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Abstract

Background: Asthma causes numerous hospital encounters annually, including emergency department visits and hospitalizations.
To improve patient outcomes and reduce the number of these encounters, predictive models are widely used to prospectively
pinpoint high-risk patients with asthma for preventive care via care management. However, previous models do not have adequate
accuracy to achieve this goal well. Adopting the modeling guideline for checking extensive candidate features, we recently
constructed a machine learning model on Intermountain Healthcare data to predict asthma-related hospital encounters in patients
with asthma. Although this model is more accurate than the previous models, whether our modeling guideline is generalizable
to other health care systems remains unknown.

Objective: This study aims to assess the generalizability of our modeling guideline to Kaiser Permanente Southern California
(KPSC).

Methods: The patient cohort included a random sample of 70.00% (397,858/568,369) of patients with asthma who were enrolled
in a KPSC health plan for any duration between 2015 and 2018. We produced a machine learning model via a secondary analysis
of 987,506 KPSC data instances from 2012 to 2017 and by checking 337 candidate features to project asthma-related hospital
encounters in the following 12-month period in patients with asthma.

Results: Our model reached an area under the receiver operating characteristic curve of 0.820. When the cutoff point for binary
classification was placed at the top 10.00% (20,474/204,744) of patients with asthma having the largest predicted risk, our model
achieved an accuracy of 90.08% (184,435/204,744), a sensitivity of 51.90% (2259/4353), and a specificity of 90.91%
(182,176/200,391).

Conclusions: Our modeling guideline exhibited acceptable generalizability to KPSC and resulted in a model that is more accurate
than those formerly built by others. After further enhancement, our model could be used to guide asthma care management.
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Introduction

Background
About 8.4% of people in the United States have asthma [1],
which causes over 3000 deaths, around 500,000 hospitalizations,
and over 2 million emergency department (ED) visits each year
[1,2]. To improve patient outcomes and cut the number of
asthma-related hospital encounters including ED visits and
hospitalizations, predictive models are widely used to
prospectively pinpoint high-risk patients with asthma for
preventive care via care management. This is the case with
health care systems such as the University of Washington
Medicine, Kaiser Permanente Northern California [3], and
Intermountain Healthcare, and with other health plans in 9 of
12 metropolitan communities [4]. Once a patient is identified
as high risk and placed into a care management program, a care
manager will call the patient periodically to assess asthma
control, adjust asthma medications, and make appointments for
needed care or testing. Successful care management can help
patients with asthma obtain better outcomes, thereby avoiding
up to 40% of their future hospital encounters [5-8].

A care management program has a limited service capacity and
usually enrolls ≤3% of patients [9] with a given condition, which
places a premium on enrolling at-risk patients. Therefore, the
accuracy of the adopted predictive model (or lack thereof) puts
an upper bound on the effectiveness of the program. Previously,
several researchers have developed several models for projecting
asthma-related hospital encounters in patients with asthma
[3,10-22]. Each of these models would consider only a few
features, miss more than half of patients who will have future
asthma-related hospital encounters, and incorrectly project future
asthma-related hospital encounters for many other patients with
asthma [23]. These errors lead to suboptimal patient outcomes,
including hospital encounters and unnecessary health care costs
because of unneeded care management program enrollment.
When building machine learning models on nonmedical data,
people often follow the modeling guideline of checking
extensive candidate features to boost model accuracy [24-27].
Adopting this modeling guideline to the medical domain, we
recently constructed a machine learning model on Intermountain
Healthcare data to project asthma-related hospital encounters
in the following 12-month period in patients with asthma [23].
Compared with previous models, our model boosts the area
under the receiver operating characteristic curve (AUC) by at
least 0.049 to 0.859. Although this is encouraging, it remains

unknown whether our modeling guideline is generalizable to
other health care systems.

Objectives
This study aims to assess the generalizability of our modeling
guideline to Kaiser Permanente Southern California (KPSC).
Similar to our Intermountain Healthcare model [23], our KPSC
model uses administrative and clinical data to project
asthma-related hospital encounters (ED visits and
hospitalizations) in patients with asthma. The categorical
dependent variable has 2 possible values—whether the patient
with asthma will have asthma-related hospital encounters in the
following 12-month period or not. This study describes the
construction and evaluation of our KPSC model.

Methods

The methods adopted in this study are similar to those used in
our previous paper [23].

Ethics Approval and Study Design
In this study, we performed a secondary analysis of
computerized administrative and clinical data. This study was
approved by the institutional review boards of the University
of Washington Medicine and KPSC.

