated
from the training set of the challenge (ie, to reduce overfitting).
The system pipeline is presented in a scheme (Figure 3)
representing the system pipeline and how components are
interconnected. This flow starts by trying to identify if the
subject in the sentence is the patient. If not identified, the
previously described complex rules are executed. The third
component performs exact matching over a clean sentence for
trivial annotations, and the output of these components is filtered
to disambiguate relations between family members and to
remove any relations that should be discarded (eg, to adhere to
challenge evaluation guidelines).

Figure 3. Overview of the processing workflow responsible for family members detection, for the rule-based engine.

In the complex rules component, rules follow a 6-part structure
where it is defined the keyword that triggers the rule (eg, father
or grandparent), and a list of terms that must appear before or
after this keyword are defined. Next, this structure contains a
flag that indicates whether the annotated relative must be
considered or discarded and indicates which is the detected
relative. As an example, if the keyword grandparents is detected
in the clean text, a rule can identify it as a paternal grandparent
if there exists the set of words patients and paternal, in this
order, preceding the keyword.

Regarding the disambiguation component, the system contains
a set of rules composed of 4 elements. These rules have 2
relatives and a mapping to the real relation of this subject to the
patient. As an example, if the component annotates and
processes the relatives father and brother, the system will map
them to paternal uncle and return the corrected annotation.
Besides the above-mentioned examples, the rule-based system
contains a more extensive list of rules that were used for the
processes of partial and exact match search.
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DL for Entity Extraction
Owing to the acknowledged potential and success of recent DL
solutions in clinical text problems, we extended the original
contribution with a novel approach based on DL. The
implementation of this solution considered several aspects,
namely:

• Following the trend in state-of-the-art solutions, we
explored the widely used attention-based BiLSTM-CRF
with the attention mechanism placed between the BiLSTM
and CRF layers [35] and compared it with a simple linear
classifier (with softmax) to evaluate the impact of model
architecture in downstream tasks.

• Similar to the approach presented by Yang et al [40], an
additional task regarding named entity discovery was

integrated with the objective of improving model perception
of unknown entities. This downstream task was set as
optional; thus, it is possible to train models for NER and
for NER and discovery.

• Different types of embeddings were explored for clinical
text representation to assess their impact on model
performance. BioWordVec word embeddings and
clinicalBERT contextual embeddings were used.

• To evaluate the impact of using external resources in model
development, Neji annotations were integrated into the
input to the model.

A schematized view of the model architecture used in this study
(attention-based BiLSTM-CRF) is presented in Figure 4.

Figure 4. Schematic diagram of the general deep learning model architecture used in this study, showing the 2 possible downstream tasks. The entity
recognition task is always executed, whereas the entity discovery task was added as optional to enable model development with and without it. BiLSTM:
bidirectional long short term memory; B-Obs: beginning observation; B-PFM: beginning patient family member; CRF: conditional random field; I-Obs:
inside observation; n: number of tokens in tokenized sentence; O: outside.

The named entity discovery downstream task consists of a binary
classification problem where the system classifies whether an
input token is part of an entity or not, disregarding the respective
class (ie, if it is an observation or family member mention).
This optional task was integrated with the objective of making
the model consider the trade-off between discovering more
entities and correctly identifying them. When enabled, it is
reflected in model training during backpropagation, with the

total loss resulting from a linear combination between the losses
of both downstream tasks.

Before training any model, it was necessary to preprocess the
data set. Text preprocessing began by splitting each document
in sentences using the sentence splitter from NLTK, followed
by tokenization. However, 2 different tokenization methods had
to be used because word and contextual embeddings take
different tokenizing approaches: the NLTK word tokenizer was
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used for word embeddings, and the BERT tokenizer was used
for contextual embeddings. The resulting tokenized sentences
were tagged using the BIO (beginning, inside, and outside)
tagging scheme. Finally, to assess the impact of using external
resources, all documents were annotated using Neji, which uses
standard vocabularies to detect entity mentions in the input text.
Neji annotations, consisting of text spans and entity classes,
were then mapped to the tokens in the corresponding sentence,
with each token being assigned an integer value similar to the
BIO scheme: 0 for tokens not annotated by Neji, 1 for the first

token in an annotation, and 2 for the following tokens. The
resulting lists of classes were normalized and concatenated to
the embedding representations and then forwarded through the
BiLSTM layer.

Model training and evaluation were performed using 5-fold
cross validation. The Adam optimizer was used, and models
were trained with early stopping (the patience parameter can
be adjusted). Each training epoch consisted of 100 iterations,
during which the training partition was randomly sampled. A
detailed list of hyperparameters is provided in Table 2.

Table 2. List of hyperparameters used for deep learning model training.

ValueHyperparameters

200Dimension of BioWordVec embeddings

768Dimension of clinicalBERTa embeddings

256BiLSTMb hidden size

2Number of attention heads

100Epochs

5Patience

100Iterations per epoch

0.5Dropout rate

0.001Learning rate

32Batch size

2Epochs for training BioWordVec embeddings

aclinicalBERT: clinical bidirectional encoder representations from transformers.
bBiLSTM: bidirectional long short-term memory.

In addition, because contextual embeddings provide additional
information when compared with word embeddings, we enabled
the training of word embeddings for a number of epochs at the
beginning of model training, after which the embedding layer
was frozen. Finally, as contextual embeddings can partition
words in various smaller tokens (eg, carcinoma is split in
car,##cin, and ##oma), the model could classify only parts of
a word as entities (eg, ##cin and ##oma classified as entities
and car as nonentity), resulting in incomplete entities and poor
results. Therefore, we added a reconstruction mechanism where
the full word is considered when only a part of it is classified
as an entity.

The DL approach obtained interesting results in observation
extraction but poor performance in family member detection,
which goes in contrast with the rule-based approach. As such,

we created a final hybrid solution that integrates the DL
approach as an observation extraction module in the rule-based
engine.

Results

The original contribution consisted of the development of 2
different approaches for entity and RE: one using shortest
dependency paths combined with coreference resolution and
another using a rule-based engine. These approaches were
validated in the n2c2 challenge on family history extraction.
Results obtained in the test data set (Table 3) showed that
overall, the first approach performed better in the entity
extraction subtask, whereas the rule-based approach performed
better in the RE subtask.
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Table 3. Original overall test results for the 2 national natural language processing clinical challenges subtasks; approach 1: shortest dependency path
and coreference resolution and approach 2: rule-based engine.

F1 scoreRecallPrecisionSubtasks and approach

Subtask 1

0.75100.88920.6501Approach 1

0.71800.62110.8507Approach 2

Subtask 2

0.51980.50050.5406Approach 1

0.62210.59920.6468Approach 2

As the results obtained during the challenge had margins for
improvement, and DL-based approaches dominated system
submissions in the challenge, we opted to experiment with DL
to improve the previous contribution. For the sake of simplicity,
tables presenting DL-related results only contain F1 score values.
However, more detailed results (including precision and recall
metrics) are presented in Multimedia Appendix 1.

For the DL-based approach, we started by testing a simple model
configuration composed of a linear layer and a softmax function,
using contextual embeddings for clinical text representation
(Table 4). This simple model served as a reference point to
assess the potential of using contextual embeddings to represent
clinical text.

Table 4. Cross validation results on the training data set (5-fold cross validation) for subtask 1 using a deep learning model composed of clinical
bidirectional encoder representations from transformers embeddings, a linear layer, and softmax function, with and without token reconstruction. For
simplicity purposes, only F1 scores are presented.

OverallObservationsFamily memberReconstruction approach and model configuration

No reconstruction

0.56470.66200.3071Baseline

0.52040.63970.1764Baseline+EDa

0.59240.70190.3088Baseline+Neji

0.55230.68410.1840Baseline+ED+Neji

Reconstruction

0.62410.74440.3071Baseline

0.57530.71420.1764Baseline+ED

0.64180.77120.3088Baseline+Neji

0.60700.75930.1840Baseline+ED+Neji

aED: entity discovery.

After testing with a simple architecture and evaluating the
impact of adding an entity discovery downstream task and
external resources to the model, we proceeded to the more
complex architecture of the attention-based BiLSTM-CRF,
which has been widely explored in the state of the art. This
architecture was first tested using contextual embeddings for
text representation to assess the impact of model capacity on
the resulting model performance (Table 5). After observing the

improvements resulting from the change in model architecture,
we then evaluated the influence of the embeddings used in the
final system results by training the same architecture with word
embeddings (Table 5). As word embeddings capture less
information than their contextual counterpart, we integrated the
possibility of fine-tuning word embeddings for a number of
epochs at the beginning of the training process, freezing the
embeddings after that point.
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Table 5. Cross validation results on the training data set (5-fold cross validation) for subtask 1 using the attention-based bidirectional long short-term
memory network coupled with conditional random fields with different types of embeddings. When using word embeddings, some configurations
enabled embedding fine-tuning for 2 epochs. For simplicity purposes, only F1 scores are presented.

OverallObservationsFamily memberEmbeddings type and model configuration

clinicalBERTa

0.71940.85960.4103Baseline

0.70230.84810.3788Baseline+EDb

0.69080.84780.3545Baseline+Neji

0.70810.86880.3485Baseline+ED+Neji

BioWordVec

0.73170.81400.5921Baseline

0.76270.82760.6553Baseline+ED

0.75130.82850.6166Baseline+ETc

0.75790.83670.6219Baseline+ED+ET

0.80360.85290.7222Baseline+ED+Neji

0.80920.85870.7266Baseline+ED+ET+Neji

aclinicalBERT: clinical bidirectional encoder representations from transformers.
bED: entity discovery.
cET: embeddings training.

Although the use of a more complex model architecture provided
promising results, there was a common trend among all used
models, which was the fact that these approaches performed
much better at extracting observations than family members.

Considering the fact that the rule-based engine struggled in
observation extraction while obtaining good performance in

family member extraction [14] and that it performed better in
the RE subtask than the shortest dependency path approach, we
created a hybrid system that complements the rule-based engine
by adding a DL module responsible for extracting disease
mentions. Table 6 presents the results obtained with the hybrid
solution in the test data set.

Table 6. Test results for both subtasks using the final hybrid solution: rule-based engine combined with deep learning module for observation extraction.

F1 scoreRecallPrecisionSubtask and annotation type

Subtask 1

0.80920.83070.7887Family members

0.79070.83320.7523Observations

0.79790.83220.7662Overall

Subtask 2

0.62480.64620.5964Living status

0.44990.43710.4635Observations

0.50820.50630.5100Overall

Discussion

Principal Findings

DL for Entity Extraction
Word embeddings have been the go-to method for text
representation in the past years. However, contextual
embeddings have made a big impact in recent years as they
consider positional information and context in the resulting
representation, which provides them with higher disambiguation
capability than that of word embeddings. As such, our initial

tests were performed using publicly available contextual
embeddings fine-tuned on biomedical and clinical corpora.

First, we analyzed the impact of reconstructing annotated tokens
on the resulting performance. Tests with a simple model (Table
4) showed improved performance in every model configuration
when using token reconstruction. However, it is noticeable that
only observation extraction benefited from this process, with
family member extraction maintaining its F1 scores. This is
explained by the fact that disease mentions can be very specific
and more complex when compared with family members, for
instance, the word mother is tokenized by the contextual
embedding tokenizers as mother, whereas carcinoma is
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tokenized as car, ##cin, and ##oma. Owing to this different
word decomposition, the DL model can classify only parts of
the word as an entity, resulting in incomplete entities. The
reconstruction procedure solved this issue by adding the missing
parts to these entities. Tests with the simple model also
demonstrated that the use of external resources such as Neji
annotations can help improve entity extraction, whereas adding
an additional downstream task regarding entity discovery led
to worse results with this model. Finally, it was clear that the
model managed to extract disease mentions from clinical notes
but failed in the detection of family members, leading to lower
overall F1 scores.

After performing the initial tests with a simple model and
verifying the importance of token reconstruction when using
contextual embeddings, we moved to the more complex
architecture of the attention-based BiLSTM-CRF (Table 5). To
be able to compare it with the previous model, we began by
testing the new model with contextual embeddings. Starting
with baseline models, it is possible to see that changing to the
higher capacity model increased F1 scores by approximately
0.1 across all categories. Next, it is possible to observe that
complementing the baseline model with the entity discovery
task and Neji resources resulted in worse overall F1 scores;
nonetheless, their combination led to an increase in the F1 score
for observation extraction (0.8596 to 0.8688).

Finally, to evaluate the influence of using different types of
embeddings to represent clinical text, we tested the same model
architecture with publicly available word embeddings fine-tuned
on biomedical and clinical corpora. Comparing baseline models,
word embeddings led to a higher overall performance (0.7317
vs 0.7194), lowering the observation extraction F1 score but
improving that of family member extraction. Adding extra
mechanisms such as external annotations and entity discovery
progressively increased model performance, with the final model
showing a much higher overall F1 score compared with the best
contextual embedding configuration (0.8092 vs 0.7194). This
higher overall performance was caused by a significant increase
in the family member F1 score (0.4103 to 0.7266), although
observation extraction decreased from 0.8688 to 0.8587 F1

score.

The previous results demonstrated that despite the increasing
focus on contextual embeddings, word embeddings can obtain
good results when using state-of-the-art model architectures. In
spite of its much better performance in family member
extraction, the word embedding model still obtained subpar
performance when compared with the rule-based engine in the
same task (0.7266 vs 0.8823). As the objective was to integrate
the best approach for observation extraction in the rule-based
engine, and contextual embeddings obtained the upper hand in
that aspect (0.8688 to 0.8587), we integrated the attention-based
BiLSTM-CRF with clinicalBERT embeddings in the hybrid
system.

Hybrid System
The original rule-based system was developed focusing on the
n2c2 challenge and contained sets of rules that were adjusted
to the training set. These rules were removed after the challenge,

whereas other existing rules were carefully adjusted to create a
better system that retained its generalizing capabilities.

With the objective of exploring the best developed approaches
for each component of the subtasks, we based the final system
on the improved rule-based engine and substituted its weaker
component (observation extraction) by a DL-based module.
The result was a hybrid system capable of extracting family
members and observations along with their respective relations.

As experienced in the original contribution, the results obtained
in the test set showed a decrease in performance (Table 6),
presenting an overall F1 score of 0.7979 in subtask 1 and an
overall F1 score of 0.5082 in subtask 2. For the first subtask,
the hybrid system showed an improvement from the previous
best result of 0.7510 overall F1 to 0.7979 (a 4.69 percentage
point increase). Regarding the RE subtask, although the overall
F1 score decreased from 0.6221 to 0.5082, there are 2 aspects
that should be considered. The first aspect is that adjustments
were made to the rule-based engine, which reduced the
specificity of its rules and impacted the challenge performance.
The second one is that results presented for subtask 2 were
obtained using a modified version of the evaluator. The adjusted
evaluator performs a more exact analysis of the system output,
resulting in lower performance values compared with the
original counterpart. A more detailed explanation of this last
aspect is provided in the following subsection of Evaluation
and Error Analysis.

