
Original Paper

Identification of Semantically Similar Sentences in Clinical Notes:
Iterative Intermediate Training Using Multi-Task Learning

Diwakar Mahajan1, MS; Ananya Poddar1, MS; Jennifer J Liang1, MD; Yen-Ting Lin2, BS; John M Prager3, PhD;

Parthasarathy Suryanarayanan1, BTECH; Preethi Raghavan1, PhD; Ching-Huei Tsou1, PhD
1IBM Research, Yorktown Heights, NY, United States
2National Taiwan University, Taipei, Taiwan
3Formerly IBM Research, Yorktown Heights, NY, United States

Corresponding Author:
Diwakar Mahajan, MS
IBM Research
1101 Kitchawan Road
Yorktown Heights, NY, 10598
United States
Phone: 1 914 945 1614
Email: dmahaja@us.ibm.com

Abstract

Background: Although electronic health records (EHRs) have been widely adopted in health care, effective use of EHR data
is often limited because of redundant information in clinical notes introduced by the use of templates and copy-paste during note
generation. Thus, it is imperative to develop solutions that can condense information while retaining its value. A step in this
direction is measuring the semantic similarity between clinical text snippets. To address this problem, we participated in the 2019
National NLP Clinical Challenges (n2c2)/Open Health Natural Language Processing Consortium (OHNLP) clinical semantic
textual similarity (ClinicalSTS) shared task.

Objective: This study aims to improve the performance and robustness of semantic textual similarity in the clinical domain by
leveraging manually labeled data from related tasks and contextualized embeddings from pretrained transformer-based language
models.

Methods: The ClinicalSTS data set consists of 1642 pairs of deidentified clinical text snippets annotated in a continuous scale
of 0-5, indicating degrees of semantic similarity. We developed an iterative intermediate training approach using multi-task
learning (IIT-MTL), a multi-task training approach that employs iterative data set selection. We applied this process to bidirectional
encoder representations from transformers on clinical text mining (ClinicalBERT), a pretrained domain-specific transformer-based
language model, and fine-tuned the resulting model on the target ClinicalSTS task. We incrementally ensembled the output from
applying IIT-MTL on ClinicalBERT with the output of other language models (bidirectional encoder representations from
transformers for biomedical text mining [BioBERT], multi-task deep neural networks [MT-DNN], and robustly optimized BERT
approach [RoBERTa]) and handcrafted features using regression-based learning algorithms. On the basis of these experiments,
we adopted the top-performing configurations as our official submissions.

Results: Our system ranked first out of 87 submitted systems in the 2019 n2c2/OHNLP ClinicalSTS challenge, achieving
state-of-the-art results with a Pearson correlation coefficient of 0.9010. This winning system was an ensembled model leveraging
the output of IIT-MTL on ClinicalBERT with BioBERT, MT-DNN, and handcrafted medication features.

Conclusions: This study demonstrates that IIT-MTL is an effective way to leverage annotated data from related tasks to improve
performance on a target task with a limited data set. This contribution opens new avenues of exploration for optimized data set
selection to generate more robust and universal contextual representations of text in the clinical domain.
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Introduction

Background
The wide adoption of electronic health records (EHRs) has led
to clinical benefits with increased efficiency and financial
benefits [1]. Although electronic documentation has greatly
improved the legibility and accessibility of clinical
documentation, the use of templates and copy-paste during note
generation has inadvertently introduced unnecessary, redundant,
and potentially erroneous information (ie, note bloat), resulting
in decreased readability and functional usability of the generated
clinical notes [2-5]. A previous study [6] on 23,630 clinical
notes identified that in a typical note, only 18% of the text was
manually entered, whereas 46% was copied and 36% imported.
This problem of note bloat not only increases physician
cognitive burden [7] but also becomes a challenge for the
secondary use of EHRs in clinical informatics [8]. Figure 1
illustrates this challenge with an example of 2 sample clinical
notes from the same patient from consecutive visits; blue and
yellow highlighted text indicate content that have been added
or modified, respectively, whereas the plain unhighlighted text
indicates information that is the same across clinical notes.

One way to minimize data redundancy and highlight new
information in unstructured clinical notes can be to compute
the semantic similarity between clinical text snippets. This
process of measuring the degree of semantic equivalence
between clinical text snippets is known as clinical semantic
textual similarity [9]. As semantic textual similarity (STS) is a
foundational language understanding problem, successful
modeling of this task may help improve other higher-level
applications in the clinical domain [9], such as clinical question
answering with evidence-based retrieval, clinical text
summarization, semantic search, conversational systems, and
clinical decision support.

