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Abstract

Background: Retinal imaging has been applied for detecting eye diseases and cardiovascular risks using deep learning–based
methods. Furthermore, retinal microvascular and structural changes were found in renal function impairments. However, a deep
learning–based method using retinal images for detecting early renal function impairment has not yet been well studied.

Objective: This study aimed to develop and evaluate a deep learning model for detecting early renal function impairment using
retinal fundus images.

Methods: This retrospective study enrolled patients who underwent renal function tests with color fundus images captured at
any time between January 1, 2001, and August 31, 2019. A deep learning model was constructed to detect impaired renal function

from the images. Early renal function impairment was defined as estimated glomerular filtration rate <90 mL/min/1.73 m2. Model
performance was evaluated with respect to the receiver operating characteristic curve and area under the curve (AUC).

Results: In total, 25,706 retinal fundus images were obtained from 6212 patients for the study period. The images were divided
at an 8:1:1 ratio. The training, validation, and testing data sets respectively contained 20,787, 2189, and 2730 images from 4970,
621, and 621 patients. There were 10,686 and 15,020 images determined to indicate normal and impaired renal function, respectively.
The AUC of the model was 0.81 in the overall population. In subgroups stratified by serum hemoglobin A1c (HbA1c) level, the
AUCs were 0.81, 0.84, 0.85, and 0.87 for the HbA1c levels of ≤6.5%, >6.5%, >7.5%, and >10%, respectively.

Conclusions: The deep learning model in this study enables the detection of early renal function impairment using retinal fundus
images. The model was more accurate for patients with elevated serum HbA1c levels.

(JMIR Med Inform 2020;8(11):e23472) doi: 10.2196/23472
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Introduction

Background
Chronic kidney disease (CKD) is defined as a gradual loss of
renal function, and it can progress to an advanced stage, termed
end-stage renal disease (ESRD). According to the 2016 annual
report of the US Renal Data System [1], the incidence of treated
ESRD increased gradually at the rate of 2%-4% from 2003 to
2016 in almost one-third of all countries [1]. Taiwan, in
particular, had the highest incidence of treated ESRD (493
patients per million in the general population) and the highest
prevalence of treated ESRD (3392 patients per million in the
general population) among all countries worldwide [1].
According to Taiwan’s National Health Insurance 2018 report
[2], CKD incurred the highest medical costs in the country,
approximately US $1.7 billion. Therefore, progress is required
in the prevention and screening of kidney disease in Taiwan.
In all the etiologies of CKD, diabetes is a leading cause; it has
been estimated that 1 in 4 adults with diabetes have impaired
renal function [3]. Therefore, the monitoring of renal function
is especially important for patients with diabetes; it is also
crucial in countries where ESRD is prevalent.

With the increasing sophistication of artificial intelligence, deep
learning has been increasingly applied to various types of
medical imaging analysis, especially ophthalmology imaging
[4]. Among ophthalmology imaging techniques, retinal imaging
has been used to establish deep learning models for detecting
not only eye diseases (eg, diabetic retinopathy and glaucoma)
[5,6] but also systemic cardiovascular risks [7]. The
microvascular network in the retina can be easily observed; it
is structurally and physiologically similar to the vascular
structures of many other systems or organs and can be used in
the evaluation of various disorders, including systemic
hypertension, coronary artery disease, and central nervous
disorders [8-10]. Studies have also demonstrated that changes
in the retinal vasculature are associated with renal dysfunction
and reduced estimated glomerular filtration rate (eGFR) [11,12].

Objective
Scholars have recommended applying artificial intelligence to
the management and prevention of kidney disease [13].
However, few studies have developed deep learning–based
methods for detecting early renal function impairment from
retinal images. Therefore, we established a deep learning model
to detect early renal function impairment from retinal fundus
images. We also evaluated the performance of our model when
applied to patients with diabetes.