Evaluation and Error Analysis
The annotations resulting from the approaches described were
evaluated using precision, recall, and F1 score metrics. The
items considered in subtask 1 evaluation were the patient family
members combined with their family side and the observations
in each document. Regarding family members, if the system
does not properly extract relatives’ family side, the results are
considered a false positive and a false negative. However, in
the case of observations, the evaluator was more flexible. More
specifically, if observations were partially annotated (eg, for
the observation diabetes type 2, the system extracted only
diabetes), the evaluator considered a true positive. This evaluator
was provided by the n2c2 organizers, and we maintained its
principles.

The evaluation process for the RE subtask considered (1) the
attribution of living status to family members, with correct
family side, and (2) the association of observations to family
members, including the indication of whether the observation
was negated or not. The original evaluator considers each family
member, observation, and negation status triple correctly
identified by a system. However, the evaluator considers it as
a true positive if only the observation or only the negation status
were correctly extracted for a given relative. This formulation
produces additional true positives, even for annotations that are
not completely correct. Therefore, we changed the behavior of
this evaluator to consider as true positive only when the system
correctly extracted the family member, the respective family
side, the (possibly partial) observation, and the observation
logical status, as we believe that the extraction is more useful
if it is completely correct. As an effect of this change, the F1
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scores of our challenge submission reduced approximately 10
percentage points when compared with the official results. For
instance, when using the new evaluator, approach 1 reduced its
F1 score from 0.5198 to 0.4431, whereas approach 2 decreased
its F1 score from 0.6221 to 0.4818.

To understand what affects our results, we randomly selected
some false positives and performed a manual analysis on the
training set. This analysis led to the detection of inconsistencies
in the gold standard annotations, which adversely affected the
performance of our system. For instance, in the same clinical
notes, 2 identical sentences regarding different family members
were annotated with different living statuses. Another example
was that at least 14 relatives without living status were annotated
when this was present in the gold standard raw data. This raw
data consists of the XML files supplied along with the clinical
notes in the training set, which were the base of the submission

gold standard file. In some of the clinical notes, we detected
observations that were present in the text but not annotated in
the gold standard and observations that were detected and
present in subtask 1 gold standard but not attributed to any
subject (despite having the family member also annotated in
the gold standard). Although we were not able to perform an
in-depth analysis and assess how much this affected our scores,
the identified inconsistencies had some impact on performance.

Limitations and Future Work
The resulting system was built to be more generic than the
previous version, which was used in the n2c2 challenge. Despite
the improvements made to the system, there are still some
limitations. Textbox 1 presents some sentences extracted from
the clinical notes that are representative examples of the system
limitations.

Textbox 1. Analyses of some of the false positives and false negatives classified by the proposed system. Family member annotations are emphasized
in the sentence using italics.

Child not applicable (N/A)

“Mr. Smith’s father suffers from cancer. He has several children through several other women...”

Daughter N/A

“The maternal/paternal great-aunt that has diabetes had several children. One of these individuals had a cancer of an unknown type and is deceased.
The second daughter is the individual with diabetes type 2...”

Parent N/A

“John’s parents are both reportedly healthy at age 63, but they have not seen a physician in approximately 30 years. John’s mother had one second
trimester miscarriage...”

Sibling N/A

“Saul’s father is a 39-year-old man who is a college graduate and who has a total of 5 siblings...”

Grandparents N/A

“While living in Texas, they lived with extended family, including Peter’s grandparents...”

The first example of these limitations concerns the establishment
of incorrect sentence connections in certain situations.
Depending on the scenario, in the first sentence in Textbox 1,
it could be annotated child or sibling, as it is influenced by the
order in which rules are applied during family members
detection. However, in this example, the pronoun he refers to
the patient’s father. Thus, the mentioned children are patient’s
half-siblings, a relative that should not be considered according
to the guidelines.

The problem in the second example is also related to sentence
linking. The system detects a daughter because it loses the
sentence context. In addition, the existence of maternal/paternal
before a relative led to inconsistencies in the detection because
there are no rules for these situations. Despite all those problems,
the relative annotated as daughter is in fact a third-degree cousin,
a relationship that should not be considered. The third and fourth
examples show other cases where there was an incorrect family
member annotation because of the system losing context within
the sentences.

The final example is a special case because the annotation was
correctly performed but was not considered in the gold standard
annotations, as the clinical notes did not provide any clinical

information about the relative. Moreover, the clinical
information regarded as necessary for annotating a relative
mention is not exclusively composed of observations and may
comprehend other types of information such as medication
intake or medical procedures, which invalidates the possibility
of filtering such situations based on observation associations
alone.

Although these might not be the only problems, the limitations
presented were those that stood out the most. This led us to
analyze possible future work for this contribution, which we
could split in different topics. First, we need to test this system
in another data set, with a more solid gold standard. This will
help us understand the performance of the system as well as its
versatility in detail. Another task is the extension of the clinical
information extracted. The current version has models designed
to extract observations. However, we intend to build other
models to extract drugs and procedures, among other medical
categories that were not required in the challenge. This extension
would lead to a reformulation of the detection of patient’s
relatives and allow filtering mentions with no medical
information, such as the last example in Textbox 1). Finally,
there is also the possibility of exploring machine learning and
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DL for the process of establishing relations between extracted
entities.

Conclusions
We present an extension to a previous work that focused on
extracting family history information from clinical notes.
Specifically, we developed a more generic system and improved
the previous F1 score in the entity extraction subtask by
approximately 5 percentage points by combining different
approaches. Although the rule-based engine succeeded in
extracting patient relatives because of the range of possibilities
in the text, this approach failed in the detection of observations.

However, the use of DL models helped rectify this gap, with
the hybrid system taking advantage of the best characteristics
of these 2 methodologies. The hybrid solution is provided in a
publicly available code repository.

This study promotes new strategies to easily annotate large
amounts of clinical reports currently available in EHR systems.
If these reports were annotated and indexed, it would be simpler
for a clinician to search for reports mentioning specific concepts.
In addition, with data in a structured format, this information
can be reused in other scenarios, such as predicting the patient’s
susceptibility or predisposition to diseases.
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Abstract

Background: Despite widespread interest in the use of virtual (ie, telephone and video) visits for ambulatory patient care during
the COVID-19 pandemic, studies examining their adoption during the pandemic by race, sex, age, or insurance are lacking.
Moreover, there have been limited evaluations to date of the impact of these sociodemographic factors on the use of telephone
versus video visits. Such assessments are crucial to identify, understand, and address differences in care delivery across patient
populations, particularly those that could affect access to or quality of care.

Objective: The aim of this study was to examine changes in ambulatory visit volume and type (ie, in-person vs virtual and
telephone vs video visits) by patient sociodemographics during the COVID-19 pandemic at one urban academic medical center.

Methods: We compared volumes and patient sociodemographics (age, sex, race, insurance) for visits during the first 11 weeks
following the COVID-19 national emergency declaration (March 15 to May 31, 2020) to visits in the corresponding weeks in
2019. Additionally, for visits during the COVID-19 study period, we examined differences in visit type (ie, in-person versus
virtual, and telephone versus video visits) by sociodemographics using multivariate logistic regression.

Results: Total visit volumes in the COVID-19 study period comprised 51.4% of the corresponding weeks in 2019 (n=80,081
vs n=155,884 visits). Although patient sociodemographics between the COVID-19 study period in 2020 and the corresponding
weeks in 2019 were similar, 60.5% (n=48,475) of the visits were virtual, compared to 0% in 2019. Of the virtual visits, 61.2%
(n=29,661) were video based, and 38.8% (n=18,814) were telephone based. In the COVID-19 study period, virtual (vs in-person)
visits were more likely among patients with race categorized as other (vs White) and patients with Medicare (vs commercial)
insurance and less likely for men, patients aged 0-17 years, 65-74 years, or ≥75 years (compared to patients aged 18-45 years),
and patients with Medicaid insurance or insurance categorized as other. Among virtual visits, compared to telephone visits, video
visits were more likely to be adopted by patients aged 0-17 years (vs 18-45 years), but less likely for all other age groups, men,
Black (vs White) patients, and patients with Medicare or Medicaid (vs commercial) insurance.

Conclusions: Virtual visits comprised the majority of ambulatory visits during the COVID-19 study period, of which a majority
were by video. Sociodemographic differences existed in the use of virtual versus in-person and video versus telephone visits. To
ensure equitable care delivery, we present five policy recommendations to inform the further development of virtual visit programs
and their reimbursement.

JMIR Med Inform 2020 | vol. 8 | iss. 12 |e24544 | p.248https://medinform.jmir.org/2020/12/e24544
(page number not for citation purposes)

Gilson et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

mailto:sdshah@uchicago.edu
http://www.w3.org/Style/XSL
http://www.renderx.com/


(JMIR Med Inform 2020;8(12):e24544)   doi:10.2196/24544

KEYWORDS

telemedicine; telehealth; video visit; telephone visit; virtual visit; COVID-19; age; sex; race; insurance; demographic; retrospective

Introduction

The COVID-19 pandemic has significantly altered the landscape
of health care delivery. One of the major changes resulting from
the pandemic has been the rapid adoption of virtual (ie,
telephone and video) visits and other telemedicine programs
that facilitate health care services via health care information
technologies to accommodate necessary reductions in in-person
care [1,2]. A major driver for this adoption was the Centers for
Medicare & Medicaid Services (CMS) expansion of virtual visit
reimbursement on March 17, 2020, under the 1135 waiver
authority. This allowed for Medicare reimbursement of multiple
visit types performed virtually, including outpatient clinic visits,
retroactively starting March 6, 2020, and continuing for the
duration of the public health emergency [3]. This shift to
reimburse virtual visits helped clinicians continue caring for
patients despite widespread shelter-in-place orders and may
represent the beginning of a new era for ambulatory medicine.

Unfortunately, access to virtual visits may not be equitable in
the United States. Differential access to the internet and devices
and differences in health literacy may leave patients without
the ability to attend video visits. Thus, those patients may only
be able to participate in telephone visits if they are unable to
attend in-person visits. Surveys by the Pew Research Center in
2019 found lower rates of internet usage and smartphone
ownership among people ages ≥65 years compared to younger
adults [4,5]. When examining access to internet and internet
technology by race, Black adults had lower rates of access to
the internet and lower rates of desktop or laptop computer
ownership than White adults [4,6]. A recent study of Medicare
beneficiaries found that digital access was lowest among patients
who were ≥85 years, Black, or received Medicaid [7].
Additionally, adults who are older, men, and Black have been
shown to have lower health literacy levels than those who are
younger, women, and White; and low health literacy is
associated with a greater likelihood of needing help performing
online tasks [8-10]. These disparities in access to the internet
and devices and lower health literacy levels may lead to
corresponding disparities in health care delivery and quality,
particularly if the quality of health care visits and visit
satisfaction are greater with video visits compared to telephone
visits [11-13]. Furthermore, patients who opted out of virtual
visits entirely and continued to attend in-person visits during
the pandemic may have increased their risk of exposure to
COVID-19 or experienced decreased appointment availability
due to the decrease in in-person capacity required to maintain
COVID-19 social distancing. Thus, though virtual visits have
been considered an integral part of delivery of health care during
the pandemic, access to those visits (especially video visits)
may have been affected by underlying differences in access to
technology and health literacy.

There is already existing evidence that other recent innovations
in health care technology may exacerbate differences in health

care access. For example, patient portal use, which has the
potential to improve the quality and efficiency of health care
delivery, differs with respect to race, insurance, and
neighborhood broadband internet access [14]. One study found
that patient portal use was lower among Black (vs White)
patients; Medicare, Medicaid, and uninsured (vs commercially
insured) patients; and patients with decreased neighborhood
broadband internet access [14]. Other studies using data prior
to the COVID-19 pandemic have additionally suggested that
telemedicine and patient-facing health information technology
utilization is lower among men, patients over 65 years,
non-White patients, patients without commercial insurance, and
patients living in neighborhoods with low internet access; this
lack of internet access and technology proficiency continues to
impede wider adoption of health information technology among
racial minorities and those without commercial insurance
[15-18]. Given prior research on the benefits of telemedicine
interventions on clinical outcomes, such as improvement in
glycemic control in medically underserved patients with
diabetes, these disparities in the use of and access to digital
health may directly translate into disparities in health care
quality [19].

Despite widespread interest in the use of virtual visits for
ambulatory patient care during the COVID-19 pandemic, few
studies to date have evaluated the adoption of ambulatory virtual
visits during the pandemic by age, race, sex, or insurance [20].
The studies that have been published recently show that patients
using virtual visits during the pandemic were more likely to be
younger adults as compared to older adults, female, non-White,
and not commercially-insured [2,21-23]. This may be due in
part to the lack of patient readiness for virtual visits, which one
study found was more prevalent in patients who were older,
male, or Black, and affected video visits more than telephone
visits [24]. However, most of the studies published on data from
the pandemic did not evaluate the impact of these
sociodemographic factors on the use of telephone versus video
virtual visits. Such assessments are crucial to identify,
understand, and address differences in care delivery across
patient populations, and inform policy decisions, particularly
those like reimbursement rules, which could affect access to or
quality of care.

In this study, we aimed to (1) assess changes in visit volume,
type, and patient sociodemographics from the start of the
COVID-19 national emergency to the end of May 2020,
compared to the same weeks in 2019; and (2) elucidate
differences in the use of ambulatory virtual visits (as compared
to in-person visits) and, for those using virtual visits, the use of
video visits (compared to telephone visits) by age, sex, race,
and insurance. We hypothesize that (1) total visit volumes
decreased and virtual visits increased during the COVID-19
pandemic, while patient sociodemographics remained similar
between the two time periods; and (2) patients who utilized
in-person visits during the COVID-19 study period were more
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likely to be younger than patients who utilized virtual visits,
and of those using virtual visits, patients utilizing video visits
were more likely to be younger, White, and have commercial
insurance than patients utilizing telephone visits [2,21-23].

Methods

Setting
The University of Chicago Medical Center (UCMC) is the
flagship institution of University of Chicago Medicine, and
includes 5 multispecialty faculty ambulatory practice sites in
Chicago, IL, and the surrounding area, with over 600,000
encounters per year. UCMC began offering virtual visits in
March 2020 in response to the widespread shelter-in-place
orders at the city, state, and regional level due to the COVID-19
pandemic. Telephone visits began during the week of March
15, 2020. Video visits began with a pilot program in the
hematology/oncology, pediatrics, psychiatry, gastroenterology,
and obstetrics/gynecology practices on March 26, 2020,
followed by a broad roll-out to all ambulatory faculty clinics
on April 6, 2020. All practices used a HIPAA (Health Insurance
Portability and Accountability Act)-compliant Zoom platform
to enable video visits, which was not integrated into the
institution’s electronic health record system (Epic) during the
evaluated time period.