Patient Population
As shown in Figure 1, our patient cohort was based on patients
with asthma who were enrolled in a KPSC health plan for any
duration between 2015 and 2018. Owing to internal regulatory
processes, the patient cohort was restricted to a random sample
of 70.00% (397,858/568,369) of eligible patients. This sample
size is the maximum that KPSC allows for sharing its data with
an institution outside of Kaiser Permanente for research. As the
largest integrated health care system in Southern California with
227 clinics and 15 hospitals, KPSC offers care to approximately
19% of Southern California residents [28]. A patient was
deemed to have asthma in a particular year if the patient had
one or more diagnosis codes of asthma (International
Classification of Diseases [ICD], Tenth Revision [ICD-10]:
J45.x; ICD, Ninth Revision [ICD-9]: 493.0x, 493.1x, 493.8x,
493.9x) recorded in the encounter billing database in that year
[11,29,30]. The exclusion criterion was that the patient died
during that year. If a patient had no diagnosis code of asthma
in any subsequent year, the patient was deemed to have no
asthma in that subsequent year.

Figure 1. The patient cohort selection process. KPSC: Kaiser Permanente Southern California.
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Prediction Target (the Dependent Variable)
For each patient identified as having asthma in a particular year,
the outcome was whether the patient had any asthma-related
hospital encounter in the following year. An asthma-related
hospital encounter is an ED visit or hospitalization with asthma
as the principal diagnosis (ICD-10: J45.x; ICD-9: 493.0x,
493.1x, 493.8x, 493.9x). For every patient with asthma, the
patient’s data up to the end of every calendar year were used to
project the patient’s outcome in the following year as long as
the patient was deemed to have asthma in the previous year and
was also enrolled in a KPSC health plan at the end of the
previous year.

Data Set
For the patients in our patient cohort, we used their entire
electronically available patient history at KPSC. At KPSC,
various kinds of information on its patients has been recorded
in the electronic medical record system since 2010. In addition,
we had electronic records of the patients’ diagnosis codes
starting from 1981, regardless of whether they were stored in
the electronic medical record system. From the research data
warehouse at KPSC, we retrieved an administrative and clinical
data set, including information regarding our patient cohort’s
encounters and medication dispensing at KPSC from 2010 to
2018 and diagnosis codes at KPSC from 1981 to 2018. Owing
to regulatory and privacy concerns, the data set is not publicly
available.

Features (Independent Variables)
We examined 2 types of candidate features—basic and extended.
A basic feature and its corresponding extended features differ
only in the year of the data used for feature computation. We
considered 307 basic candidate features listed in Multimedia
Appendix 1 [31]. Covering a wide range of characteristics, these
basic candidate features were computed from the structured
attributes in our data set. In Multimedia Appendix 1, unless the
word different shows up, every mention of the number of a
given type of item such as medications counts multiplicity. As
defined in our previous paper [23], major visits for asthma
include ED visits and hospitalizations with an asthma diagnosis
code and outpatient visits with a primary diagnosis of asthma.
Outpatient visits with a secondary but no primary diagnosis of
asthma is regarded as minor visits for asthma.

Every input data instance to the model targets a unique (patient,
index year) pair and is employed to forecast the patient’s
outcome in the following year. For the (patient, index year) pair,
the patient’s primary care provider (PCP), age, and home address
were computed as of the end of the index year. The basic
candidate features of history of bronchiolitis, the number of
years since the first asthma-coded encounter in the data set,
premature birth, family history of asthma, and the number of
years since the first encounter for chronic obstructive pulmonary
disease in the data set were computed using the data from 1981
to the index year. All of the allergy features and the features
derived from the problem list were computed using the data
from 2010 to the index year. One basic candidate feature was
computed using the data in the index and preindex years: the
proportion of patients who had asthma-related hospital

encounters in the index year out of all of the patients of the
patient’s PCP with asthma in the preindex year. The other 277
basic candidate features were computed using the data in the
index year.

In addition to the basic candidate features, we also checked
extended candidate features. Our Intermountain Healthcare
model [23] was built using the extreme gradient boosting
(XGBoost) machine learning classification algorithm [32]. As
detailed in Hastie et al [33], XGBoost automatically computes
the importance value of every feature as the fractional
contribution of the feature to the model. Previously, we showed
that ignoring those features with importance values <0.01 led
to a little drop in model accuracy [23]. Using the basic candidate
features and the model construction method described below,
we built an initial XGBoost model on KPSC data. As a patient’s
demographic features rarely change over time, no extended
candidate feature was formed for any of the basic demographic
features. For each basic candidate feature that was
nondemographic, was computed on the data in the index year,
and had an importance value 0.01 in the initial XGBoost model,
we computed 2 related extended candidate features, one using
the data in the preindex year and another using the data in the
year that was 2 years before the index year. The only difference
between the extended candidate features and the basic feature
is the year of the data used for feature computation. For instance,
for the basic candidate feature number of ED visits in 2016, the
2 related extended candidate features are the number of ED
visits in 2015 and the number of ED visits in 2014. In brief, we
formed extended candidate features for only those suitable and
important basic candidate features. Our intuition is that among
all possible ones that could be formed, these extended candidate
features are most promising with regard to additional predictive
power. For the other basic candidate features with lower
importance values, those extended candidate features that could
possibly be formed for them tend to have little extra predictive
power and can be ignored. Given the finite data instances
available for model training, this feature extending approach
avoids a large rise in the number of candidate features, which
may cause sample size issues. We considered all of the basic
and extended candidate features when building our final
predictive model.