The 2019 National NLP Clinical Challenges (n2c2)/Open Health
Natural Language Processing Consortium (OHNLP) track on

clinical semantic textual similarity (ClinicalSTS) [10] was
organized to tackle this specific task: given a pair of clinical
text snippets, assign a numerical score from 0 to 5 to indicate
the degree of semantic similarity. This is an extension of a
previous challenge from BioCreative/OHNLP 2018 ClinicalSTS
[11,12] that was inspired by the Semantic Evaluation (SemEval)
semantic textual similarity (STS) shared tasks [13-18], which
have been organized since 2012 in the general domain.

Pretrained language models have been shown to be effective
for achieving state-of-the-art results on many general and
clinical domain natural language processing (NLP) tasks [19],
including STS. However, when the target domain differs
substantially from the pretraining corpus, the contextualized
embeddings may be ineffective for the target task. Furthermore,
when the amount of training data are limited, as is common for
clinical NLP tasks, fine-tuning experiments are potentially brittle
and rely on the pretrained encoder parameters to be reasonably
close to an ideal setting for the target task [20]. A previous study
has shown that small training data sets can significantly benefit
from an intermediate training step [20]. In a complementary
work, multi-task learning (MTL) [21] has been shown to be
effective in leveraging supervised data from multiple related
tasks for a target task. Furthermore, it has been observed that
MTL and language model pretraining are complementary
technologies [21].

On the basis of these observations, we present a novel
methodology that iteratively performs intermediate training of
a pretrained language model in an MTL setup using related
data-rich tasks. In this iterative process, related data sets were
purposefully selected to induce representative knowledge of the
target task. In addition, we evaluated the impact of combining
multiple transformer-based language models pretrained on
diverse corpora. Our system ranked first in the 2019
n2c2/OHNLP ClinicalSTS challenge, achieving state-of-the-art
results.
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Figure 1. Two sample clinical notes for the same patient from consecutive visits. Plain text indicates same content between 2 notes; italics (yellow
highlight) indicate the content that has been modified, and bold (blue highlight) indicates new content in the second note.

Relevant Literature
STS is defined as the comparison of a pair of text snippets,
approximately one sentence in length, resulting in a numerical
score that takes a value on a continuous scale of 0 to 5,
indicating degrees of semantic similarity [9,18]. STS, along
with paraphrase detection and textual entailment, is a form of
semantic relatedness task. Paraphrase detection is the
identification of sentences that are semantically identical [22],
whereas textual entailment is the task of reasoning if one text
snippet can be inferred from another [23-25]. STS is more
similar to paraphrase detection because of the symmetricity of
the relationship, as compared with entailment, which is
asymmetric. However, unlike paraphrase detection, STS expands
on the binary output scoring in paraphrase detection to capture
gradations of relatedness.

Early research on STS, in both the general and clinical domains,
focused on lexical semantics, basic syntactic similarity, surface
form matching, and alignment-based methods [26-28]. The
overarching theme behind these methods is the identification,
alignment, and scoring of semantically related words and phrases
and aggregating their scores. However, the absence of a
principled way of combining the topological and semantic
information led to the construction of sentence representations
by building a linear composition of the distributed
representations of individual words [29-32]. Although these
techniques were an improvement over traditional approaches,
they fell short as they did not take the surrounding context into
account while generating distributed representations.

Early attempts at building richer representations that encode
several linguistic aspects of a sentence for computing similarity
included paragraph vectors [33-36], word embedding weighting
and principal component removal [37], and convolutional deep

structured semantic model [38,39]. However, recent studies on
pretrained language models have achieved a breakthrough in
sentence representation learning [19,40,41]. Bidirectional
encoder representations from transformers (BERT) build upon
the ideas from the transformer [42] to construct rich sentence
representations and has achieved state-of-the-art results on many
general and clinical domain NLP tasks [24,43]. In this process,
a transformer-based model is first pretrained on large corpora
to learn universal language representations and is then fine-tuned
with a task-specific output layer for the target task. BERT has
been adapted to biomedical (bidirectional encoder
representations from transformers for biomedical text mining
[BioBERT]) [44] and clinical (bidirectional encoder
representations from transformers on clinical text mining
[ClinicalBERT]) domains [45,46].