Immediately after the City of Chicago and State of Illinois
shelter-in-place orders were enacted, patients with previously
scheduled in-person office visits were contacted and given the
option to either reschedule or convert their appointment to a
virtual visit. If a patient agreed to a virtual visit, a video visit
was encouraged. Patients scheduled for video visits were sent
the following through the patient portal or email: a Zoom link
for the video visit; a brief prevideo visit checklist followed by
more detailed instructions describing the technical requirements
to participate in the video visit; and a link to a video highlighting
methods to best prepare for the video visit and a demonstration
of what to expect. If the patient was unable or unwilling to
participate in a video visit, a telephone visit was scheduled, and
they were told to expect a call from their provider at the
scheduled appointment time. Patients reaching out to schedule
new virtual visits were also preferentially offered video visits
but were given the opportunity to schedule a telephone visit as
well in accordance with their preferences. The availability of
virtual visits was marketed widely to our patient population
through our patient portal, marketing emails, and our health
system’s internet home page. Beginning on May 1, 2020,
patients were given the option to begin self-scheduling video
visits (but not telephone visits) through the patient portal.

Study Population and Measures
All adult and pediatric outpatient clinic visits occurring in
UCMC faculty practice locations from March 15 to May 31,
2019, and March 15 to May 31, 2020, were included. The type
of outpatient clinic visit was classified as in-person or virtual,
and virtual visits were further classified as telephone or video,
based on the scheduled visit type for all completed visits. Patient
sociodemographic data were examined for each visit, including
age, sex, race, and insurance. Age was categorized into 5 groups:
0-17 years, 18-45 years, 46-64 years, 65-74 years, and ≥75

years. Patients were grouped into 3 racial categories: White,
Black, and other (which included Asian/Mideast Indian,
American Indian or Alaska Native, Native Hawaiian/other
Pacific Islander, more than one race, patient declined, and
unknown). Insurance was categorized as Medicare (including
Medicare-Medicaid Alignment Initiative), Medicaid,
commercial, or other. The data were extracted from the
institution’s electronic health record data warehouse. This
project received a formal determination of Quality Improvement
according to institutional policy. As such, this initiative was not
reviewed by the Institutional Review Board.

Statistical Analysis
First, we used descriptive statistics to examine weekly and
overall visit volumes during the study period, which were the
11 weeks following the COVID-19 national emergency
declaration (March 15 to May 31, 2020), compared to visit
volumes in the corresponding weeks of the 2019 calendar year.
Next, we examined visit type (in-person, video, telephone) and
patient sociodemographics (age, sex, race, insurance) associated
with the visit and compared these characteristics to those visits
occurring during the same date range in 2019. Last, we
examined differences in ambulatory visit type (in-person vs
virtual; and for those with virtual visits, video vs telephone) by
patient sociodemographics (age, sex, race, insurance) for visits
occurring during the COVID-19 study period.

Data were summarized with chi-square tests where appropriate.
Because of the large sample size, statistical significance was
set at P≤.001. To estimate the association between patient
sociodemographics and visit type (in-person vs virtual, and
video vs phone for those with virtual visits), we performed
logistic regression. Results were similar between unadjusted
and adjusted analyses; only adjusted analyses are presented.
Data were analyzed using RStudio, version 3.6.3 (RStudio,
PBC).

Results

Visit Volumes and Visit Types
In the week of March 15-21, 2020, the ambulatory visit volume
dropped to 34% of visit volumes when compared to the same
week in 2019 (n=4877 vs n=14,343 visits) and reached a nadir
of 20.8% of 2019 levels (n=2476 vs n=11,930 visits) in the
following week. By the week of May 24-30, 2020, the
ambulatory visit volume had rebounded to 81.8% of the volume
of the same week in 2019 (n=9451 vs n=11,554 visits). Total
visit volumes from March 15 to May 31, 2020, were 51.4% of
2019 volumes (n=80,081 vs n=155,884 visits).

Virtual ambulatory visits increased from 0 to 48,475 visits
between March 15 to May 31, 2020, and comprised 60.5% of
total ambulatory visit volume, with the remaining 39.5%
(n=31,606) conducted in person (Table 1 and Figure 1). Among
virtual visits performed during the study period, 61.2%
(n=29,661) were by video and 38.8% (n=18,814) were by
telephone. For comparison, in 2019, there were no virtual visits
for the same time period. Patient sociodemographics were
similar for those with ambulatory visits between March 15 to
May 31, 2020, and the corresponding weeks in 2019 (Table 1).
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Table 1. Associations between patient sociodemographics and ambulatory visit type from March 15 to May 31 in 2019 and 2020.

Total visits in 2020 (n=80,081)Total visits in 2019
(n=155,884), n (%)

Characteristic

Virtual vs in-personVirtual visits

(n=48,475), n (%)

In-person visits
(n=31,606), n (%)

Overall (n=80,081),

n (%)

P valuebaORa (95% CI)

<.001Age (years)

0.71 (0.68-0.75)5148 (10.6)4937 (15.6)10,085 (12.6)20,513 (13.2)0-17

Reference13,194 (27.2)8192 (25.9)21,386 (26.7)39,879 (25.6)18-45

1.01 (0.97-1.05)13,828 (28.5)8455 (26.8)22,283 (27.8)43,546 (27.9)46-64

0.80 (0.76-0.84)9183 (19.0)5957 (18.8)15,140 (18.9)29,132 (18.7)65-74

0.86 (0.80-0.91)7122 (14.7)4065 (12.9)11,187 (14.0)22,814 (14.6)≥75

<.001Sex

Reference30,142 (62.2)18,429 (58.3)48,571 (60.7)95,032 (61.0)Female

0.88 (0.85-0.90)————cMale

<.001    Race

Reference21,895 (45.2)14,112 (44.7)36,007 (45.0)72,618 (46.6)White

0.98 (0.95-1.01)20,711 (42.7)14,141 (44.7)34,852 (43.5)65,645 (42.1)Black

1.22 (1.16-1.28)5869 (12.1)3353 (10.6)9222 (11.5)17,621 (11.3)Other

<.001    Insurance

Reference17,825 (36.8)9817 (31.1)27,642 (34.5)53,470 (34.3)Commercial

1.27 (1.21-1.34)6045 (12.5)5575 (17.6)11,620 (14.5)23,663 (15.2)Medicare

0.74 (0.70-0.77)24,255 (50.0)15,169 (48.0)39,424 (49.2)75,100 (48.2)Medicaid

0.21 (0.19-0.24)350 (0.7)1045 (3.3)1395 (1.8)3651 (2.3)Other

aaOR: adjusted odds ratio.
bChi-square test.
cNot applicable.
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Figure 1. Ambulatory visit volumes and types from March 15 to May 31, 2020. Note: all visit volumes decreased during the final week of May due
to Memorial Day clinic closures.

Association Between Ambulatory Visit Type (In-Person
vs Virtual) and Patient Sociodemographics
In unadjusted analyses, there were statistically significant
differences between those who received in-person and virtual
visits for all sociodemographics examined (Table 1). In adjusted
analyses, virtual visits were less likely than in-person visits for
patients aged 0-17 years (odds ratio [OR] 0.71, 95% CI
0.68-0.75), 65-74 years (OR 0.80, 95% CI 0.76-0.84), and ≥75
years (OR 0.86, 95% CI 0.80-0.91), compared to patients aged
18-45 years (Table 1). Men were less likely (OR 0.88, 95% CI
0.85-0.90) to attend a virtual visit than women. There was no
difference in the odds of virtual visit attendance between White
and Black patients; however, patients with race categorized as
other were more likely to attend a virtual visit (OR 1.22, 95%
CI 1.16-1.28) compared to White patients. Medicare patients
were more likely (OR 1.27, 95% CI 1.21-1.34) than patients
with commercial insurance to attend virtual visits (vs in-person
visits), whereas patients with Medicaid insurance were less
likely (OR 0.74, 95% CI 0.70-0.77) than patients with
commercial insurance to have virtual visits. Patients with
insurance categorized as other were also less likely to have a

virtual visit (OR 0.21, 95% CI 0.19-0.24) than patients with
commercial insurance.

Association Between Virtual Visit Type (Telephone vs
Video) and Patient Sociodemographics for Those With
Virtual Visits
In unadjusted analyses, there were statistically significant
differences across all sociodemographics examined except sex
between those using telephone versus video visits (Table 2). In
adjusted analyses, results were similar, except there were
differences by sex as well. Video visits were more likely than
telephone visits for patients aged 0-17 years (OR 3.32, 95% CI
3.01-3.67), while video visits were less likely than telephone
visits for patients aged 46-64 years (OR 0.56, 95% CI
0.54-0.60), 65-74 years (OR 0.47, 95% CI 0.44-0.50), and ≥75
years (OR 0.30, 95% CI 0.27-0.32), compared to patients aged
18-45 years. Men were less likely to attend a video visit (OR
0.94, 95% CI 0.90-0.97) than women. Black patients were less
likely to attend a video visit (OR 0.55, 95% CI 0.52-0.57)
compared to White patients. Video visits were less likely than
telephone visits for Medicare patients (OR 0.69, 95% CI
0.65-0.74) and Medicaid patients (OR 0.72, 95% CI 0.67-0.77)
compared to patients with commercial insurance.
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Table 2. Associations between patient sociodemographics and type of virtual visit from March 15 to May 31, 2020.

Virtual visits (n=48,475)Total virtual visits

(n=48,475), n (%)

Characteristic

Video vs telephoneVideo visits
(n=29,661), n (%)

Telephone visits
(n=18,814), n (%)

P valuebaORa (95% CI)

<.001Age (years)

3.32 (3.01-3.67)4594 (15.5)554 (2.9)5148 (10.6)0-17

Reference9687 (32.7)3507 (18.6)13,194 (27.2)18-45

0.56 (0.54-0.60)8151 (27.5)5677 (30.2)13,828 (28.5)46-64

0.47 (0.44-0.50)4596 (15.5)4587 (24.4)9183 (19)65-74

0.30 (0.27-0.32)2633 (8.8)4489 (23.9)7122 (14.7)≥75

.17Sex

Reference18,371 (61.9)11,771 (62.6)30,142 (62.2)Female

0.94 (0.90-0.97)———cMale

<.001  Race

Reference14,811 (49.9)7084 (37.7)21,895 (45.2)White

0.55 (0.52-0.57)10,647 (35.9)10,064 (53.4)20,711 (42.7)Black

0.95 (0.89-1.01)4203 (14.2)1666 (8.9)5869 (12.1)Other

<.001  Insurance

Reference7979 (26.9)9846 (52.4)17,825 (36.8)Commercial

0.69 (0.65-0.74)3918 (13.2)2127 (11.3)6045 (12.5)Medicare

0.72 (0.67-0.77)17,514 (59.1)6741 (35.8)24,255 (50.0)Medicaid

1.03 (0.81-1.31)250 (0.8)100 (0.5)350 (0.7)Other

aaOR: adjusted odds ratio.
bChi-square test.
cNot applicable.

Discussion

Principal Findings
Total visit volumes in the COVID-19 study period were
approximately half of that in 2019, although patient
sociodemographics were similar. Recovery of clinic volumes
after the escalation of the pandemic was largely driven by virtual
ambulatory care, which comprised over 60% (n=48,475) of total
ambulatory clinic volumes from March 15 through May 31,
2020, a majority of which were video visits. Children, adults
≥65 years, men, and patients with Medicaid coverage were less
likely to have virtual visits, whereas patients with Medicare
coverage were more likely to have virtual visits compared to
patients with commercial insurance coverage. For those who
attended virtual visits, children were more likely to have video
visits, while adults ≥46 years, men, Black patients, and patients
with Medicare or Medicaid coverage were less likely to have
video visits.

The sociodemographic differences in virtual visits we identified
are in line with prior research. For example, prior research found
that women were more likely than men to shelter in place due

to concerns about the risk of COVID-19 infection for themselves
and their family; this would make virtual visits a more appealing
visit type for women [25]. Additionally, studies prior to the
pandemic demonstrated that women used virtual visits more
often than men [11]. Similarly, patients with Medicare insurance
may have been more concerned about acquiring COVID-19
infection and prefer to shelter in place, leading to their increased
likelihood of attending a virtual visit. In contrast, pediatric well
visits (and well visits for most non-Medicare beneficiaries) must
still be performed in person to be reimbursed; therefore, many
pediatric patients continued to attend in-person visits even
during the COVID-19 pandemic.

The sociodemographic differences in virtual (vs in-person) visits
and video (vs telephone) visits illustrate the digital divide [26].
The patient populations with lower levels of access to internet
and smart devices and lower digital literacy were the same
sociodemographic groups found in our study to have a lower
likelihood of completing virtual or video visits, including older
adults, Black patients, and patients without commercial
insurance [4-9]. Our results also match prior studies on virtual
visit use during the pandemic, which found that patients using
virtual visits during the pandemic were more likely to be
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younger adults as compared to older adults, White, and
commercially insured [21-23]. Requirements for a video visit
include internet, a capable device, and a basic level of digital
literacy, so patients who do not have all three (or do not have
a readily available family member to assist) are unable to attend
video visits. One study performed during the pandemic found
higher prevalence of “unreadiness” to attend video visits in
those sociodemographic groups found to be less likely to attend
video visits, including patients who were older, Black, and men,
similar to our findings [24]. These findings raise concerns about
the role video visits may play in exacerbating existing health
inequities, particularly since the quality of health care visits and
visit satisfaction are greater with video visits compared to
telephone visits [11-13]. Moreover, these health disparities may
be significantly worsened if the current reimbursement parity
between telephone and video visits is discontinued, and
especially if telephone visits are no longer reimbursed altogether
following the public health emergency.

The shift in the delivery of ambulatory care through virtual
visits was incentivized by the new virtual reimbursement
policies from CMS and private insurance companies. The
significant contribution of virtual visits to overall ambulatory
visit volumes is likely to continue once the COVID-19 pandemic
has ended. The volume of virtual ambulatory visits at UCMC
has continued to grow even after the end of the study period,
indicating sustained interest in virtual visits likely due to
continued safety concerns related to the pandemic, ongoing
reimbursement for these services, and physician and patient
satisfaction with this new option for care delivery [27,28]. Given
the interest in and development of virtual visits prior to the
pandemic and the proliferation of virtual visits during the
pandemic, virtual visits for ambulatory care are likely to remain
popular among both patients and providers even after the
COVID-19 pandemic [1,2]. University of Chicago Medicine’s
2025 Strategic Vision (developed prior to the pandemic)
includes an “aim to build a digitally enabled organization for
patients” and a goal to expand access to care, both of which are
aided by the expansion of virtual visit services [29]. However,
if reimbursement for virtual visits is discontinued or significantly

reduced after the pandemic or public health emergency ends,
many medical centers are likely to stop making significant
investments in the continued development of their telemedicine
programs and the availability of virtual visits for patients would
be expected to decline.