Data Analysis

Data Preparation
Peak expiratory flow values are available in our KPSC data set
but not in the Intermountain Healthcare data set used in our
previous paper [23]. On the basis of the upper and lower bounds
given by a medical expert (MS) in our team, all peak expiratory
flow values >700 were regarded as biologically implausible.
Using this criterion and the same data preparation method
adopted in our previous paper [23], we normalized data,
identified biologically implausible values, and set them to
missing. As the outcomes were from the following year and the
extended candidate features were computed using the data from
up to 2 years before the index year, our data set contained 6
years of effective data (2012-2017) over a total of 9 years
(2010-2018). In clinical practice, a model is trained on historical
data and then applied to future years’ data. To mirror this, the
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2012 to 2016 data were used as the training set for model
training. The 2017 data were employed as the test set to gauge
model performance.

Performance Metrics
As shown in the formulas below and Table 1, we adopted 6
standard metrics to assess model performance: accuracy,
specificity, sensitivity, negative predictive value (NPV), positive
predictive value (PPV), and AUC.

Accuracy=(TP+TN)/(TP+TN+FP+FN),

Specificity=TN/(TN+FP),

Sensitivity=TP/(TP+FN),

Negative predictive value=TN/(TN+FN),

Positive predictive value=TP/(TP+FP).

We performed a 1000-fold bootstrap analysis [34] to compute
the 95% CIs of these performance measures. We plotted the
receiver operating characteristic (ROC) curve to show the
tradeoff between sensitivity and specificity.

Table 1. The error matrix.

No asthma-related hospital encounter in the
following year

Asthma-related hospital encounters in the following
year

Outcome class

FPbTPaProjected asthma-related hospital encounters in the
following year

TNdFNcProjected no asthma-related hospital encounter in
the following year

aTP: true positive.
bFP: false positive.
cFN: false negative.
dTN: true negative.

Classification Algorithms
We employed Waikato Environment for Knowledge Analysis
(WEKA) Version 3.9 [35] to build machine learning models.
As a major open source toolkit for machine learning and data
mining, WEKA integrates many classic feature selection
techniques and machine learning algorithms. We examined the
39 native machine learning classification algorithms in WEKA,
as shown in the web-based appendix of our previous paper [23]
and the XGBoost classification algorithm [32] realized in the
XGBoost4J package [36]. As an ensemble of decision trees,
XGBoost implements gradient boosting in a scalable and
efficient manner. As XGBoost takes only numerical features as
its inputs, we converted every categorical feature to one or more
binary features through one-hot encoding before giving the
feature to XGBoost. We employed our previously developed
automatic and efficient machine learning model selection
method [37] and the 2012 to 2016 training data to automatically
choose, among all of the applicable ones, the classification
algorithm, feature selection technique, hyperparameter values,
and data balancing method for managing imbalanced data. On
average, our method runs 28 times faster and achieves an 11%
lower model error rate than the Auto-WEKA automatic model
selection method [37,38].

Assessing the Generalizability of our Intermountain
Healthcare Model to KPSC
This study mainly assessed our modeling guideline’s
generalizability to KPSC by using the KPSC training set to train
several models and assessing their performance on the KPSC
test set. In addition, we assessed our Intermountain Healthcare
model’s [23] generalizability to KPSC. Using the Intermountain
Healthcare data set and the top 21 features with an importance

value computed by XGBoost ≥0.01, we formerly built a
simplified Intermountain Healthcare model [23]. The simplified
model retained almost all of the predictive power of our full
Intermountain Healthcare model. Our KPSC data set included
these 21 features but not all of the 142 features used in our full
Intermountain Healthcare model. We assessed our simplified
Intermountain Healthcare model’s performance on the KPSC
test set twice, once after retraining the model on the KPSC
training set and once using the model trained on the
Intermountain Healthcare data set without retraining the model
on the KPSC training set.

Results

Clinical and Demographic Characteristics of the
Patient Cohorts
Every data instance targets a unique (patient, index year) pair.
Multimedia Appendix 1 displays the clinical and demographic
characteristics of our patient cohort during the time periods of
2012 to 2016 and 2017. The set of characteristics during 2012
to 2016 is similar to that during 2017. During 2012 to 2016 and
2017, 2.42% (18,925/782,762) and 2.13% (4353/204,744) of
data instances were associated with asthma-related hospital
encounters in the following year, respectively.