Methods

Study Population
In this retrospective study, we included patients who underwent
retinal fundus imaging examinations and laboratory tests at any
time between January 1, 2001, and August 31, 2019, at Chang
Gung Memorial Hospital (CGMH), Linkou Medical Center,
Taoyuan, Taiwan. The retinal fundus images were taken with
fundus cameras (Topcon Medical Systems, KOWA, and Digital
Non-Mydriatic Retinal Camera, Canon). The laboratory tests

conducted for serum creatinine and serum hemoglobin A1c

(HbA1c) were respectively performed with a colorimetric method
and high-performance liquid chromatography at the CGMH
Department of Laboratory Medicine. Demographic data,
including those on age and sex, were also retrieved from
CGMH’s electronic medical record system. This study was
approved by the CGMH Institutional Review Board (CGMH
IRB No. 201901544B0), and the requirement for informed
consent was waived because patient data were deidentified. The
study was conducted in accordance with the Declaration of
Helsinki.

Data Management
After the data were retrieved, retinal fundus images were linked
to the corresponding renal functions, which were measured by
eGFR. In our study, the eGFR was calculated using the
Modification of Diet in Renal Disease (MDRD) equation, which
includes the patient’s age, sex, and serum creatinine, as revised
by Levey et al [14]. We defined early renal function impairment

as eGFR <90 mL/min/1.73 m2, which was equal to or more
severe than the mildly decreased glomerular filtration rate
according to the definition published in the 2012 guidelines of
“Kidney Disease: Improving Global Outcomes” [15]. We only
included laboratory tests that had been conducted within 3
months before or after the corresponding retinal fundus images
were captured. Patients without available serum creatinine
results were excluded. We deidentified the data after the images
and laboratory data were linked. Subsequently, we excluded
retinal fundus images that had color filters, were merged, or
were neither macula- nor disk-centered. For an image to be
included, both the macula and disk were required to be visible.
We also excluded poor-quality images, such as those that had
a low resolution, were out of focus, had a large halo, or had a
large shadow. Multimedia Appendix 1 presents some examples
of the excluded images.

Model Architecture
The model architecture is illustrated in Figure 1. To reduce the
variation of illumination and camera resolution between the
different retinal images, all images were processed using the
method proposed by Graham [16]. All images were resized to
a resolution of 224 × 224 × 3 and were processed to reduce
variance in illumination between images before running the
algorithm. For the convolutional neural network (CNN), we
selected VGG-19 formulated by the Visual Geometry Group
[17]. We selected VGG-19 because it exhibited the best
performance in our preliminary model training relative to
ResNet, Inception V3, and Inception V4. Furthermore, in
previous research, VGG-19 exhibited comparable performance
to other deeper CNNs in medical imaging analysis in general
and in ophthalmological imaging in particular [18]. After the
CNN retrieved the image feature, a batch normalization layer
was added to accelerate training, and the features were flattened
to 1-dimensional vectors. Subsequently, we added 3 fully
connected layers that had a nonlinear rectified linear unit (ReLU)
activation function and 1 final output layer with the softmax
activation function. The results were classified results into 2
classes—class 0 and 1, which represented normal and impaired
renal function, respectively. The probability for each class was
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presented. As presented in Figure 1, the probability of disease
was 0.76, and a saliency map was generated based on the

features marked as determinative for the detection of renal
function impairment.

Figure 1. Architecture of the model for detecting early renal function impairment from retinal fundus images. ReLU: rectified linear unit.

Model Training and Performance
The data sets of all patients were partitioned into nonoverlapping
training, validation, and testing sets at an 8:1:1 ratio, and the
images from each patient were linked to the corresponding renal
function results. The model was trained, validated, and tested
on the basis of the images. The model was trained on a
workstation with an Intel Xeon Silver 4110 CPU at 2.10 GHz,
a NVIDIA GeForce GTX 1080 Ti (with 11 GB of video
memory) graphics card, and 125 GB of RAM. For this model,
the learning rate and batch size were set as 0.000005 and 32,
respectively. An Adam optimizer was used, and the model was
trained up to 120 epochs. The model was established based on
the achievement of maximum accuracy and minimum loss in
the validation set. The learning curve of the model is presented

in Multimedia Appendix 2. To analyze the model prediction,
we generated saliency maps (Figure 1), which identified the
region of the retinal fundus photo that contributed to the model’s
determination of renal function impairment. We also classified
the testing set according to the patient’s HbA1c levels.
Furthermore, the model performance was evaluated at HbA1c

levels of ≤6.5%, >6.5%, >7.5%, and >10.0% in the testing data
set.