Recommendations
The results of this study and our review of the virtual visit
landscape has prompted us to offer five recommendations
(Textbox 1). First, given the differences in virtual visit use by
certain sociodemographic groups demonstrated in this study
and the lower effective reimbursement rates for telephone visits
compared to video visits, medical institutions like UCMC with
high proportions of older, Black, and/or Medicare/Medicaid
patients may experience lower reimbursement rates because of
the barriers these groups face to completing video visits. For a
video visit, providers can bill for all time spent on patient care
on the encounter date, including documentation; for a telephone
visit, they can only bill for time spent in direct communication
(on the telephone call) with a patient on the encounter date. To
avoid effectively penalizing medical institutions providing care
to vulnerable populations, government and commercial insurers
should help address these disparities by maintaining
reimbursement parity between video and telephone visits.
Second, given the rapid growth and early success of virtual
visits, and the role they will likely play in blended models of
care, legislation that makes virtual visit reimbursement
permanent is essential to allow for the long-term investment by
health care systems and providers needed to improve the virtual
visit infrastructure and experience. Third, government insurers
and specialty societies should collaborate to establish guidance
to help distinguish ambulatory care best suited for virtual versus
in-person care. Fourth, quality improvement initiatives should
be undertaken at medical institutions to support and improve
access to and usability of video visits in populations
encountering the greatest barriers to its use. Last, advocacy for
policy changes and more universal broadband access are
essential to help close the digital divide experienced by our
most vulnerable patient populations, which would help address
the differential access to virtual visits described in this study.

Textbox 1. Recommendations to improve access to and use of virtual visits.

1. Maintain reimbursement parity between video and telephone visits

2. Pass legislation making virtual visit reimbursement permanent

3. Establish guidance to distinguish ambulatory care best suited for virtual versus in-person care

4. Perform quality improvement initiatives to improve access to and usability of video visits in vulnerable populations

5. Advocate for policy changes and universal broadband access to close the digital divide

Limitations
Our study has limitations. First, this study only examined a
single medical center and was a retrospective analysis; despite
this, the diversity of the patient population examined in our
study enabled our analysis of ambulatory virtual visit use.
Second, our study only examined a limited set of variables,
which were used as surrogates for the social determinants of
health described in this paper, such as access to broadband

internet, health literacy, tech literacy, education, and income,
and did not examine virtual and video visit use by ethnicity due
to limited data availability. Third, this area of clinical practice
and study is rapidly changing and will likely continue to change
rapidly over the next few months to years. Further studies at
other medical institutions should be conducted to confirm our
findings and examine additional sociodemographic variables.
Future analyses of ambulatory virtual visits should also
investigate patient satisfaction and outcomes by patient visit
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type (eg, new, return, consult), given the differences in
reimbursement by visit type category, and whether ambulatory
virtual visits increase the geographic area served by academic
medical centers or medical institutions with subspecialty care,
as already suggested by limited data [30].

Conclusion
The COVID-19 pandemic has drastically changed the health
care delivery landscape largely due to the growth of ambulatory

virtual visits, which have rapidly become a vital component of
health care delivery. Given the differential use of these
technologies by age, sex, race, and insurance, these changes
also risk perpetuating and even exacerbating existing disparities
in health care access and quality, especially if reimbursement
policies do not sufficiently account for these differences and
the digital divide remains unaddressed.
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Abstract

Background: COVID-19 has affected more than 180 countries and is the first known pandemic to be caused by a new virus.
COVID-19’s emergence and rapid spread is a global public health and economic crisis. However, investigations into the disease,
patient-tracking mechanisms, and case report transmissions are both labor-intensive and slow.

Objective: The pandemic has overwhelmed health care systems, forcing hospitals and medical facilities to find effective ways
to share data. This study aims to design a global infectious disease surveillance and case tracking system that can facilitate the
detection and control of COVID-19.

Methods: The International Patient Summary (IPS; an electronic health record that contains essential health care information
about a patient) was used. The IPS was designed to support the used case scenario for unplanned cross-border care. The design,
scope, utility, and potential for reuse of the IPS for unplanned cross-border care make it suitable for situations like COVID-19.
The Fast Healthcare Interoperability Resources confirmed that IPS data, which includes symptoms, therapies, medications, and
laboratory data, can be efficiently transferred and exchanged on the system for easy access by physicians. To protect privacy,
patient data are deidentified. All systems are protected by blockchain architecture, including data encryption, validation, and
exchange of records.
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Results: To achieve worldwide COVID-19 surveillance, a global infectious disease information exchange must be enacted. The
COVID-19 surveillance system was designed based on blockchain architecture. The IPS was used to exchange case study
information among physicians. After being verified, physicians can upload IPS files and receive IPS data from other global cases.
The system includes a daily IPS uploading and enhancement plan, which covers real-time uploading through the interoperation
of the clinic system, with the module based on the Open Application Programming Interface architecture. Through the treatment
of different cases, drug treatments, and the exchange of treatment results, the disease spread can be controlled, and treatment
methods can be funded. In the Infectious Disease Case Tracking module, we can track the moving paths of infectious disease
cases. The location information recorded in the blockchain is used to check the locations of different cases. The Case Tracking
module was established for the Centers for Disease Control and Prevention to track cases and prevent disease spread.

Conclusions: We created the IPS of infectious diseases for physicians treating patients with COVID-19. Our system can help
health authorities respond quickly to the transmission and spread of unknown diseases, and provides a system for information
retrieval on disease transmission. In addition, this system can help researchers form trials and analyze data from different countries.
A common forum to facilitate the mutual sharing of experiences, best practices, therapies, useful medications, and clinical
intervention outcomes from research in various countries could help control an unknown virus. This system could be an effective
tool for global collaboration in evidence-based efforts to fight COVID-19.

(JMIR Med Inform 2020;8(12):e20567)   doi:10.2196/20567

KEYWORDS

blockchain; infectious disease surveillance; international collaboration; HL7 FHIR; COVID-19 defense; COVID-19

Introduction

COVID-19, which presumably originated in bats and was
transmitted to humans by means of unknown mechanisms in
Wuhan, Hubei Province, China in December 2019, has affected
more than 180 countries and territories around the world. On
March 11, 2020, the World Health Organization (WHO)
characterized the COVID-19 outbreak as a pandemic. This is
the first pandemic known to be caused by a new virus. Although
the complete clinical picture with regard to COVID-19 is not
fully known, based on currently available information, older
adults and people with serious underlying medical conditions
might be at a higher risk for the severe illness caused by
COVID-19.

Since a total of 41 cases with an unknown etiology of pneumonia
were confirmed in Wuhan City, Hubei Province, China in
December 2019 [1], COVID-19 has spread rapidly across that
country and around the world [2-8]. Thus far, it has affected
more than 12,723,798 people in 188 countries and regions (data
obtained through July 12, 2020) [9]. COVID-19 is now the most
serious infectious disease event after severe acute respiratory
syndrome (SARS) in 2003, and no effective vaccine, drug, or
treatment has been found.

Many different infectious diseases still exist in the world, such
as the Ebola hemorrhagic fever, the highly pathogenic avian
influenza, SARS, Middle East respiratory syndrome
(MERS)–related coronavirus, and seasonal influenza. When an
infectious disease event occurs suddenly, it is crucial to find a
quick treatment and control method. Normal patient treatment
needs to be based on the medical history and symptoms of the
different cases.

The rise of COVID-19 was sudden and marked by the global
information flow not being fast enough and the case reports
being transmitted slowly, which has led to a sluggish treatment
progress, patients not being cured in an efficient manner, and
the infectious disease still not being effectively controlled. In

today’s age of information, our global connectivity gives us a
strong advantage in the fight against infectious diseases. We
can analyze large amounts of data to identify outbreaks across
different parts of the world, and we can use advanced machine
learning models to predict their future movement across different
geographical territories. The challenge is that collating relevant
data and standardizing it on a global level is a complicated task.
In many parts of the world, data does not flow easily from
hospitals into the public realm or across borders. Global data
standards have yet to be developed, and this creates gaps in the
data sets and delays in how the data can be used to shape global
health efforts. One way of improving the speed that data is
standardized could be to encourage better interconnectivity
across national data systems by using more homogenous data
standards. This would require a great deal of collaboration
between the various stakeholders, and it could be challenging
to promote it across borders [10].

The challenge of a slow and insufficient global information
flow could be tackled by a good framework such as the Asia
eHealth Information Network’s Governance, Architecture,
Program Management, Standards and Interoperability
framework as well as a good collaboration model.

According to different research case reports in China [2,5,6],
of the patients who are in the 18 years and older group, 61.9%
(n=172) were male, and in another report, 2 of 13 patients with
COVID-19 were children, who ranged between 2 and 15 years
old [11]. Conclusions of the symptoms and disease history of
patients with COVID-19 were found in these studies.
Hypertension and cardiovascular disease were the two most
common diseases in the adult patient group, followed by
diabetes mellitus. With regard to the symptoms, fever was the
most common (n=28, 92.8%), followed by a cough (n=194,
69.8%), dyspnea (n=96, 34.5%), myalgia (n=77, 27.7%), a
headache (n=20, 7.2%), diarrhea (n=17, 6.1%), a sore throat
(5.1% [6]), and pharyngeal (17.4% [2]). Wang et al [2] showed
that the intensive care rate was significant in older patients.
Other research noted that patients who needed intensive care
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had a greater percentage of dyspnea than those not needing
intensive care [2,5]. From a report presented by a Beijing
research team, among 13 patients with COVID-19, 12 (92.3%)
had a fever, with a mean of 1.6 days before the patient went to
a hospital, and they had a cough (46.3%), myalgia (23.1%),
upper airway congestion (61.5%), and a headache (23.1%) [11].

Although there are many reports and studies on COVID-19, the
details of disease control and treatment are still being broadcast
slowly, which may cause the disease spread to be out of control
and make it difficult to share the experiences of successful case
treatments. According to the control status and experience of
COVID-19, all cases should be uploaded to the WHO website
by different governments, but the route of transmission is still
difficult to track, and treatment experiences in different countries
cannot be effectively shared. A literature review of infectious
disease surveillance, presented by Jajosky and Groseclose [12],
and an analysis of the timeliness of reporting by the National
Notifiable Diseases Surveillance System showed that longer
reporting lags and the variability among the states limit its
usefulness. Some systems have the function of being a static
continuous spatial map of infectious disease risk, while others
have the function of continuously updating the reporting of
infectious diseases, but there is still no system that combines
these two functions [13].

After the rise of COVID-19, the problem has developed into
the pathogenic spread across, and among, nations by means of
international travel, which has unfortunately enabled the
pathogens to invade new countries and adapt to new
environments and hosts faster [14,15]. In many countries where
the public health infrastructure is poor or where there is an
insufficient budget to develop it, the ability of electronic disease
surveillance, including data collection and an analysis capability,
should be improved [16,17]. Furthermore, the data exchange
of international infectious disease reports and information has
certain constraints, not only out of fear for the repercussions on
trade and tourism but also because of the delays in data transfer
through the multiple levels of governments or organizations
[18]. After experiencing epidemic infectious diseases caused
by mutant viruses such as SARS and MERS, we have found
that, when facing treatment for unknown diseases, related health
organizations and authorities should conduct comprehensive
tests, using different drugs and treatment methods, and they
should then present the differences between each case and the
analyzed treatment results to find the best treatment. However,
this process is tedious and dangerous, and it creates uncertainties
regarding patient treatment. In the face of new infectious
diseases, the exchange of treatment results and case experiences
is critical.

When facing a new type of infectious disease, it is important
not only to treat the disease but also to prevent its contagion.
For example, hundreds of COVID-19 cases in South Korea were
found to have occurred at the same church. Hundreds of cases
in Japan were found to have originated on a cruise ship. In Hong
Kong, several cases were found to have been infected through
a hot pot meal. Iran’s speedy and large-scale infection may be
due to specific types of religious behavior. In Italy, the outbreak
may have been caused by the Italian culture, where hugs and
kisses are a common way of greeting someone. During the

SARS outbreak in 2003, it was found that infections were caused
by the drainage designs of high-rise buildings [19]. Information
on the correlation between the context of the event, living,
transportation or environmental design, religion, and cultural
behavior is critical for studying COVID-19 transmission.

To understand the epidemiology and trends of COVID-19, the
WHO has provided a template for a case-based reporting form
and a data dictionary for that case-based reporting form, and it
has requested member countries to report probable and
confirmed cases of COVID-19 infection within 48 hours of their
identification [20]. These reports are sent through the National
Focal Point and the Regional Contact Point for International
Health Regulations at the appropriate WHO regional office.
The WHO has asked the countries to provide aggregated data
for surveillance when it is not feasible to report case-based data.

However, to the best of our knowledge, there has thus far been
no functional collaborative global case exchange model that
can cocreate case data on COVID-19 and facilitate care
coordination across countries. The aim of this study is to design
an infectious disease surveillance module for the global
exchange of infectious cases and the sharing of treatment
experience. Information on the movement and path tracking of
cases, including the linkage and correlation between each case,
can also be included in infectious disease control in various
countries. Therefore, when an infectious disease outbreak
occurs, it can be quickly controlled.

In the initial stages of the COVID-19 outbreak, little research
was available on the data format of the disease, and no one knew
what the best data format was; there had only been some
discussions on the importance of clinical data exchange
regarding the disease.

Currently, several places have created a Fast Healthcare
Interoperability Resources (FHIR)–based COVID-19 data
structure. A good example is provided by the National
Coordinator for Health Information Technology in its
Interoperability Standards Advisory section of Interoperability
for the COVID-19 Novel Coronavirus Pandemic [21,22],
namely, the Logica COVID-19 (FHIR v4.0.1) Implementation
Guide CI Build. The Logica used Health Level 7 (HL7) FHIR
profiles for COVID-19 to create an implementation guide for
a collection or library of data elements that relate to COVID-19.
This can be used in many different situations where COVID-19
data are shared to support patient care, billing, research, or
public reporting.

Another example can be found in the Dedalus COVID-19
Solution [23]. In their “COVID-19 Simplifier Project,” they
used FHIR resources in the Dedalus COVID-19 Solution
software. The data elements cover a patient self-assessment, a
remote clinical assessment, and telemedicine and
self-monitoring. They claimed that their first activations will
be in Italy and France. Our study uses a similar method that
started from COVID-19–related clinical data, and we used the
International Patient Summary (IPS) as a basis for the data
structure. The IPS document is an electronic health record
(EHR) extract that contains essential health care information
for the necessary care of patients. Due to the rapid outbreak of
the disease in the early weeks, no format had been designed for
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the exchange of COVID-19 data. Therefore, we designed a
version of the IPS that can be used for COVID-19.