Table 2 shows for each clinical or demographic characteristic,
the statistical test results on whether the data instances linking
to future asthma-related hospital encounters and those linking
to no future asthma-related hospital encounter had the same
distribution. These 2 sets of data instances had the same
distribution when the P value is ≥.05, and distinct distributions
when the P value is <.05. In Table 2, all of the P values <.05
are marked in italics.
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Table 2. For each clinical or demographic characteristic, the statistical test results on whether the data instances linking to future asthma-related hospital
encounters and those linking to no future asthma-related hospital encounter had the same distribution.

P value for the 2017 dataP value for the 2012-2016 dataCharacteristics

<.001 a<.001 a,bAge (years)

.01 c<.001 cGender

<.001 c<.001 cRace

<.001 c<.001 cEthnicity

<.001 c<.001 cInsurance category

.006 a.78aNumber of years since the first asthma-coded encounter in the data set

Asthma medication fill

<.001 c<.001 cInhaled corticosteroid

<.001 c<.001 cInhaled corticosteroid and long-acting beta-2 agonist combination

<.001 c<.001 cLeukotriene modifier

<.001 c<.001 cLong-acting beta-2 agonist

>.99c>.99cMast cell stabilizer

<.001 c<.001 cShort-acting, inhaled beta-2 agonist

<.001 c<.001 cSystemic corticosteroid

Comorbidity

<.001 c<.001 cAllergic rhinitis

<.001 c<.001 cAnxiety or depression

>.99c<.001 cBronchopulmonary dysplasia

<.001 c<.001 cChronic obstructive pulmonary disease

.52c>.99cCystic fibrosis

<.001 c<.001 cEczema

<.001 c<.001 cGastroesophageal reflux

<.001 c<.001 cObesity

<.001 c<.001 cPremature birth

.06c.33cSinusitis

<.001 c.003 cSleep apnea

<.001 c<.001 cSmoking status

aP values obtained by performing the Cochran-Armitage trend test [39].
bP values <.05 marked in italics.
cP values obtained by performing the chi-square two-sample test.

Classification Algorithm and Features Used
Before building our final model, the importance values of the
basic candidate features were computed once on our initial
XGBoost model. This led to us examining 30 extended candidate
features in addition to the 307 basic candidate features. With
these 337 basic and extended candidates features as inputs, our
automatic model selection method [37] picked the XGBoost
classification algorithm [32]. As an ensemble of decision trees,

XGBoost can handle missing feature values naturally. Our final
predictive model was built using XGBoost, and the 221 features
shown in descending order of importance value in Multimedia
Appendix 1. The other features had no additional predictive
power and were automatically dropped by XGBoost.

Performance Measures of the Final KPSC Model
On the KPSC test set, our final model achieved an AUC of
0.820 (95% CI 0.813-0.826). Figure 2 displays the ROC curve
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of our final model. Table 3 displays the performance measures
of our final model when various top percentages of patients
having the largest predicted risk were adopted as the cutoff point
for performing binary classification. When this percentage was
at 10.00% (20,474/204,744), our final model achieved an
accuracy of 90.08% (184,435/204,744; 95% CI 89.95-90.21),
a sensitivity of 51.90% (2259/4353; 95% CI 50.44-53.42), a
specificity of 90.91% (182,176/200,391; 95% CI 90.78-91.03),
a PPV of 11.03% (2259/20,474; 95% CI 10.59-11.46), and an
NPV of 98.86% (182,176/184,270; 95% CI 98.81-98.91). Table
4 gives the corresponding error matrix of our final model.

When we excluded the extended candidate features and
considered only the basic candidate features, the AUC of our
model dropped to 0.809. Several basic candidate features, such
as the number of years since the first asthma-coded encounter
in the data set, needed over one year of past data to calculate.
When we further excluded these multiyear candidate features
and considered only those basic candidate features calculated
on 1 year of past data, the model’s AUC dropped to 0.807.

Without precluding any feature from being considered, the
model trained on data from both children (aged <18 years) with

asthma and adults (aged ≥18 years) with asthma gained an AUC
of 0.815 in children with asthma and an AUC of 0.817 in adults
with asthma. In comparison, the model trained only on data
from children with asthma gained an AUC of 0.811 in children
with asthma. The model trained only on data from adults with
asthma gained an AUC of 0.818 in adults with asthma.

If we adopted only the top 25 features shown in Multimedia
Appendix 1 with an importance value ≥0.01 and removed the
other 312 features, the model’s AUC dropped from 0.820 to
0.800 (95% CI 0.793-0.808). When the top 10.00%
(20,474/204,744) of patients having the largest predicted risk
were adopted as the cutoff point for doing binary classification,
the model’s accuracy dropped from 90.08% (184,435/204,744)
to 89.96% (184,185/204,744; 95% CI 89.83-90.08), sensitivity
dropped from 51.90% (2259/4353) to 49.02% (2134/4353; 95%
CI 47.71-50.55), specificity dropped from 90.91%
(182,176/200,391) to 90.85% (182,051/200,391; 95% CI
90.72-90.97), PPV dropped from 11.03% (2259/20,474) to
10.42% (2134/20,474; 95% CI 10.03-10.86), and NPV dropped
from 98.86% (182,176/184,270) to 98.80% (182,051/184,270;
95% CI 98.75-98.85).