Statistical Analysis
For the demographic data, continuous variables were expressed
in terms of the mean (SD). Chi-square tests and t tests were
conducted for descriptive analyses of categorical (sex) and
continuous (age and HbA1c) variables, respectively. To analyze
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the performance of our model, receiver operating characteristic
(ROC) curves were plotted, and the area under the curve (AUC)
for each ROC curve was calculated. AUC values of 0.7-0.8 and
>0.8 indicated acceptable discrimination and excellent
discrimination, respectively. An AUC value of 1 represented
perfect discrimination, and AUC value of 0.5 represented no or
random discrimination [19]. We also measured the sensitivity,
specificity, positive predictive value (PPV), and accuracy of
the model. Model performance was evaluated using the images
in the testing set. Statistical significance was indicated if P<.05.
Statistical analyses were conducted using SPSS (Version 23,
IBM Corp).

Results

Demographic Characteristics
In this study, we initially included 7167 patients with 51,666
retinal fundus images. We then excluded 13.32% (955/7167)
patients and 50.24% (25,960/51,666) images after applying the
exclusion criteria. The remaining 25,706 retinal fundus images
from 6212 patients were included in the final analysis, and each
patient may have a different number of images. The variance
was 1 to 33 images per patient. The training, validation, and
testing sets comprised 20,787, 2189, and 2730 images from
4970, 621, and 621 patients, respectively (Table 1).

Table 1. Distribution of patients with clinical information in the training, validation, and testing groups.

Testing

(n=621)

Validation

(n=621)

Training

(n=4970)

Total

(N=6212)

Characteristic

Sex, n (%)

335 (53.9)339 (54.6)2689 (54.10)3363 (54.14)Male

286 (46.1)282 (45.4)2281 (45.90)2849 (45.86)Female

51.6 (17.4)51.0 (19.1)58.7 (15.9)57.6 (16.6)Age (years), mean (SD)

80.4 (35.6)86.5 (34.1)77.8 (32.2)78.6 (32.6)eGFRa (ml/min/1.73 m2), mean (SD)

7.9 (2.1)7.6 (1.8)7.6 (1.9)7.6 (2.0)HbA1c
b (%), mean (SD)

aeGFR: estimated glomerular filtration rate.
bHbA1c: hemoglobin A1c.

Each patient was randomly assigned to a group, and all images
from a patient belonged only to the group the patient was
assigned to. With regard to demographic characteristics, 54.14%
(3363/6212) of the patients were male, and the mean age of all
patients was 57.6 (SD 16.6) years. As for clinical characteristics,

the mean eGFR and serum HbA1c levels were 78.6 mL/min/1.73

m2 (SD 32.6) and 7.6% (SD 2.0%), respectively. Table 2
presents the clinical information for normal and impaired renal

function (eGFR <90 mL/min/1.73 m2) in our study population.

Table 2. Clinical information of patients with normal or impaired renal function (N=6212); all P values are <.001.

Impaired renal function

(n=3104)

Normal renal function

(n=3108)

Characteristic

Sex, n (%)

1824 (58.76)1539 (49.52)Male

1280 (41.24)1569 (50.48)Female

64.1 (13.1)47.2 (16.1)Age (years), mean (SD)

7.5 (1.9)7.7 (2.1)HbA1c
a (%), mean (SD)

aHbA1c: hemoglobin A1c.

Compared with patients with healthy renal function, patients
with impaired renal function were more likely to be male
(impaired vs healthy: 58.3% vs 49.1%; P<.001), older adults
(64.1 years vs 47.2 years; P<.001), and with a lower serum
HbA1c level (7.5% vs 7.7%; P<.001). Multimedia Appendix 3
shows the clinical information in patients with stratified HbA1c

levels in the testing set.