An IPS document is an EHR extract that contains essential
health care information about a patient [24]. It is designed to
support the used case scenario for unplanned, cross-border
care, but it is not limited to that. It is intended to be international
(ie, to provide generic solutions for global application beyond
a particular region or country), and the IPS data set is minimal
and nonexhaustive, specialty agnostic, and condition
independent yet still clinically relevant. The design, global
scope, and utility of IPS toward unplanned cross-border care,
and its potential for reuse, make it suitable for a situation like
COVID-19. The FHIR confirmed that IPS, including the
symptoms, therapies, medications, and laboratory data, can be
efficiently transferred and exchanged on the system for easy
access by physicians. Patient data are deidentified to protect
their privacy. In addition, the blockchain-based architecture can
be used to ensure the security and immutability of the case data.

Our goal is to provide an immediate reference for people to use
in the current crisis, so the design is not focused on a single use
case, and the IPS therefore has a more general data structure
that focuses on the clinical data needed for COVID-19.

We understand that the data structure will not be perfect or
comprehensive, but it can be modified in the future after more
and more institutions use the data structure to exchange records.
According to the research of Holmgren et al [25], the inability
of hospitals to receive electronic data is an obstacle for the
effective monitoring of patient symptoms. Therefore, the aim
of our study is to create a COVID-19 data structure and a system
that can share the data among health care institutions. It is
expected that the proposed system can contribute to the control
of the COVID-19 situation.

Methods

Architecture for the Global Infectious Disease
Surveillance and Case Tracking Model
This study designs a global infectious disease surveillance and
case-tracking model, and it includes a “Case Study Upload
Module,” a “Global Case Study Exchange Module,” and a “Case
Tracking Module.” Each module has different goals. The
architecture of the global infectious disease surveillance and
case-tracking model is shown in Figure 1.

Figure 1. Architecture for the Global Infectious Disease Surveillance and Case Tracking module. FHIR: Fast Healthcare Interoperability Resources;
RWD: Responsive Web Design.

The main goal of the “Case Study Upload Module” is to allow
physicians worldwide to continuously upload the IPS documents

and to include detailed information about the treatment of
patients with COVID-19. Through sharing experience and
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patient summaries with other physicians, they can find better
essential treatment methods. This module has the ability to
identify and verify the identity of physicians in different
countries or regions. The “Global Case Study Exchange
Module” allows physicians to brainstorm together on different
patient summaries and to learn about, and find, possible potential
treatments. A large amount of open and complete information
is required for currently unsolved disease treatment issues.
Under the condition of privacy protection and the provision of
correct information with regard to the different case symptoms,
treatment methods, drugs, etc, it may be possible to find the
best antidote to solve the infectious disease crisis the world is
facing. The “Case Tracking Module” allows Centers for Disease
Control and Prevention (CDC) members to track a patient’s
movement path before a diagnosis is made. The tracking map
is shown in the module. According to different patients’
statements about their own moving paths, a moving map can
be established that contains international paths. CDC members
will be able to carry out risk control and track high-risk groups
according to this map, thereby effectively controlling the scope
of disease infection and completing it as soon as possible.

The security and correctness of the IPS are protected by
blockchain architecture. When IPS data are uploaded, the details
of the data will be deidentified, the block will store the data
update log, and the IPS hash value is calculated by the Secure
Hash Algorithm (SHA)-256. The IPS data are stored in the
HAPI FHIR database, which is open source and an
implementation of the interoperability of HL7 FHIR for health
care systems in Java. It was developed as an open community

by a global team [26]. The IPS continuity of each patient will
be connected through the information of the blockchain. User
identities are divided into two types, namely, physicians and
CDC members. Physicians need to be authenticated through
their medical ID certificate in their countries, and CDC members
are registered and managed by the CDC units in various
countries.

The IPS Tailored for COVID-19 Case Data
An “International Patient Summary Implementation Guide” has
been published by HL7 FHIR. The goal is to provide a universal
international solution for global health care service applications.
This study uses the IPS (Standard for Trial Use 1-FHIR R4,
launched on August 6, 2019) as a case study, as it provides
treatment and health care information records for global cases
of unknown infectious diseases. IPS is a minimal and
nonexhaustive patient summary, which means that it is not
intended to copy the full content of an EHR. The IPS is usable
by clinicians for the unscheduled cross-border care of a patient
and focuses on a patient’s current condition, instead of anything
specific to a particular condition. Furthermore, the IPS is applied
on a global scale to address the international feasibility of use
as much as possible.

To provide a reference for global cases, the IPS is designed to
include information on the following: “Medication Summary,”
“Allergies and Intolerances,” “Problem List,” “Immunizations,”
“History of Procedures,” “Diagnostic Results,” “Vital Signs,”
“Past History of Illness,” “Plan of Care,” “History of Location
and Moving Path before Diagnosis,” and “Location.” The
structure of the IPS is shown in Figure 2.

Figure 2. IPS contents mapped to the structures of FHIR resources. FHIR: Fast Healthcare Interoperability Resources; IPS: International Patient
Summary.
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Case Study Upload Module for IPS Protection and
Validation
The physician uploads the patient’s IPS document to the
system’s HAPI server, and the HAPI server corresponds to the
IPS index with the blockchain architecture. The IPS index
information was designed to connect the data from the HAPI

server, including the IPS hash value and the encrypted IPS index
value. The deidentified and simplified case data include the
gender, age, symptoms, country, and location index value of
the HAPI server. After the physician has been authenticated,
they have permission to upload the IPS document and view its
study cases. The encryption and decryption for the data upload
process and architecture is shown in Figure 3.

Figure 3. The encryption and decryption for the data upload process and architecture. FHIR: Fast Healthcare Interoperability Resources; IPS: International
Patient Summary.

The steps of this process are as follows:

• Step 1: The certified physician uploads the patient’s IPS
file to the system, and the IPS file will be stored in the HAPI
server. Patient identification will be replaced by a globally
unique identifier (GUID), which is an 128-bit number that
is used to identify the information in the system.

• Step 2: The data index position of the IPS is obtained from
the HAPI server.

• Step 3: The private key of the uploaded physician is used
to encrypt the IPS index of the data, which is stored in the
HAPI server.

• Step 4: The anonymous IPS public information is obtained
from the HAPI server, including the mobile path index
position, gender, age, country, and symptoms.

• Step 5: The hash value of the IPS file is calculated by the
SHA-256 encryption function.

• Step 6: The content of this block is transferred to the
blockchain architecture, and a new block is established by
the blockchain architecture.

Global Case Study Exchange Module
In a state of globalization, new diseases or clinical pathways
that are not treated correctly are likely to rage around the world.
COVID-19 has spread worldwide, and therapeutic vaccines and
drugs have not yet been developed to treat it. This study
constructed a global patient summary exchange model and
shared the global research progress through case analyses so
that physicians in different regions of the world can refer to the
results of acquisition and test cases while at the same time
obtaining and learning more about the unknown disease and
finding the best treatment process.

Our study is designed for IPS sharing, which can help clinical
physicians to find successful treatments and clinical pathways
to improve the patients’ survival and reduce sequelae. We have
designed the model so that physicians need to register first and
provide proof of their identity. The system provides each
physician with a privacy key for IPS decryption. This system
allows physicians to view the summary of the patient cases that
have been uploaded all over the world, and it provides a filter
function of the cases. Specific cases can be tracked by using
this module. The process of how physicians get the IPS files of
global study cases is shown in Figure 4.
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Figure 4. Process of physicians getting the IPS files of global case studies. FHIR: Fast Healthcare Interoperability Resources; IPS: International Patient
Summary; SHA: Secure Hash Algorithm.

We designed a nine-step process for completing the Systems
Engineering Initiative for Patient Safety (SEIPS) access to
international cases, which includes a data search, decryption,
verification, and transmission.

• Step 1: The system verifies the identity of the user,
confirming that the user is a physician with registration
data.

• Step 2: A list of global patients and simple case information
is provided to the physicians, including the patient’s region,
country, age, and gender.

• Step 3: The index of the selected SEIPS is decrypted by the
privacy key of the physician who is uploading the IPS file.

• Step 4: The selected patient IPS file is retrieved from the
decentralized database.

• Step 5: The decrypted IPS data are hashed again by
SHA-256.

• Step 6: The hash value that is decrypted in step 5 is
compared to the hash value in the blockchain.

• Step 7: If the two hash values are equal, it means the data
are correct, and the decrypted data are transmitted to the
physician.

• Step 8: The system confirms that the physician has obtained
the decrypted case study data.

• Step 9: All the IPS files of the selected cases are presented
on the physician’s display.

The module is designed as a web-based application, and it
includes the Open Application Programming Interface (API)
architecture. The module provides various APIs to let the public
and private physicians’clinic management system operate easily
with the module and to conduct the case exchange.

Case Tracking Module for Infectious Disease
Prevention
The prevalence of international tourism and the rapid movement
of populations, in an era of globalization, have increased the
spread of COVID-19. In just 3 months, it has spread from a
limited area (one city in Asia) to becoming a source of infection
throughout the world, and the number of infected people
continues to increase.

To effectively control the scope of infection and prevent
continued expansion, the movement path of patients who are
infected needs to be tracked. The FHIR “Location” resource is
included in the patient’s IPS file, and it helps CDC members
effectively track the patients and prevent the continued spread
of the disease, based on the record of moving paths and time
stamps. The workflow of case tracking is shown in Figure 5.
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Figure 5. Workflow of case tracking. CDC: Centers for Disease Control and Prevention.

Structure of Blockchain Security
The blockchain architecture was established as the security
protection mechanism of IPS data, and the HAPI server was
used as a data server for the FHIR IPS. The block in the
blockchain is public data for all users and includes the IPS index
information and deidentified simple case data, which includes
gender, age, symptoms, country, and the HAPI server data index.

Blockchains have many different authority mechanisms. In this
study, considering the privacy of a patient’s medical data and
the need to process a large amount of medical information, the
blockchain was built in a private chain, and a Proof of Authority
(PoA), with a fast transaction speed and high privacy, was

adopted as the consensus on the blockchain. In 2015, PoA was
proposed by the Ethereum cofounder, Gavin Wood [27]. This
consensus algorithm is used to set up trusted nodes as block
validators. It is a centralized consensus mechanism that ensures
data security and data verification through authorization
mechanisms. The blocks on the chain are generated by trusted
nodes, which can improve the efficiency of the generating blocks
and ensure consistent data. At the mean times, the system runs
well. The ownership of the nodes depends on the policy of the
health care authority in different areas. For example, it can be
a hospital center or the CDC of a nation.

The process of generating a new block includes four steps, as
shown in Figure 6.

Figure 6. The process of generating a new block. FHIR: Fast Healthcare Interoperability Resources; IPS: International Patient Summary; MVC:
model–view–controller.

• Step 1: The IPS index of the HAPI server is transmitted to
the node.

• Step 2: The private key is used to sign the content in the
block.

• Step 3: The block content is transferred to the private
blockchain domain.

• Step 4: The authority node generates a new block.

Blockchain architecture will automatically copy the new block
data to other nodes to complete the goal of blockchain
decentralization.

Results

Global Infectious Disease Surveillance of the IPS for
Case Studies
When facing the spread of an unknown disease around the
world, such as COVID-19, global case studies must be shared
and exchanged quickly. Clinical data must be allowed to be
transmitted efficiently and safely to jointly find the most
appropriate control and treatment methods through international
cooperation. Because different patients have different disease
histories, family disease histories, and life environments, their
symptoms and disease progression will be different.

An example of this is the SARS outbreak in 2003. After the
outbreak, Hong Kong found numerous problems in the
surveillance systems of communicable diseases, and the 2003
contact tracking system was inadequate for dealing with the
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scale of the SARS epidemic. The public health surveillance
systems were not well developed in the private sector and in
community clinics, there was no comprehensive laboratory
surveillance system, and the hospital authority’s laboratory
database was not linked to the department of health in the early
stages of the epidemic.

This study thus designs an IPS that complies with infectious
disease surveillance and clinically meaningful data, according

to the IPS HL7 FHIR guidelines. The IPS that we designed
includes the following: “Medication Summary,” “Allergies and
Intolerances,” “Problem List,” “Immunizations,” “History of
Procedures,” “Diagnostic Results,” “Vital Signs,” “Past History
of Illness,” “Plan of Care,” and “History of Location and
Moving Path before Diagnosis.” The IPS content with the
structures of FHIR resources is shown in Figure 7.

Figure 7. International Patient Summary contents are mapped to the structures of the Fast Healthcare Interoperability Resources.

The Medication Summary section includes a description of the
current and past medications that a patient takes. The Allergies
or Intolerances section of a patient includes a description of the
kind of reaction, the agents that caused it, as well as the
criticality and the certainty of the allergy. The Problem List
section includes clinical problems and the conditions of the
patient that are currently being monitored. The Immunizations
section includes a patient’s current immunization status and
pertinent immunization history. The History of Procedures
section includes a description of the patient procedures that are
within the scope of the IPS. The Diagnostic Results section
includes the relevant observations and in vitro biological
specimens that are collected from the patient. In this section,
the laboratory, imaging, and pathology reports may be included.
The Vital Signs section includes the data collected when the
patient received a medical service or was under surveillance in
the hospital, such as the body temperature, blood pressure, heart
rate, respiratory rate, height, weight, and BMI. The History of
Illnesses section includes the patient’s disease history. This
section can help physicians to make clinical decisions and get
more information from the data. The Plan of Care section
includes a description of the clinical care, such as a plan of the
proposals, goals, monitoring, tracking, and ordering of
requirements to improve the patient’s condition. The History

of Location and Moving Path section includes where the patient
has moved from and to during the incubation period of the
infectious disease, as well as the location where the patient was
infected (eg, a hospital, hotel, restaurant, bus, plane, or cruise
ship). This section is important for controlling the spread of the
disease, identifying potential patients, and completing
prevention.

After the data of the FHIR IPS is uploaded, the system accepts
the input by using the JavaScript Object Notation format. The
FHIR IPS integrates each different resource into the same file
as a “bundle” resource, and finally, it is uploaded into the HAPI
server.

Global COVID-19 Surveillance System for Case
Studies
To achieve the purpose of global COVID-19 surveillance and
to enhance health resilience, the exchange of global infectious
disease information must be enacted. The COVID-19
surveillance system was built and designed based on the
blockchain architecture. The IPS is used to exchange case study
information among physicians. When physicians pass the system
verification, they can upload the case IPS file and get the IPS
data of other global cases from the system. The IPS file should
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be uploaded daily by the physician. The system includes daily
IPS uploading and an enhancement plan, which covers real-time
uploading through the interoperation of the clinic system with
the module, based on the Open API architecture.