Figure 2. The receiver operating characteristic curve of our final predictive model.
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Table 3. The performance measures of our final predictive model when various top percentages of patients having the largest predicted risk were
adopted as the cutoff point for doing binary classification.

NPVbPPVaSpecificity
(N=200,391), n (%)

Sensitivity
(N=4353), n (%)

Accuracy
(N=204,744), n (%)

Top percentage of
patients having the
largest predicted risk
(%)

Nn (%)Nn (%)

202,697199,038
(98.19)

2047694 (33.90)199,038 (99.32)694 (15.94)199,732 (97.55)1

200,650197,323
(98.34)

40941026 (25.06)197,323 (98.47)1026 (23.57)198,349 (96.88)2

198,602195,540
(98.46)

61421291 (21.02)195,540 (97.58)1291 (29.66)196,831 (96.14)3

196,555193,694
(98.54)

81891492 (18.22)193,694 (96.66)1492 (34.28)195,186 (95.33)4

194,507191,813
(98.62)

10,2371659 (16.21)191,813 (95.72)1659 (38.11)193,472 (94.49)5

192,460189,912
(98.68)

12,2841805 (14.69)189,912 (94.77)1805 (41.47)191,717 (93.64)6

190,412187,989
(98.73)

14,3321930 (13.47)187,989 (93.81)1930 (44.34)189,919 (92.76)7

188,365186,068
(98.78)

16,3792056 (12.55)186,068 (92.85)2056 (47.23)188,124 (91.88)8

186,318184,116
(98.82)

18,4262151 (11.67)184,116 (91.88)2151 (49.41)186,267 (90.98)9

184,270182,176
(98.86)

20,4742259 (11.03)182,176 (90.91)2259 (51.90)184,435 (90.08)10

174,033172,291
(99.00)

30,7112611 (8.50)172,291 (85.98)2611 (59.98)174,902 (85.42)15

163,796162,348
(99.12)

40,9482905 (7.09)162,348 (81.02)2905 (66.74)165,253 (80.71)20

153,558152,348
(99.21)

51,1863143 (6.14)152,348 (76.03)3143 (72.20)155,491 (75.94)25

aPPV: positive predictive value.
bNPV: negative predictive value.

Table 4. The error matrix of our final predictive model when the top 10.00% (20,474/204,744) of patients having the largest predicted risk were adopted
as the cutoff point for doing binary classification.

No asthma-related hospital encounter in the
following year

Asthma-related hospital encounters in the following
year

Outcome class

18,2152259Projected asthma-related hospital encounters in the
following year

182,1762094Projected no asthma-related hospital encounter in
the following year

Performance Measures of the Simplified Intermountain
Healthcare Model
When applying our simplified Intermountain Healthcare model
trained on the Intermountain Healthcare data set [23] to the
KPSC test set without retraining the model on the KPSC training
set, the model gained an AUC of 0.751 (95% CI 0.742-0.759).
When the top 10.00% (20,474/204,744) of patients having the
largest predicted risk were adopted as the cutoff point for doing
binary classification, the model achieved an accuracy of 89.64%

(183,531/204,744; 95% CI 89.51-89.77), a sensitivity of 41.51%
(1807/4353; 95% CI 40.14-42.97), a specificity of 90.68%
(181,724/200,391; 95% CI 90.55-90.81), a PPV of 8.83%
(1807/20,474; 95% CI 8.44-9.23), and an NPV of 98.62%
(181,724/184,270; 95% CI 98.57-98.67).

After using the KPSC training set to retrain our simplified
Intermountain Healthcare model [23], the model gained on the
KPSC test set an AUC of 0.779 (95% CI 0.772-0.787). When
the top 10.00% (20,474/204,744) of patients having the largest
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predicted risk were adopted as the cutoff point for doing binary
classification, the model achieved an accuracy of 89.85%
(183,953/204,744; 95% CI 89.71-89.97), a sensitivity of 46.36%
(2018/4353; 95% CI 44.89-47.84), a specificity of 90.79%
(181,935/200,391; 95% CI 90.65-90.91), a PPV of 9.86%
(2018/20,474; 95% CI 9.45-10.25), and an NPV of 98.73%
(181,935/184,270; 95% CI 98.68-98.78).