Model Performance
The ROC curves obtained from tests of our model are presented
in Figure 2. Model performance for subgroups stratified by
serum HbA1c level was also tested. Model performance
increased gradually with serum HbA1c level.
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Figure 2. ROC curves for the model in detecting early renal function impairment in different groups of patients. ROC curves for (A) all patients (AUC
= 0.81, sensitivity = 0.83, specificity = 0.62, PPV = 0.73, accuracy = 0.73); (B) patients with HbA1c ≤ 6.5% (AUC = 0.81, sensitivity = 0.84, specificity
= 0.62, PPV = 0.77, accuracy = 0.75), (C) patients with HbA1c > 6.5% (AUC = 0.84, sensitivity = 0.89, specificity = 0.61, PPV = 0.77, accuracy =
0.77), (D) patients with HbA1c > 7.5% (AUC = 0.85, sensitivity = 0.89, specificity = 0.60, PPV = 0.82, accuracy = 0.79), and (E) patients with HbA1c

> 10.0% (AUC = 0.87, sensitivity = 0.89, specificity = 0.61, PPV = 0.77, accuracy = 0.77). AUC: area under the curve; HbA1c: hemoglobin A1c; PPV:
positive predictive value; ROC: receiver operating characteristic.

Saliency Maps
Representative saliency maps are presented in Figure 3, where
the regions responsible for the prediction of impaired renal
function are highlighted in the lighter color. In Figure 3, the

retinal-vessel features are marked for a true-positive case with
a relatively normal retinal fundus image. Common signs of
retina abnormality, such as exudation, hemorrhage, and drusen,
also played a role in the detection of renal function impairment.
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Figure 3. Selected retinal fundus images and their corresponding saliency maps in true-negative and true-positive cases. (A) No renal function impairment

detected. Patient’s eGFR = 102.6 mL/min/1.73 m2 and HbA1c = 13.4%. (B) Renal function impairment detected. Patient’s eGFR = 40.0 mL/min/1.73

m2 and HbA1c = 5.1%. (C) Renal function impairment detected. Patient’s eGFR = 50 mL/min/1.73 m2 and HbA1c = 6.5%. (D) Renal function impairment

detected. Patient’s eGFR = 80.5 mL/min/1.73 m2 and HbA1c = 7.3%. (E) Renal function impairment detected. Patient’s eGFR = 67.7 ml/min/1.73 m2

and HbA1c = 8.9%. eGFR: estimated glomerular filtration rate; HbA1c: hemoglobin A1c.
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Discussion

Main Findings
In this study, we developed a deep learning model for detecting
early renal function impairment from retinal fundus images.
The AUC of the model was 0.81 for the detection of early renal
function impairment in the general population, and the model
performed better when applied to patients with diabetes or
patients with elevated serum HbA1c levels.

Importance of Renal Function Screening
The 2016 annual report of the US Renal Data System [1] notes
that ESRD is becoming increasingly prevalent in many
countries, underscoring the increased burdens of CKD and
ESRD on society. Taiwan has a high incidence and prevalence
of CKD and ESRD, and the country bears significant health
care burden associated with CKD and ESRD [1,2]. Thus, several
studies in Taiwan have evaluated the etiology and screening of
kidney diseases [20,21]. In Taiwan, CKD prevention has been
hampered by low public awareness, infrequent eGFR
measurements, and delayed referrals [22,23]. Although a study
suggested the importance of comprehensive renal function
screening in high-risk populations, such as patients with diabetes
[15], evidence for the cost-effectiveness and benefits of routine
screening for CKD remain inconclusive because commonly
used tests with urine or blood are inconvenient and invasive
[24].

Deep Learning in Renal Function Using
Ultrasonography
Deep learning methods provide a potential solution to this
problem. With the increasing sophistication of artificial
intelligence, deep learning has been increasingly applied in
various fields, including medicine [25]. The use of artificial
intelligence for management of kidney disease has been recently
proposed, and its potential has been well recognized by
physicians [13]. Kuo et al [26] developed a deep learning model
for predicting renal function by using kidney ultrasound images.
Their model was more accurate (0.86) in detecting cases with

eGFR <60 mL/min/1.73 m2 than the judgments of experienced
nephrologists (0.60-0.80). Although our model had lower overall
accuracy (0.73 for all patients and 0.79 for patients with HbA1c

> 7.5%) relative to theirs, our model’s accuracy is still
comparable with that of the judgments of experienced
nephrologists employing ultrasound images. Moreover, our
model could detect early renal function impairment with eGFR

<90 mL/min/1.73 m2, a functionality that was not evaluated by
Kuo et al [26].