All physician users have access to the case IPS files in the case
study system to support clinical decision making. The system’s
user interface (UI) is shown in Figure 8, and it is divided into
four panels that achieve different functions. The case diagram
is displayed in Panel 1, where users can obtain the number of
cases and international case distribution information. Cases
from different places can be selected in Panel 2, as well as in

the system UI, as shown in Figure 9. The screening conditions
are gender, age, and symptoms, which are used to
screen-reference the cases that are similar to their own case.
The case IPS information can be viewed in Panel 3, which
includes all the uploaded IPS files, the basic information of the
patient summary, and the IPS information on the blockchain.
The detailed IPS content is viewed in Panel 4. The authenticated
physician can use this system to share and exchange the patient
IPS files to provide international references. Through the
treatment of different cases, the drug treatments, and the
exchange of the patient treatment results, the spread of the
disease can be controlled, and treatment methods can be funded.

Figure 8. The COVID-19 surveillance system. IPS: International Patient Summary.

In our design, the user selects the country to track the case in
Panel 1, and the country circle represents the number of cases.
After selecting the country, Panel 2 will display the total number
of case data that have been uploaded, as well as the GUID that
each case represents in the system. Panel 2 gives the option to

filter cases. After selecting a case, Panels 3 and 4 will display
the IPS information of the selected case. The case selection
(Panel 2) is shown in Figure 9. It is a Taiwanese example, and
t h e  p a t i e n t  G U I D  i s  r e p r e s e n t e d  a s
“5AIF63A5-9KWE-1653-AR1I-49682N29A22.”

Figure 9. User interface of Case Selection (Panel 2).
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Blockchain Information of IPS Data
In this study, all uploaded IPS information will be verified and
stored in the uploading record by using the blockchain. Panel
3 is mainly the block information of the selected case. Figure
10 shows the block information of a patient whose GUID is

“57KGA693-2TLP-6A25-8Z8K-764A8G9A994.” In the
example, two blocks mean that the case has two uploaded IPS
files, and the block information includes a time stamp, the
GUID, and the IPS-hash and -index, as well as the moving
location, country, gender, age, and symptoms.

Figure 10. User interface of case tracking by block information.

IPS File of COVID-19 Case
A COVID-19 case report is to be used as an example in this
study. On February 5, 2020, a female patient 52 years of age
presented with a fever and went to a hospital [28]. The patient
had type 2 diabetes and had visited Wuhan on January 20. She
developed a fever and myalgia 5 days after her return to Taiwan.
She self-reported that she did not have dyspnea, a cough, chest
pain, or diarrhea. The diagnosis of COVID-19 was made by a

real-time reverse transcription polymerase chain reaction. The
treatment for this patient was supportive care. The patient
received the antipyretic therapy, which consisted of 300 mg of
ibuprofen every 6 hours and 400 mg of acetaminophen every 6
hours for symptom management. The patient also received
approximately 6 liters of normal saline and 300 mg of
guaifenesin for her continued cough. An example of a
COVID-19 IPS file is shown in Figure 11.
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Figure 11. An example of a COVID-19 IPS file. IPS: International Patient Summary.

The following is additional information about the patient:

• Medication Summary
• 6 liters of normal saline ondansetron
• 300 mg of guaifenesin
• 300 mg of ibuprofen
• 400 mg of acetaminophen

• Problem List
• Dry cough
• Fever
• 2-day history of nausea
• 2-day history of vomiting

• Immunizations
• History of Procedures

• Patient received 300 mg of guaifenesin for her cough
and approximately 8 liters of normal saline during the
first 6 days of hospitalization.

• Vital Signs
• Body temperature of 37.5 °C
• Blood pressure of 138/82 mm Hg
• Pulse of 105 beats per minute
• Respiratory rate of 15 breaths per minute
• Oxygen saturation of 95% while the patient was

breathing ambient air

• History of Illness
• Hypertriglyceridemia
• Hypertension

Based on other IPS files, international physicians can refer to
the care plans of other patient, as well as their disease history,
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medication, and therapy, and give their own patients the
appropriate therapy. Our system provides a new architecture
for the exchange of IPS files.

Case Tracking of COVID-19
From the establishment of the infectious disease case-tracking
module, and by using the location information in the IPS file
of the patient, we can track the moving paths of infectious
disease cases. The location information of the patient is recorded
in the block contents on the blockchain and is not protected as
personal clinical data. Therefore, the location information can
be retrieved and used by the system for the purpose of tracking
the moving paths for different cases. The Case Tracking module
has been established for CDC members to track cases and
prevent the spread of a disease. Based on this module, CDC
members can identify the moving paths of cases and design a
case tracking plan for the epidemic investigation. The UI of the

COVID-19 case tracking system is shown in Figure 12. The UI
is divided into two panels. Nine cases that were diagnosed as
COVID-19 in Taiwan were sampled as an example to show the
case tracking function of the system. Their data were uploaded
onto the blockchain, and the distributions of the moving paths
of all cases is shown in Panel 1, where we can see all the
worldwide cases as well as their moving paths in different colors
on the map. The detailed case moving path information and
history record is shown in Panel 2, with the locations, time
stamps, and possible activities. In Panel 2 of Figure 12, we show
the detailed information of one case. We can see that from
March 15-21, 2020, the case had travelled in the United
Kingdom. The case came back to Taiwan on March 21, showed
some symptoms, and went to the emergency room. The case
was confirmed as COVID-19 on March 23, and respirator use
was started on March 27. From these nine samples, we can see
that all of the cases were imported from outside of Taiwan.

Figure 12. The COVID-19 Case Tracking system. Panel 1 shows the distributions of the moving paths of all the cases. Panel 2 shows the detailed
moving path information and history record with the locations, time stamps, and possible activities. CT: computed tomography; RT-PCR: reverse
transcription polymerase chain reaction.

Discussion

After the outbreak of infectious diseases such as SARS, MERS,
and COVID-19, it is well-known that international cooperation
for disease treatment is critical, especially due to the current
high frequency of travel between countries around the world.
Diseases such as SARS and MERS not only affect people’s
health but also seriously affect the world economy [29].
Although the deterioration of a disease condition depends on
many variables, when facing unknown diseases, experience
sharing and the exchange of advice are still key points. The
control and treatment of any disease needs to be found as soon
as possible. To control and treat the disease, a global case study
sharing system must be established, not only for clinical data
sharing but also for the development of treatment methods.

Through the system designed by this study, minimal and useful
patient summary data can be shared. Physicians only need to
focus on essential clinical data that can be followed up on, and

they can try a specific treatment or medicine when facing
unknown diseases such as COVID-19. Data from other countries
or other patients can be taken as a reference for patient care and
treatment. According to published studies, having a fever and
a cough are the dominant symptoms of COVID-19, while
gastrointestinal symptoms are uncommon [5,30,31]. One report
presents the first confirmed case of COVID-19 in the United
States, including the process of identification, diagnosis, clinical
course, management, and the patient’s symptoms [3]. Overall,
there is an important need for coordination between clinicians
and public health authorities, as well as for the rapid transfer of
clinical information relating to the care of patients with
COVID-19.

One case study of the first-known imported case of COVID-19
infection in Taiwan describes how the doctor gave the patient
supporting treatment for all her symptoms. However, there is
still a lack of details on the clinical information about the patient
[28]. Another study of numerous cases was conducted by Chan
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et al [32] at Hong Kong University. They found that the outbreak
of COVID-19 in Wuhan, China was similar to the 2003 SARS
outbreak in Guangzhou, China. Both outbreaks initially
happened in the animal-to-people transmission model and not
by person-to-person transmission in the community. The case
study exchange from the model and the subsequent knowledge
exchange, analysis, conclusion, planning, and evaluation will
provide a basis for understanding the experiences of previous
epidemics, like SARS and MERS, and help to streamline the
disease prevention and control measures (eg, regulations for
animal and wet markets, patient isolation and tracking, contact
quarantine, and public health and hygiene education) to prevent
any rapid spread. As their system was helpless against SARS,
Hong Kong later developed the Communicable Disease
Information System to provide real-time and intelligent
syndromic and communicable disease surveillance; to enable
rapid intervention and quicker outbreak and emergency
responses via field investigations, outbreak control, responsive
risk communication, ongoing analysis, alert generation,
predictive capability, and early outbreak detection; and to offer
a framework for strategic planning and program evaluation. We
can rapidly gather information for COVID-19 through
international channels, but the information is still not clear
enough to use as a reference for treating patients. Lipsitch et al
[33] showed that viral testing should not be used just for clinical
care, and public health efforts should use it to target the
trajectory and severity of the disease. Guan et al [34], from the
State Key Laboratory of Respiratory Diseases, noted the
limitations of COVID-19 research due to the collection of data
from different structures of electronic databases and the urgent
timeline for data extraction. Some cases, therefore, have
incomplete clinical data of the patients’ exposure history and
laboratory testing [34].

The main challenge of COVID-19 is that we do not have enough
knowledge of the therapy, control methods, and full spread route
of the virus, which can only be obtained from the patient. Based
on the experience of rapid virus transmission and the burden
on the health care system, a global information system is
essential. When analyzing the development of COVID-19, it
seems that an effective global communicable disease
surveillance system has not yet been developed. The disease
data are not timely or effectively linked. Physicians and
scientists around the world are unable to obtain sufficient disease
information in a thorough and timely manner to control the
epidemic. Currently, the exchange of case data for clinical
research on COVID-19 is incomplete and not quick enough,
which limits the development of a treatment design. Even if
many case reports were to be submitted, the goals of real-time
tracking, data exchange, and referencing could not be achieved.
Therefore, to reduce the restrictions on COVID-19 research, an
EHRs–based information communication system is necessary,
as it can quickly achieve such goals for the public.

This study created the IPS of infectious diseases that physicians
can access when treating patients with COVID-19. We have
also established a secure blockchain architecture for the
protection of the IPS, and we have completed the application
of tracking patients’ moving path. The IPS case studies can be
exchanged through our system and verified through the

blockchain architecture. Over the past few years, blockchain
has been used in many different fields, not only with regard to
medical records (EHRs and personal health records) but also to
medical data exchange issues. Benil and Jasper [35] introduced
blockchain architecture for managing EHRs. In its design, the
EHR is stored in the cloud, and its integrity in the cloud will be
checked through the blockchain. This is a similar architecture
to our study and proves that the blockchain can protect and
verify EHRs. Fan et al [36] proposed a blockchain-based
consensus mechanism for medical information data security
and privacy in the medical system. Sun et al [37] presented a
distributed signature scheme for medical systems with a
record-sharing protocol that is based on blockchain. Yang and
Li [38] designed an architecture for securing the EHR system,
which is based on distributed ledger technology, to improve the
interoperability of health record exchanges between different
organizations. Chen et al [39] introduced a searchable encryption
scheme for EHRs by using blockchain. Blockchain architecture
can ensure data security and verify that the information is
correct, and it is therefore a suitable architecture for global IPS
file exchange.

The results of this study can help health authorities respond
quickly to the transmission and spread of any unknown disease,
and it can provide a good system for information retrieval on
disease transmission. Another benefit of this system is that it
can help public health researchers form study trials and analyze
data from different countries. A trial on medication treatment
in patients with COVID-19 found that the lopinavir–ritonavir
treatment added to the standard supportive care, but it was not
significant for clinical improvement or mortality in patients
with COVID-19 [40]. Other research on the use of chloroquine
and hydroxychloroquine in COVID-19 shows that the use of
these drugs is premature and potentially harmful [41].

However, the clinical observation details of patients were not
described by the authors. It is hard to identify which supportive
care works best for patients in different situations. Another
effective means for fighting an unknown virus could be using
a common forum to facilitate the mutual sharing of experiences,
best practices, therapies for patients, and the possible useful
medications and outcomes from clinical interventions being
trialed in various countries in a secure, trustworthy manner. The
system designed by this study can become an effective tool for
facilitating global collaboration and cooperation, and for
promoting collective evidence-based efforts to address the
unprecedented situation created by COVID-19. However, this
study has some limitations. At present, there is no optimal
treatment, and complete information about this disease has not
yet been found. Governments, medical institutions, and
physicians from all over the world should cooperate in the study
of this virus. Without international cooperation, global interests
will have significant losses. This study has completed the design
and development of a global infectious disease surveillance and
case tracking system for COVID-19, and found that it has a
stable foundation and is a balanced system. However, there is
still a need to test the effectiveness of a large number of users
uploading and exchanging data simultaneously. In the future,
our team will have discussions with governments, international
medical service providers, and medical institutions to activate
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this system and to promote international cooperation and development during the COVID-19 outbreak.
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Abstract

Background: Regular physical activity is proven to help prevent and treat noncommunicable diseases such as heart disease,
stroke, diabetes, and breast and colon cancer. The exercise data generated by health and fitness devices (eg, treadmill, exercise
bike) are very important for health management service providers to develop personalized training programs. However, at present,
there is little research on a unified interoperability framework in the health and fitness domain, and there are not many solutions;
besides, the privatized treadmill data transmission scheme is not conducive to data integration and analysis.

Objective: This article will expand the IEEE 11073-PHD standard protocol family, develop standards for health and fitness
device (using treadmill as an example) based on the latest version of the 11073-20601 optimized exchange protocol, and design
protocol standards compliance testing process and inspection software, which can automatically detect whether the instantiated
object of the treadmill meets the standard.

Methods: The study includes the following steps: (1) Map the data transmitted by the treadmill to the 11073-PHD objects; (2)
Construct a programming language structure corresponding to the 11073-PHD application protocol data unit (APDU) to complete
the coding and decoding part of the test software; and (3) Transmit the instantiated simulated treadmill data to the gateway test
software through transmission control protocol for standard compliance testing.

Results: According to the characteristics of the treadmill, a data exchange framework conforming to 11073-PHD is constructed,
and a corresponding testing framework is developed; a treadmill agent simulation is implemented, and the interoperability test
is performed. Through the designed testing process, the corresponding testing software was developed to complete the standard
compliance testing of the treadmill.

Conclusions: The extended research of IEEE 11073-PHD in the field of health and fitness provides a potential new idea for
the data transmission framework of sports equipment such as treadmills, which may also provide some help for the development
of sports health equipment interoperability standards.

(JMIR Med Inform 2020;8(12):e22000)   doi:10.2196/22000

KEYWORDS

ISO/IEEE 11073-PHD; treadmill; standard frame model; test standard; sports health data

Introduction

In order to prevent noncommunicable diseases, the World Health
Organization recommends that the world establish special
actions to encourage and guide people to participate in more
sports, and therefore released the global action plan on physical

activity 2018-2030 [1]. To achieve this goal, people need to
carry out scientific and effective exercise. Health management
service providers usually develop special and personalized
training programs for users, and collect user’s sports data
through a series of sports and health equipment including
treadmills, power cars, wearable devices, and so on. These data
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can be incorporated into the personal health record [2], and the
treadmill data can be integrated into a personalized health
management service system along with data from other sports
and health equipment.

Therefore, we need to customize a data flow interoperability
protocol suitable for treadmills, and the protocol should
preferably have the same semantic syntax as the exchange
protocol of other sports and health equipment under the
framework of a large protocol family. In this way, we can make
multiple sports and health equipment conform to the same data
exchange format, which greatly reduces the integration difficulty
and cost of personal sports data, and facilitates the
comprehensive analysis of multiple sports parameters.