Discussion

Principal Findings
We used KPSC data to develop a model to forecast
asthma-related hospital encounters in the following 12-month
period in patients with asthma. Table 5 shows that, compared
with the models formerly built by others [3,10-22], our final
KPSC model gained a higher AUC, that is, our modeling
guideline of checking extensive candidate features to boost
model accuracy exhibited acceptable generalizability to KPSC.
After further enhancement to automatically explain its
predictions [40,41] and to raise its accuracy, our model could
be used to direct asthma care management to help improve
patient outcomes and reduce health care costs.

Asthma affects adults and children differently. Our final model
gained a lower AUC in children than in adults. Additional work
is required to understand the difference and to boost the
prediction accuracy in children.

We examined 337 basic and extended candidate features.
Approximately 65.6% (221/337) of these were used in our final
model. Many of the unused features were correlated with the
outcome variable but provided no additional predictive power
on the KPSC data set beyond those used in our final model.

In Multimedia Appendix 1, the 8 most important features and
several others within the top 25 features reflect the loss of
asthma control. This loss of asthma control could be because
of the severity of the patient’s asthma. It could also relate to
management practices, treatment nonadherence, or
socioeconomic factors for which we had no data.

When using our simplified Intermountain Healthcare model
[23] without retraining it on the KPSC training set, the model
achieved an AUC of 0.751 on the KPSC test set. Despite being
0.069 lower than our final KPSC model’s AUC, this AUC is
higher than the AUCs of many previous models for predicting
hospitalization and ED visits in patients with asthma (Table 5).
Therefore, we regard our simplified Intermountain Healthcare
model to have acceptable generalizability to KPSC.
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Table 5. Our final Kaiser Permanente Southern California model in comparison with several previous models for forecasting hospitalizations and
emergency department visits in patients with asthma.

NPVc

(%)
PPVb

(%)

Specificity
(%)

Sensitivity
(%)

AUCaThe undesir-
able out-
come’s
prevalence
rate in the
whole data
set (%)

Classifica-
tion algo-
rithm

Number
of data in-
stances

Number
of fea-
tures the
model
used

Prediction tar-
get

Model

182,176
(98.86)

2259
(11.03)

182,176
(90.91)

2259
(51.90)

0.82023,278
(2.36)

XGBooste987,506221Asthma-relat-
ed hospital en-
counters

Our final KP-

SCd model

16,955
(97.83)

436
(22.65)

16,955
(91.93)

436 (53.69)0.85912,144
(3.63)

XGBoost334,564142Asthma-relat-
ed hospital en-
counters

Our Intermoun-
tain Healthcare
model [23]

————f0.818.5Logistic re-
gression

282117Asthma-relat-
ed hospital en-
counters

Miller et al [15]

————0.813Logistic re-
gression

6117Asthma exac-
erbation

Loymans et al
[10]

————0.791.8Proportional
hazards re-
gression

16,5207Asthma-relat-
ed hospitaliza-
tion

Lieu et al [3]

99.15.689.843.90.7811.4Logistic re-
gression

41975Asthma-relat-
ed hospitaliza-
tion in chil-
dren

Schatz et al [11]

568263770.7854Logistic re-
gression

488811Lost day or
asthma-related
hospital en-
counters

Yurk et al [17]

————0.75118.3Logistic re-
gression

24153Asthma-relat-

ed EDg visit

Eisner et al [12]

————0.7569.6Scoring61517Severe asthma
exacerbation

Forno et al [22]

99.33.987.044.90.7121.2Logistic re-
gression

69043Asthma-relat-
ed hospitaliza-
tion in adults

Schatz et al [11]

————0.696.4Proportional
hazards re-
gression

16,5207Asthma-relat-
ed ED visit

Lieu et al [3]

————0.68932.8Logistic re-
gression

28581Asthma-relat-
ed hospitaliza-
tion

Eisner et al [12]

————0.62521Classifica-
tion and re-
gression tree

783Severe asthma
exacerbation

Sato et al [13]

93.222.092.025.40.6146.5Logistic re-
gression

14,8934Asthma-relat-
ed hospital en-
counters

Schatz et al [20]

—18.583.649.0—6.9Classifica-
tion and re-
gression tree

71414Asthma-relat-
ed hospital en-
counters

Lieu et al [19]

aAUC: area under the receiver operating characteristic curve.
bPPV: positive predictive value.
cNPV: negative predictive value.
dKPSC: Kaiser Permanente Southern California.
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eXGBoost: extreme gradient boosting.
fThe original paper presenting the model did not report the performance measure.
gED: emergency department.