Deep Learning Using Retinal Fundus Images
Retinal fundus imaging can be executed even by untrained
medical staff and has high accessibility. Furthermore, a patient’s
retinal fundus images can be captured in less than 10 minutes,
and the patient can be promptly referred to a specialist if a
problem is detected [27]. A previous review on deep learning
in ophthalmology noted that retinal fundus images can be used
to identify several eye diseases, including glaucoma, macular
degeneration, refractive errors, and, most importantly, diabetic

retinopathy [18]. Furthermore, systemic cardiovascular risks
can also be determined from retinal images [7]. Those results
suggest the potential of using retinal photography for large-scale
disease screening.

Using Retinal Fundus Images for Renal Function
Prediction
In our study, we developed a deep learning model to detect early
renal function impairment. The model had excellent
discrimination (AUC=0.81; excellent discrimination was defined
as AUC >0.8) [19]. The saliency maps revealed that features in
retinal vasculature and of hemorrhages and exudations were
influential in the determination of impaired renal function. This
finding is compatible with the findings of previous reports on
specific retinal microvascular and structural changes in renal
function impairment [11,28]. When applied to patients with
diabetes, our model had a sensitivity as high as 0.89 but a
specificity of only 0.60. We noted that our model produced
several false positives for patients who shared some similar
ophthalmic pathologies presenting on the fundus images. These
pathologies included subretinal fluid, optic disc swelling caused
by optic neuritis, and retinal scarring (Multimedia Appendix
4). However, no robust association between these pathologies
and renal function is indicated in the literature. As noted in the
saliency maps, the model identified retinal vessel characteristics
and the presence of hemorrhage and exudation. Subretinal fluid
and optic disc swelling may alter retinal vascular features and
thus affect the model prediction. Ocular infection or
inflammation was also presented with retinal vascular change,
hemorrhage, exudation, and pigmented scars [29], which may
be similar to the retinal presentation of impaired renal function.
Therefore, these coexisting ocular pathologies may have reduced
model specificity. For future studies on deep learning, we
suggest the use of multimodal retinal images to predict renal
function impairment; the analysis of multimodal retinal images
has been reported to yield greater accuracy in diagnosing
age-related macular degeneration [30].

Comparison of Model Performance in Diabetes and
Between the Previous Study
Our model had a greater AUC and sensitivity for higher HbA1c

levels (up to AUC=0.87 for HbA1c >10%). Some possible
explanations for this performance include more profound
microvascular damage in patients with worse glucose control
and the coexistence of signs of diabetic retinopathy and diabetic
nephropathy, which were noted to be significantly associated
[31,32]. A deep learning algorithm was recently formulated by
a research group at the Singapore National Eye Center (SNEC)
[33]. Their algorithm was used to detect CKD with eGFR <60

mL/min/1.73 m2 by using both retinal images and risk factors,
individually and in combination, in 3 population-based screening
databases from Singapore and China [33]. Their image-based
model had an AUC of 0.91 in their internal validation (Singapore
Epidemiology of Eye Diseases database), AUCs of 0.73 and
0.84 in their external testing (Singapore Prospective Study
Program and Beijing Eye Study, respectively), and an AUC of
0.89 when applied in patients with diabetes. The overall
performance of our model (AUC=0.81) is in between the
performance levels of their model in their internal validation
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and external testing. This difference in performance is
attributable to differences in patient characteristics or model
architecture. Our hospital is a referral medical center with
comprehensive ophthalmology equipment for the management
of advanced eye diseases [34]. Compared with population-based
screening databases, our database featured more patients with
pathologies on the retina or other parts of the eye, which may
have increased the likelihood of model misdiagnosis [35]. In
addition, the model was trained using images from 1 of 3 types
of fundus cameras and 1 of 2 different image formats (JPEG or
PNG). This variety likely affected the predictive performance
of the model. Specifically, when our model was applied to the
subgroup of patients with diabetes, its performance (AUC =
0.84 in HbA1c >6.5%, 0.85 in HbA1c >7.5%, and 0.87 in HbA1c

>10.0%) was comparable to that of the SNEC model.