The ISO/IEEE 11073 personal health data standard is a set of
standards that address the interoperability of personal health
equipment (such as scales, blood pressure meters, blood glucose
meters). The 11073-PHD protocol family provides a unified
semantic grammar data exchange framework for medical device
and personal health equipment.

11073-PHD defines an agent device role, which represents a
device that provides sports health data, and transmits the
obtained data to the master device; a manager device role, which
receives sports health data from one or more slave devices by
wireless or wired transmission. Thanks to the 11073 protocol,
personal health equipment has a unified data transmission
protocol at the application layer.

In the 11073-PHD protocol family, 11073-20601 [3] is an
optimal exchange protocol, which establishes an abstract logical
connection framework between the manager and the agent. This
general modeling framework is composed of 3 core models:
domain information model (DIM), service model, and
communication model, which are respectively used for the
semantic description of information and its interrelation and the
abstract expression of access interface, definition of data access
service, description of interaction behavior, and definition of
session synchronization mechanism.

The existing 11073-PHD [4,5] framework helps to provide
interoperability for health equipment; unfortunately, compared
with the designing and development of equipment and
applications in the area of disease management, less efforts had
been made to address the demand in the field of health and
fitness, which has led to the fact that it cannot effectively support
the richer personalized training applications, nor can fully
respond to the potential capabilities of various equipment in the
sports ecology centered on treadmills. Besides, there are a lot
of legacy treadmill devices in the existing sports equipment
market [6]. It is a major trend to intelligently transform these
inventory devices. If a set of widely applicable interoperable
standards can be properly applied, it will greatly reduce the
difficulty of equipment transformation and system integration,
and provide a unified and standardized interface for system
integrators and third-party application developers.

In summary, it is necessary to develop suitable interoperability
standards for treadmills, but there is less research work in this
field. The development of standards for treadmills based on the
latest version of the 11073-20601 exchange protocol can fill

the above gaps in a technically appropriate and cost-effective
manner. At present, no related research or project
implementation is available. Therefore, we plan to expand a set
of data transmission protocols specifically suitable for treadmills
based on the 11073-PHD protocol family, and design a set of
data stream detection schemes that match the protocol.

Methods

Design of PHD-Based Treadmill Interoperability
Framework
In the design of treadmill interoperability framework, the main
work is to create a DIM. First, we determine the parameters that
the treadmill may transmit, then map the data type to the
11073-20601 general framework, add the attribute type of the
mapped object according to the parameter type, and finally,
determine the corresponding attribute value. As for the service
and communication models, there is not much difference from
the definition in 11073-20601.

Personal information such as height, weight, and age, and also
speed, heart rate [7], distance, and other data generated during
exercise during the marked period are essential for the analysis
of personal exercise conditions and the formulation of
personalized exercise plans [8]. Through the design of the
following treadmill objects, the user’s movement process can
be mainly described, and each concept is briefly explained in
the following sections.

Session
A session is similar to an envelope and contains all measures
related to an activity scenario or an exercise scenario. Each
exercise set defines the start date and time of the scenario and
the activities and duration of the activities that the user
participates in during the scenario.

Subsession
A subsession is similar to an envelope and contains all the
metrics related to the session. Each sport item defines the start
date, start time, and duration of the sport item, and also includes
the activities that the user participates in during the duration of
the sport item.

Age
The age is usually entered manually by the user. The agent can
use the age for derivative calculations (eg, calculating the
maximum recommended heart rate).

Weight
Weight is usually a setting manually entered by the user,
although the device can measure it directly. The weight setting
may be used by the device to derive calculations; for example,
to calculate the energy consumed during jogging.

Height
The height is usually a setting manually entered by the user.
The altitude setting may be used by the device to derive
calculations, for example, to calculate BMI.
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Distance
The distance defines the total distance covered since the start
of the session or event. Distance can be specified as an actual
distance concept, for example, meters or feet; it can also be
specified as a more abstract concept, for example, the number
of steps or the number of stairs climbed. In the latter case, the
distance represented by MDC_DIM_STEP (11520) is equal to
the step measurement.

Energy Consumption
Energy consumption refers to the amount of energy consumed
since the start of a session or event.

Dynamic Heart Rate
Heart rate can be observed as the maximum value, minimum
value, and average value of a movement or action, and can also
be expressed as an instantaneous value. This rate is a key
indicator of physical exertion. In particular, the observed
maximum heart rate is an important observation value that may
be used to calculate the user’s VO2max.

Slope
Slope indicates the steepness of the slope, which can be
expressed as the minimum value, average value, or maximum
value in the session or subsession, or it can be expressed as the
instantaneous value. Positive values indicate uphill and negative
values indicate downhill. Therefore, the minimum slope value
represents the steepest downhill slope during a session or item.

Maximum Recommended Heart Rate
The maximum recommended heart rate [9] is usually manually
entered by the user (or doctor) or calculated. The simplest
estimation method is h = 220 – a, where h is the maximum
recommended heart rate and a is the age. The maximum
recommended heart rate can be used to provide background
information for other values, such as the maximum heart rate
value, minimum heart rate value, and average observed heart
rate value that can be reached during an exercise set.

Program Identifier
This measured value identifies the exercise program used by a
person during a session or item.

Session–Subsession–Start–Indicator
“Session–Subsession–start–indicator” is used to mark the start
position of the continuously monitored session or subsession.

Speed
Speed adds additional contextual information to the ongoing
movement and is used to capture the speed of the user through
a distance. Speed can be reported as the minimum speed value,
average speed value, or maximum speed value in a session or
subsession, or as an instantaneous speed report.

Target Heart Rate Range
The target heart rate range [10] is the recommended heart rate
for a certain session or subsession. Users can try to keep their

heart rate within this range to achieve the preset exercise goal.
When the user’s actual heart rate exceeds this range, the
treadmill directly gives the user a prompt, or sends the
corresponding event message to the manager. In a certain session
or event, the user should try to keep his/her speed above the
lower limit to reach the preset exercise goal.

Target Speed Lower Limit
The target speed lower limit is the minimum speed for a certain
session or sport item. The user should try to keep his speed
above the lower limit to reach the preset exercise goal. When
the user’s actual speed exceeds this range, the treadmill directly
gives the user a prompt, or sends the corresponding event
message to the manager.

Target Energy Consumption Lower Limit

It indicates the minimum energy that should be consumed in a
certain session or item. The user should try to consume more
energy than the target value to reach the preset exercise goal.
When the user’s energy consumption value exceeds this target
value, the treadmill directly gives the user a prompt, or sends
the corresponding event message to the manager.

User’s Exercise Standard and Health Status
According to the training goal set by the user in advance, the
treadmill will send some key information related to the user’s
exercise physiological state to the manager in the form of an
event report, such as “exceeded the upper limit of the target
heart rate range,” “reached target energy consumption lower
limit” and other information.

Target Heart Rate Distribution Plan
It is set by several “heart rate range + duration” parameter
groups. The user’s exercise goal is to control his/her heart rate
within a specified heart rate range for a certain length of time.
Each parameter group contains 3 elements in sequence: the
lower limit of the target heart rate range, the upper limit of the
target heart rate range, and the duration of the target heart rate
range.

VO2max

The maximal rate of oxygen uptake (VO2max) is an important
determinant of cardiorespiratory fitness and aerobic
performance. VO2max can be estimated indirectly based on the
heart rate at rest (HRrest) and the heart rate at maximal exercise
(HRmax)[11].

VO2max = (15.0 mL min–1 kg–1)·(HRmax/HRrest)

Construction of Treadmill DIM

Treadmill Object Instantiation
Complete the mapping of the parameters mentioned above to
the numeric objects and enumerated objects defined by
11073-20601. The object example diagram is illustrated in
Figure 1.
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Figure 1. The object instance diagram of the treadmill DIM. DIM: domain information model; MDS: medical device system.

Design of the Main Attributes of the Object
For the object instance model related to device information
characteristics, it is necessary to further design the attributes of
the object, and to achieve the semantic representation of the
device information characteristics carried by the object through
the definition of attribute values [12]. Instanced objects can be
divided into 2 categories: the first category is medical device
system (MDS) objects representing context information, and
the other category is metric-derived objects representing
treadmill user data parameters.

MDS Object

The Dev-Configuration-Id attribute holds a locally unique 16-bit
identifier that identifies the device configuration. The System-Id
attribute is an IEEE EUI-64 address, consisting of a 24-bit

organizationally unique identifier and a 40-bit
manufacturer-defined ID [13]. The agent sends the
Dev-Configuration-Id and System-Id to the manager in the
“associated state,” so that the manager determines the
configuration of the slave device during the association. If the
manager has saved the configuration information related to
Dev-Configuration-Id and System-Id, then it further identifies
the Dev-Configuration-Id of the agent, and both agent and
manager skip the “configuration state” and enter the “operating
status.” However, if manager cannot recognize the
Dev-Configuration-Id of the System-Id, then both agent and
manager enter the “configuration state” [14].

The attribute value design of the MDS object is shown in Table
1.

Table 1. Object MDS’s attributes.

The value of attributeAttribute

0Handle

{“Manufacturer”,“Model”}System-Model

IEEE EUI-64 addressSystem-Id

Extended configuration: 0x4000-0x7FFFDev-Configuration-Id

Types and versions of device specifications: {MDC_DEV_SPEC_PROFILE_HF_CARDIO，3}; Device subtype
and version: {MDC_DEV_SUB_SPEC_PROFILE_TREADMILL, 1}

System-Type-Spec-List
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Numeric Object

For the design of attribute values of numeric objects, the main
aspects are the following:

• Handle: An unsigned, locally unique, 16-bit number, where
each numeric object has a different nonzero handle value.

• Timestamp: All numeric object instances are associated
with the session or subsession objects defined above. In the
case of a session summary, only the session or subsession
should have a timestamp attribute, whereas in the case of
continuous monitoring of the session or subsession, the
numerical object sampling instance not only reports the
session summary attribute, but also each numerical object
sampling instance brings its own timestamp attribute.

• Source-Handle-Reference: The session or subsession may
contain associated numerical objects which represent
observations that are generated throughout the session or

subsession. Therefore, the Source-Handle-Reference
attribute of a numeric object should identify whether the
numeric object instance is associated with a session object
or a subsession object. If the numeric object is an
observation value at the session level, the
Source-Handle-Reference attribute should be equal to the
value of the handle of the session object. Similarly, if the
numeric object is an observation value at the subsession
level, the Source-Handle-Reference attribute should be
equal to the value of the handle of the subsession object.

• BasicNuObsValue: In the numerical objects mentioned
above, except for the target heart rate range and the target
heart rate allocation plan, the basic numerical observations
are all represented by the SFLOAT-Type type. Table 2 lists
the design of Type, Metric-Spec-Small, and Unit-Code
attribute values of other objects except the target heart rate
range and target heart rate allocation scheme.

Table 2. Remaining attributes of numeric objects other than Target Heart Rate Range and Target Heart Rate Allocation Scheme.a

Unit codeObject and type

Age

MDC_DIM_YR (2368)MDC_HF_AGE (126)

Height

MDC_DIM_M (1280)MDC_LEN_BODY_ACTUAL (57668)

Weight

MDC_DIM_KILO_G (1731)MDC_MASS_BODY_ACTUAL (57664)

Distance

MDC_DIM_M (1280) | MDC_DIM_CENTI_M (1278) | MDC_DIM_STEP
(11520)

MDC_HF_DISTANCE (144)

Energy Consumption

MDC_DIM_CAL (8352) | MDC_DIM_JOULES (3968)MDC_HF_ENERGY (196)

Dynamic Heart Rate

MDC_DIM_BEAT_PER_MIN (2720)MDC_HF_HR (180)

Speed

MDC_DIM_M_PER_SEC (2816) | MDC_DIM_CENTI_M_PER_MIN
(6577) | MDC_DIM_STEP_PER_MIN (11616) | MDC_DIM_KI-
LO_M_PER_HR (11939)

MDC_HF_SPEED (168)

Target, Speed, and Low Threshold

MDC_DIM_M_PER_SEC (2816) | MDC_DIM_CENTI_M_PER_MIN
(6577) | MDC_DIM_STEP_PER_MIN (11616)

MDC_HF_SPEED_TARGET_LOW (2105)

Target Energy Consumption and Low Threshold

MDC_DIM_CAL (8352) | MDC_DIM_JOULES (3968)MDC_HF_ENERGY_EXPENDED_TARGET_LOW (2109)

VO2max

MDC_DIM_ML_PER_KG_MIN (4420)MDC_HF_VO2_MAX (2112)

Slope

MDC_DIM_PERCENT (544) | MDC_DIM_ANG_DEG (736)MDC_HF_INCLINE (176)

aMetric-Spec-Small: mss-avail-intermittent | mss-avail-stored-data | mss-updt-aperiodic | mss-msmt-aperiodic | mss-acc-agent-initiated | mss-cat-setting.

The Target heart rate range object uses the
Compound-Basic-Nu-Observed-Value attribute to transmit the
lower and upper limit values of the Target heart rate range. The

value of this attribute is only transmitted through a fixed format
event report. When the treadmill sends a configuration report,
it will report the Attribute-Value-Map attribute value of the
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target dynamic heart rate range. In the subsequent fixed format
reports, the data content can be directly transferred according
to that described in the Attribute-Value-Map without having to
transfer the attribute Object Identifier [15] and the value length,
which can reduce the length of the APDU to some extent. Here,
the attribute sequence value of the Attribute-Value-Map is the
attribute-id of the observation attribute, the timestamp attribute
of the composite data, and the corresponding attribute value

length. The Metric-Structure-Small attribute is used to identify
each item of data in the observation list one by one. The order
of the Metric-Id-List should correspond to the order of the
observation items in the composite observation. Here, the first
Object Identifier of the Metric-Structure-Small attribute value
sequence is MDC_HF_HR_TARGET_LOW, and the second
is MDC_HF_HR_TARGET_HIGH. For other attributes and
their recommended attribute values, please refer to Table 3.

Table 3. Remaining attributes of the object Target Heart Rate Range.

The value of attributeAttribute

MDC_HF_HR_TARGET_RANGE (2100)Type

mss-avail-intermittent | mss-avail-stored-data | mss-updt-aperiodic | mss-msmt-aperiodic | mss-acc-agent-
initiated | mss-cat-setting

Metric-Spec-Small

First: MDC_HF_HR_TARGET_LOW (2101); Then: MDC_HF_HR_TARGET_HIGH (2102)Metric-Id-List

ms-struct-compound(1)-multiple observationsMetric-Structure-Small

MDC_DIM_BEAT_PER_MIN (2720)Unit-Code

MDC_ATTR_NU_CMPD_VAL_OBS_BASIC (2677) and MDC_ATTR_TIME_ABS (2439)Attribute-Value-Map

It consists of 2 SFLOAT-Type dates: the first representing target heart rate low threshold and the other
one representing high threshold.