Comparison With Previous Work
Multiple researchers have built models to forecast ED visits
and hospitalizations in patients with asthma [3,10-23]. Table 5
compares our final KPSC model with those models, which
encompass all pertinent models covered in the systematic review
of Loymans et al [18]. With the exception of our Intermountain
Healthcare model [23], every model formerly built by others
[3,10-22] gained a lower AUC than our final KPSC model.
Instead of being for all patients with asthma, the model by Miller
et al [15] targets adults with difficult-to-treat or severe asthma,
8.5% of whom had future asthma-related hospital encounters.
The model by Loymans et al [10] predicts asthma exacerbations
with a prevalence rate of 13%. These 2 prevalence rates of the
undesirable outcome are much higher than that in our KPSC
data set. In addition, the target patient population and the
prediction target of these 2 models are not comparable with
those in our KPSC model. Except for these 2 models, each of
the other models formerly built by others had an AUC ≤0.79,
which is at least 0.030 lower than that of our KPSC model.

Compared with other models, the model by Yurk et al [17]
gained a larger PPV and sensitivity mainly because of the use
of a distinct prediction target: hospital encounters or one or
more days lost because of missed work or reduced activities for
asthma. This prediction target was easier to predict, as it
occurred in 54% of the patients with asthma. If the model by
Yurk et al [17] were used to predict asthma-related hospital
encounters that occurred with approximately 2% of the patients
with asthma, we would expect the model to gain a lower
sensitivity and PPV.

Excluding the model by Yurk et al [17], all of the other models
formerly built by others had a sensitivity ≤49%, which is smaller
than what our final KPSC model gained: 51.90% (2259/4353).
Sensitivity provides, among all patients with asthma who will
have future asthma-related hospital encounters, the proportion
of patients that the model pinpoints. As the population of
patients with asthma is large, for every 1% increase in the
identified proportion of patients with asthma who would have
future asthma-related hospital encounters, effective care
management could help improve patient outcomes, thereby
avoiding up to 7200 more ED visits and 1970 more
hospitalizations in the United States annually [1,5-8].

The PPV depends substantially on the prevalence rate of
undesirable outcomes [42]. In our KPSC test data set, 2.13%
(4353/204,744) of patients with asthma had future
asthma-related hospital encounters. When the top 10.00%
(20,474/204,744) of patients having the largest predicted risk
were adopted as the cutoff point for performing binary
classification, the maximum possible PPV that a perfect model
could obtain is 21.26% (4353/20,474). Our final KPSC model
gained a PPV of 11.03% (2259/20,474), which is 51.90%
(2259/4353) of the maximum possible PPV. In comparison, in
our Intermountain Healthcare test data set, 4.22% of patients
with asthma had future asthma-related hospital encounters [23].

Our Intermountain Healthcare model gained a PPV of 22.65%
(436/1925) [23], which is 53.7% (436/812) of the maximum
possible PPV that a perfect model could obtain. On a data set
in which 6.5% of patients with asthma had future asthma-related
hospital encounters, the model by Schatz et al [20] gained a
PPV of 22.0%. On a data set in which 6.9% of patients with
asthma had future asthma-related hospital encounters, the model
by Lieu et al [19] gained a PPV of 18.5%. Except for these
PPVs and the PPV of the model by Yurk et al [17], none of the
previously reported PPVs was more than 5.6%.

Despite being built using the same modeling guideline, our final
KPSC model gained a lower AUC than our Intermountain
Healthcare model [23]. This is largely because the percentage
of data instances in the test set linking to future asthma-related
hospital encounters differs greatly at Intermountain Healthcare
and at KPSC: 4.22% (812/19,256) versus 2.13% (4353/204,744),
respectively. The rarer the undesirable outcome, the harder it
is to accurately predict it.

The top features with an importance value ≥0.01 in our final
KPSC model are similar to those in our Intermountain
Healthcare model [23]. In both our final KPSC and our
Intermountain Healthcare models, many top features involve
asthma medications and previous ED visits. When building our
Intermountain Healthcare model, we did not consider several
basic candidate features. They turned out to be top features in
our final KPSC model and impacted the importance values and
ranks of the other top features there.

When building our Intermountain Healthcare model, we did not
incorporate any extended candidate features. Several such
features appeared as top features in our final KPSC model. Their
inclusion boosted the model accuracy on our KPSC data set. It
is possible that including extended candidate features could also
boost the model accuracy on our Intermountain Healthcare data
set. This could be explored in future work.

Schatz et al [20] showed that in 2 Southern California cities,
6.5% of patients with asthma at KPSC had asthma-related
hospital encounters in 2000. In comparison, 2.08%
(4353/208,959) of patients with asthma at KPSC had
asthma-related hospital encounters in 2018. This suggests that
compared with 2 decades ago, KPSC manages patients with
asthma better now.

Considerations About Potential Clinical Use
Although more accurate than those formerly built by others,
our final KPSC model still gained a somewhat low PPV of
11.03% (2259/20,474). However, our model could be clinically
useful:

1. A PPV of 11.03% (2259/20,474) is acceptable for
pinpointing high-risk patients with asthma to apply low-cost
preventive interventions. Examples of such interventions
include giving the patient a peak flow meter for
self-monitoring at home and showing the patient how to
use it, instructing the patient on the correct use of an asthma
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inhaler, asking a nurse to follow up on the patient with extra
phone calls, and training the patient to write a diary on
environmental triggers.