Study Limitations
Our study has some limitations. First, the results of the MDRD
formula for calculating eGFR did not reflect definite renal
function; variations related to ethnicity have been reported, and
this measure was noted to be less accurate when applied to the
Taiwanese population [21,36]. Second, as we aimed to detect
early renal function impairment (ie, eGFR <90 mL/min/1.73

m2), we did not test the efficacy of our model in predicting
advanced kidney diseases. Third, we discarded poor-quality
fundus images before training the model. However, poor-quality
images are encountered in clinical settings, and model
performance may thus be affected by factors such as patient
cooperation and medial opacities of the eye and small pupils
[27]. Although retinal fundus imaging is a relatively accessible
test, the feasibility of our model in real-world applications

requires further investigation. Fourth, the model’s detection of
renal function may be affected by signs from some ocular
diseases that are related to neither systemic vascular function
nor renal function. For example, certain retinal infections may
alter the model’s prediction of renal function impairment; such
infections are not associated with systemic vascular function
but share a common feature, namely the presence of
hemorrhages or exudates on the retina. By contrast, renal
function impairment with nonvascular causes, such as urinary
tract obstruction, may not present vasculature or retinal
abnormality in fundus images during the early disease phase.
In our study, selection bias may have occurred in the
subpopulation with a referral medical center. This subpopulation
has a higher proportion of patients with ocular diseases
coexisting with other organic diseases. Fifth, we did not perform
patient-matching between the training, validation, and testing
groups. Thus, differences in clinical characteristics may have
affected the learning and performance of the model. Finally,
the function of this model lies in screening rather than diagnosis.
A thorough kidney examination that includes ultrasonography
and insulin clearance remains crucial.

Conclusion
In conclusion, our study formulated and evaluated a deep
learning model for predicting early renal function impairment.
Our model also performed better, as indicated by the increased
AUC, when applied to patients with diabetes or patients with
elevated serum HbA1c levels. Color fundus images are easy to
obtain and can thus be feasibly applied to the detection of early
renal function impairment, especially in patients with diabetes,
in conjunction with our model.

Acknowledgments
The authors thank Acer Healthcare, Taiwan for providing technical support. The authors also thank Miranda Chun-Ya Kang and
Wallace Academic Editing for English editing. This study was funded by research grants from the National Science Council,
Taiwan (MOST 105-2314-B-182A-076 and MOST 106-2314-B-182A-045 -MY3), and Chang Gung Memorial Hospital, Taiwan
(CMRPG3C0171). The founding organizations had no role in the interpretation of the study results.

Authors' Contributions
EYCK, CCL, WCW, and YSH contributed to the conception and design of the study. Data were collected by CFK, KJC, CCL,
WCW, and YSH. Data analysis was conducted by CHL and YJH. YTH, JHK, WCW, and YSH contributed to data interpretation.
EYCK wrote the manuscript.

Conflicts of Interest
CHL and YJH are employees of Acer Healthcare, Taiwan.

Multimedia Appendix 1
Excluded retinal fundus images due to (a) the use of a color filter, (b) the image not being centered on the macula or disc, (c)
blurriness, (d) the presence of glares, (e) poor light exposure, and (f) an invisible macula.
[PNG File , 718 KB-Multimedia Appendix 1]

Multimedia Appendix 2
Learning curves of the model, demonstrating the learning rate in the epochs versus (a) train loss and (b) accuracy. The epoch of
56 with the lowest validation loss was selected for testing.
[PNG File , 156 KB-Multimedia Appendix 2]
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Multimedia Appendix 3
Clinical information of patients with normal or impaired renal function stratified by different HbA1c levels in the testing set.
[DOCX File , 16 KB-Multimedia Appendix 3]

Multimedia Appendix 4
Retinal fundus images from false-positive cases showing (a) a swollen optic disc due to idiopathic optic neuritis, (b) a chorioretinal
scar caused by previous inflammation, and (c) subretinal fluid caused by retinal detachment.
[PNG File , 408 KB-Multimedia Appendix 4]
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eGFR: estimated glomerular filtration rate
ESRD: end-stage renal disease
HbA1c: hemoglobin A1c

MDRD: Modification of Diet in Renal Disease
CNN: convolutional neural network
ReLU: rectified linear unit
ROC: receiver operating characteristic
AUC: area under the curve
PPV: positive predictive values
SNEC: Singapore National Eye Center
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