Compound-Basic-Nu-Observed-Value

The Target heart rate allocation scheme object is a data
structure, which is set by several parameter groups of “heart
rate range + duration + identifier.” The user’s exercise goal is
to control his/her heart rate within a specified heart rate range
for a certain length of time.

Each parameter group contains 3 elements in sequence: lower
limit of the target heart rate range, upper limit of the target heart
rate range, duration of the target heart rate range, and associated
content identifier. The first 2 elements are provided by
Compound-Simple-Nu-Observed-Value, the third element is
provided by Measure-Active-Period, and the fourth element is
provided by Context-Key. The value of this attribute is only

transmitted via a fixed format event report. The following is an
example of a heart rate distribution structure:

{

[70, 100, 180 seconds，“PLAN123”]

[100, 120, 240 seconds，“PLAN123”]

[120, 140, 120 seconds，“PLAN123”]

}

Table 4 illustrates the design of other attributes of the target
heart rate allocation scheme.

Table 4. Remaining attributes of the object Target Heart Rate Aallocation Scheme.

The value of attributeAttribute

MDC_PART_PHD_HF|MDC_HF_HR_TARGET_ALLOC_PLANType

mss-avail-intermittent | mss-avail-stored-data | mss-updt-aperiodic | mss-msmt-aperiodic | mss-acc-agent-
initiated | mss-cat-setting

Metric-Spec-Small

First: MDC_HF_HR_TARGET_LOW; Then: MDC_HF_HR_TARGET_HIGHMetric-Id-List

ms-struct-compound(1)-multiple observationsMetric-Structure-Small

MDC_DIM_BEAT_PER_MINUnit-Code

First: MDC_ATTR_NU_CMPD_VAL_OBS_SIMP; Second: MDC_ATTR_TIME_PD_MSMT_ACTIVE;
Third: MDC_ATTR_CONTEXT_KEY (2680)

Attribute-Value-Map

Refer to the text description above.Compound-Simple-Nu-Observed-Value

The length of the period that each target range in the Target Heart Rate Aallocation Scheme lasts.Measure-Active-Period

The value of this attribute is used to encode and identify different Target Heart Rate Aallocation to in-
dicate the difference. Each target range that belongs to the same set of target heart rate allocation schemes
uses the same identifier.

Context-Key
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Enumeration Object

Table 5 illustrates the attribute value design of enumerated

objects, and Table 6 lists the observed values of enumerated
objects.

Table 5. Attributes of enumeration objects.

The value of attributeObject and attribute

Program Identifier, Session, Subsession, Session-Subsession-Strat-identifier, Users’ Sports Standard and Health Status

An unsigned locally unique 16-bit number.Handle

MDC_HF_PROGRAM_ID (108); MDC_HF_SESSION (123);
MDC_HF_SUBSESSION (124); MDC_HF_STRT (125);
MDC_HF_USER_FITNESS_HEALTH_STAT (126)

Type

mss-avail-intermittent | mss-avail-stored-data | mss-updt-aperiodic | mss-
msmt-aperiodic | mss-acc-agent-initiated.

Metric-Spec-Small

See the description of the timestamp attribute of the previous numeric
object.

Absolute-Time-Stamp

A FLOAT-Type that defines the length of the observation period (in sec-
onds).

Measure-Active-Period

The value is a free string type and is not restricted by any nomenclature.Enum-Observed-Value-Simple-Oid (only Object Program Identifier
owns)

Refer to Table 6.Enum-Observed-Value-Simple-Oid (This attribute is owned by all
objects except Program Identifier.)

Refer to the footnote.aSource-Handle-Reference

aSource-Handle-Reference: For objects such as Program Identifier, Session-Subsession-Strat-identifier, Users’ Sports Standard and Health Status, their
Source-Handle-Reference attribute value is the handle of Session or Subsession related to themselves; Subsession’s Source-Handle-Reference attribute
value is the handle of the Session associated with itself; Session does not have this attribute.

Table 6. Observations of enumeration object.

SemanticObject and identifier

Session, Subsession, Session-Subsession-Strat-identifier

RestMDC_HF_ACT_REST (1001)

UnknownMDC_HF_ACT_UNKNOWN (1007)

Mix of multiple types of sportsMDC_HF_ACT_MULTIPLE (1008)

JoggingMDC_HF_ACT_RUN (1011)

WalkMDC_HF_ACT_WALK (1017)

Walking under waterMDC_HF_ACT_WATER_WALK (1028)

Users’ Sports Standard and Health Status

The user’s heart rate is below the lower limit of the target heart rate range.MDC_HF_STAT_LT_HR_TARGET_LOW (2200)

The user’s heart rate is above the upper limit of the target heart rate range.MDC_HF_STAT_HT_HR_TARGET_HIGH (2203)

The user’s speed is higher than the target speed lower limit.MDC_HF_STAT_HT_SPEED_TARGET_LOW (2207)

The user’s energy consumption has exceeded the target energy consumption
lower limit.

MDC_HF_STAT_HT_ENERGY_EXPENDED_TARGET_LOW
(2217)

Standard Compliance Testing Process
Because the above data transmission framework is derived from
the 11073-20601 optimization exchange protocol, it is necessary
to determine whether the data stream sent by the instantiated
object that implements this standard meets the 20601 standard
[16]. If the instantiated object of the treadmill interoperability
framework passes the test, it indicates that the content it sends
can have the same semantic grammar as the information sent
by other devices that have met the 11073-PHD protocol family
[17]. The testing content of this article will focus on the 3

models [18,19] of 11073-PHD, namely, (1) PHD DIM, (2) PHD
service model, and (3) PHD communication model.

The test of DIM is mainly based on the events of MDS.

• MDS-Configuration-Event: If the manager cannot learn the
current agent configuration information from the associated
historical records, the agent sends the event to the manager
during the startup of the “configuration” state. This event
provides static information about the measurement functions
supported by the agent.
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• MDS-Dynamic-Data-Update-Var: This event provides
dynamic data (usually measurement data) from the agent
for the objects supported by the agent, and reports the
object’s data in the format of a common attribute list
variable.

• MDS-Dynamic-Data-Update-Fixed: Use the fixed format
defined by the Attribute-Value-Map attribute of the
measured object or MDS object to report data. The specific
test items are shown in Multimedia Appendix 1 (see the
“DIM test” section).

The service model provides the basic function of data access
sent between the agent and the manager, and is used to exchange
data derived from the DIM. The inspection items mainly include
the command to obtain MDS device information (GET) and
data report (Event Report). The specific test items are shown
in Multimedia Appendix 1 (see the “SER test” section) [20].

The connection state machine defines a series of states and
substates experienced between the agent and manager, including
states related to connection, association, and operation. The
communication model also defines the entry, exit, and error
conditions of various states during the various running processes
of measurement data transmission, which should be detected.
The specific test items are illustrated in Multimedia Appendix
1 (see the “COM test” section).

Test Software Framework Design

Module Design
The test software is mainly divided into 5 modules: Abstract
Syntax Notation One (ASN.1) [21] module, encoding module,
decoding module, communication module, and test module.

• The ASN.1 module, which defines all data types and data
structures of C struct, reuses the ASN.1 code block in the
Continua Enabling Software Library (CESL) [22] open
source software package provided by Continua in the test
software we designed.

• The encoding module generates an APDU binary data
stream according to the instantiated APDU object and the
Medical Device Encoding Rules used in 11073-20601.

• The decoding module, which refers to the ASN.1 module,
converts the binary data stream of the data buffer into an
instantiated APDU structure.

• The communication module adopts the abstract factory
pattern, calls different subclass factories to produce and
initialize instantiated objects of different underlying
connection methods, and establishes data connections under
the application layer.

• The test module will carry out the testing procedures
according to the instantiated object returned by the decoding
module, and generate a test result report.

Data Receiving and Testing Process
The data stream sent by the treadmill is transmitted to the
application layer listening port of the test software via
transmission control protocol (TCP)/USB/Bluetooth/Zigbee or
other methods, and then the instantiated object produced by the
communication module abstract factory [23] calls the message
receiving function to store the binary stream into the data buffer.
The decoding module refers to the APDU structure of the ASN.1
module and decodes the binary stream, and then generates the
C++ instantiated object of the APDU. The test module calls
application programming interface functions according to the
designed test items, extracts the data related to the test items
from the APDU instantiated objects for testing, and finally
generates a test report.

Data Transmission Process
According to the APDU to be sent, refer to the ASN.1 module
to establish the initialization APDU object, and then call the
application programming interface function to assign the
initialization object. The encoding module uses the Medical
Device Encoding Rules to encode the assigned APDU object
and generate a binary data stream. The communication module
calls the message sending function to send the data to the
simulated treadmill. The entire workflow of the test software
is shown in Figure 2.
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Figure 2. The process of receiving and sending data streams in the test software. APDU: application protocol data unit; TCP: transmission control
protocol.

Results

Implementation of Treadmill Interoperability
Framework
To verify the feasibility of the above standards, we built a
simulated treadmill device based on the CESL open source
software package. The treadmill device transmits the age, height,
weight, maximum recommended heart rate, and other
information once using the MDS-Dynamic-Data-Update-Var
method (variable format data report); the

MDS-Dynamic-Data-Update-Fixed (fixed format data report)
method is used to transfer the Session and Subsession, dynamic
heart rate, speed, energy consumption, and other information
multiple times. The fixed format data report eliminates the
description information such as data length and attribute ID.
This is because the treadmill includes its own data format
context in the configuration report and sends it to the test
software before reaching the operating state. For fixed data sent
periodically, fixed format data reports can save some byte
streams. Figure 3 shows the data sent to the test software by the
simulated treadmill acting as an agent.

Figure 3. Information sent by simulated treadmill.

Testing Software
Here, the test software also plays the role of a manager,
receiving the data stream sent by the treadmill to the binding

port through the socket communication method of TCP,
completing the test work according to the process, and then
generating the final test result set report. The test software
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provides TCP, user datagram protocol, Zigbee, and other
low-level interface connection methods, and provides optional
MDS test attributes in the initial interface. Figure 4 shows the

initial interface of the test software, selecting the connection
method and test attributes.

Figure 4. Test software start interface.

Figure 5 illustrates the test result of device configuration ID.
During the association between an agent and a manager, the
value of dev-config-id in the “Association Request” message
indicates the configuration that the agent wants to use. In the
subsequent “Configuration Information Report” and “GET
Response” APDU, dev-config-id value should be consistent. In
the APDU sent by the simulated treadmill, we deliberately set
the value of the dev-config-id in “Association Request” and
“GET Response” to 0x4001, and set the value of the
dev-config-id in the “Configuration Information Report” to
0x4000. As can be seen in the test report generated by the test
software, the consistency check item of dev-config-id has not
passed, and it is given its value in the respective APDU.

Figure 6 shows the ongoing communication process between
the test software and the treadmill. In the large box on the left
side of the interface, we can see the binary data stream and
partial decoding information of each APDU in real time; the
first small box on the right side of the interface is the objects
and attributes contained in the configuration report sent by the
treadmill; the second small box is the attribute information of
the MDS object; the third small box presents the observation
value sent by the treadmill and the corresponding timestamp in
real time. After the routine test is completed, the state machine
test button is clicked to perform the state machine test. After
all the test items are tested, a test report will be generated, and
the results will be displayed in a list. Figure 7 demonstrates a
small part of the results of the final test report.
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Figure 5. The value of dev-config-id in different APDUs and its consistency test results. APDU: application protocol data unit.

Figure 6. Data transmission between test interface and treadmill.
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Figure 7. Part of the test results.

Discussion

In this article, we propose a treadmill data interoperability
protocol based on 11073-PHD, and design a set of standard
compliance testing methods that match it. Using the testing
software, we tested the data stream sent by the simulated
treadmill equipment and generated a corresponding test result
report.

In previous work, most manufacturers of sports and health
equipment such as treadmills have their own set of data
transmission standards, which is very unfavorable for data
integration analysis and processing between different
manufacturers and different sports and health equipment. In our
work, through tailoring and customizing the existing
11073-PHD, we designed a set of protocol standards suitable
for the transmission of treadmill data. This not only provides a
possibility to unify the data transmission standards of treadmill

equipment among various manufacturers, but more importantly,
it also provides an idea for unifying the application layer data
format of other sports and health equipment. Sports health
equipment is designed based on the 11073-PHD-based
customized design, so that they have the same semantic syntax,
making it possible for a gateway device to integrate multiple
sports health data.

We have investigated 4 popular treadmill private protocols used
in the market to transmit key data (Table 7), and compared all
their functions with the standard protocols we developed. While
Hlink’s running posture detection data have no corresponding
functional objects, the key data-bearing function objects
established by our interoperability framework can cover all the
main data of the 4 devices. A unified semantic syntax can help
expand and upgrade service capabilities, which may greatly
facilitate remote data capture, thereby enhancing the remote
interaction between service providers and users.
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Table 7. Comparison of proprietary protocols and standards.

Standard objectPrivate standard and key data

SOLE

Dynamic heart rate (beats/minute)Pulse (beats/minute)

Distance (km)Distance (km)

Energy consumption (kcal)Calories

Age (years), weight (kg), height (cm), user’s exercise standard and health
status

User profile

Program identifierProgram name

Speed (km/h)Speed (km/h)

Slope (degree)Slope (degree)

Hlink (HUAWEI)

Energy consumption (kcal)Calories

Dynamic heart rate (beats/minute)Heart rate (beats/minute)

Distance (km)Distance

Speed (km/h)Speed

Distance (steps)Steps

Program identifierProgram

—aRunning posture

Keep

Maximum recommended heart rate (beats/min)Maximum heart rate (beats/min)

SessionSports set

Energy consumption (kcal)Calories

Speed (steps/min)Step frequency

Speed (km/h)Speed

Distance (km)Distance

IOT (XIAOMI)

Speed (km/h)Speed

Distance (km)Distance

Distance (steps)Steps

Energy consumption (kcal)Calories

Program identifierMode

Slope (%)Slope (%)

a—: not available.

However, this work plan only supports some common data
information functions of treadmills in the usual sense. Some
plans, such as Hlink’s running posture detection, are not
completely covered. This requires a more comprehensive
arrangement and improvement in the next step. In addition, the
treadmill we define is just acting as an agent. However, if you
add some additional equipment that can be connected to a
treadmill, such as a sports watch, the treadmill plays a dual role.
When the treadmill is responsible for receiving data from the
sports watch, it acts as a master device; at the same time, the

treadmill transmits all its data to the gateway device. At this
time, it acts as an agent device. The above situation covers only
a small number of applications in the treadmill market, and our
standard is only applicable for treadmills with common features
at this stage. Finally, there is a lack of information expression
regarding the working state of the treadmill itself (the working
state of the electronic control board and the working state of
the sensing components). Further information describing
whether the speed and slope adjustment unit is working properly
can be added.
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