2. As explained above, because of the low prevalence rate of
the undesirable outcome used in this study, even a perfect
model would gain a small PPV. For this outcome, sensitivity
matters more than PPV for judging the model’s possible
clinical impact. Our final KPSC model gained a higher
sensitivity than all of the models that were formerly built
by others and used a comparable prediction target.

3. To allocate care management resources, health care systems
such as the University of Washington Medicine, Kaiser
Permanente Northern California [3], and Intermountain
Healthcare are using proprietary models whose performance
measures are akin to those of the models previously built
by others. Our final KPSC model is more accurate than
these models.

Our final KPSC model used 221 features. Cutting this number
could facilitate the clinical deployment of the model. In this
regard, if one could bear a small drop in prediction accuracy,
one could adopt the top features having an importance value
of, for example, 0.01 or more and remove the others. The
importance value of a feature changes across health care
systems. Ideally, before deciding which features to keep, one
should first compute the importance values of the features on
a data set from the intended health care system.

Most of the attributes that we used to compute the features
adopted in our final KPSC model, particularly the top features,
are routinely collected by electronic medical record systems.
For future work, to make it easy for other health care systems
to reuse our final KPSC model, we can resort to the
Observational Medical Outcomes Partnership (OMOP) common
data model [43]. This data model and its linked standardized
terminologies [44] standardize administrative and clinical
attributes from at least 10 large US health care systems [45,46].
We can extend this data model to include the attributes that are
used in our final KPSC model but missed by the original data
model. We rewrite our feature construction and model building
code based on the extended OMOP common data model and
post our code and the related data schema on a public website.
After converting its data into our extended OMOP common
data model format based on this data schema, a health care
system can rerun our code on its data to obtain a simplified
version of our final KPSC model tailored to its data. Hopefully,
most of the predictive power of our final KPSC model can be
retained similar to what this study showed for our Intermountain
Healthcare model.

It is difficult to interpret an XGBoost model employing many
features globally, as is the case with many other involved
machine learning models. As an interesting topic for future
work, we plan to use our previously proposed method [40,41]
to automatically explain our final KPSC model’s predictions
for each patient with asthma.

Our final KPSC model was an XGBoost model [32]. When
classifying 2 unbalanced classes, XGBoost employs a

hyperparameter scale_pos_weight to balance their weights [47].
To maximize the AUC of our KPSC model, our automatic model
selection method [37] changed scale_pos_weight from its default
value to balance the 2 classes of having future asthma-related
hospital encounters or not [48]. As a side effect, this shrank the
model’s projected probabilities of having future asthma-related
hospital encounters to a large extent and made them differ
greatly from the actual probabilities [48]. This does not affect
the identification of the top few percent of patients with asthma
who have the largest projected risk to receive care management
or other preventive interventions. We could keep
scale_pos_weight at its default value of 1 and not balance the
2 classes. This would avoid the side effect but drop the model’s
AUC from 0.820 to 0.817 (95% CI 0.810-0.824).

Limitations
This study has 3 limitations, all of which provide interesting
areas for future work:

1. In addition to those examined in this study, other features
could also help raise model accuracy. Our KPSC data set
does not include some potentially relevant features, such
as characteristics of the patient’s home environment and
features computed on the data gathered by monitoring
sensors attached to the patient’s body. It would be
worthwhile to identify new predictive features from various
data sources.

2. Our study used only non-deep learning machine learning
algorithms and structured data. Using deep learning and
including features computed from unstructured clinical
notes may further boost model accuracy [41,49].

3. Our study assessed our modeling guideline’s
generalizability to only one health care system. It would be
interesting to evaluate our modeling guideline’s
generalizability to other health care systems, such as
academic health care systems that have different properties
from KPSC and Intermountain Healthcare. Compared with
nonacademic health care systems, academic health care
systems tend to care for sicker and more complex patients
[50]. To perform such an evaluation, we are working on
obtaining a data set of patients with asthma from the
University of Washington Medicine [49].

Conclusions
In its first generalizability assessment, our modeling guideline
of examining extensive candidate features to help boost model
accuracy exhibited acceptable generalizability to KPSC.
Compared with the models formerly built by others, our KPSC
model for projecting asthma-related hospital encounters in
patients with asthma gained a higher AUC. At present, predictive
models are widely used as a core component of a decision
support tool to prospectively pinpoint high-risk patients with
asthma for preventive care via care management. After further
enhancement, our KPSC model could be used to replace the
existing predictive models in the decision support tool for better
directing asthma care management to help improve patient
outcomes and reduce health care costs.
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