The performance of BERT and its domain-specific variants
could be further improved through MTL. MTL [47] refers to
training a model simultaneously for multiple related tasks, and
MTL benefits from a regularization effect by alleviating
overfitting to a specific task, thus making the learned
representations universal across tasks. Supplementary training
on intermediate tasks refers to the second stage of pretraining
of a model, with data-rich intermediate supervised tasks. Recent
studies, such as multi-task deep neural networks (MT-DNN)
[21] and supplementary training on intermediate labeled-data
tasks [20], show that the use of MTL and intermediate
pretraining generates more robust and universal learned
representations, resulting in better domain adaptation with fewer
in-domain labels.

The winning systems in ClinicalSTS 2018 challenge [48] and
SemEval 2017 [49] built upon a combination of approaches
referenced earlier in this section. In general, they employed
ensembled feature engineering methods (random forest, gradient
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boosting, and XGBoost) with features based on n-gram overlap,
edit distance, longest common prefix/suffix/substring, word
alignments [50,51], summarization and machine translation
evaluation metrics, and deep learning [36,52]. In contrast to
these systems, our study builds upon the modern neural
approaches referenced earlier. Specifically, our system
implements MTL and supplementary training on intermediate
labeled tasks with ClinicalBERT to achieve state-of-the-art
performance on the ClinicalSTS 2019 task. Following the
demonstration of our system at the 2019 n2c2/OHNLP challenge
presentation, additional systems leveraging MTL in
ClinicalBERT [53,54] have been implemented with promising
results.

Methods

Data Set
The 2019 ClinicalSTS data set was prepared by the
n2c2/OHNLP challenge organizers from sentences collected
from clinical notes in the Mayo Clinic’s clinical data warehouse.

Candidate sentence pairs were then generated using an average
value ≥0.45 of surface lexical similarity methods, namely,
Ratcliff/Obershelp [55], cosine similarity, and Levenshtein
distance. This resulted in 2054 pairs, of which 1642 were
released as the training set and the remaining 412 were held by
the organizers for testing. Protected health information was
removed using a mix of frequency filtering approach [56] and
manual review process. Each sentence pair was independently
reviewed by 2 clinical experts and scored on a scale of 0 to 5
based on their semantic equivalence (0 for no semantic
equivalence to 5 for complete semantic equivalence).
Interannotator agreement was 0.6 based on weighted Cohen
kappa. The averaged score between the 2 annotators was used
as the gold standard. Table 1 presents a few examples from the
data set.

We split the provided training data set of 1642 sentence pairs
into 75.03% (1232/1642), 14.98% (246/1642), and 9.99%
(164/1642) to form our train, validation, and internal test data
sets, respectively.

Table 1. Sample sentence pairs and annotations from the clinical semantic textual similarity data set.

ObservationsScoreGround trutha

CommentsDomain dependenceSentence 2Sentence 1

Clinical abbreviationsDomain specific5.0“The patient was taken to the post anesthe-
sia care unit postoperatively for recovery.”

“The patient was taken to the PACUb in a
stable condition.”

Medication instruction
parsing

Domain specific3.5“Ipratropium-Albuterol [COMBIVENT] 18-
103 mcg/Actuation Aerosol 2 puffs by inhala-
tion two times a day as needed”

“Albuterol [PROVENTIL/VENTOLIN] 90

mcg/Act HFAcAerosol 1-2 puffs by inhala-
tion every 4 hours as needed.”

Medical concept simi-
larity and medical
concept mapping

Domain specific3.0“Cardiovascular assessment findings include

heart rate, first degree AVdBlock.”

“Cardiovascular assessment findings include
heart rate normal, atrial fibrillation with
controlled ventricular response.”

AlignmentDomain independent3.0“The affected shoulder was prepared and
draped with the usual sterile technique.”

“He was prepped and draped in the stan-
dard fashion.”

Assertion classifica-
tion (polarity)

Domain independent1.5“Musculoskeletal: Negative for back pain,
myalgias and extremity pain.”

“Musculoskeletal: Positive for gait problem,
joint swelling and extremity pain.”

aItalics indicate the phrases within each sentence which correspond to the observations.
bPACU: post anesthesia care unit.
cHFA: hydrofluoroalkane.
dAV: atrioventricular.

Analysis of this data set revealed 2 characteristics that we
consider in our approach to this task. First, the lack of sufficient
training data makes it difficult to train robust machine learning
models using only the given training data. Second, clinical
semantic similarity relies on both domain-specific (eg, clinical
abbreviation expansion, medical concept detection, and medical
concept normalization) and domain-independent (eg, assertion
classification and alignment detection) aspects, as demonstrated
by the sample sentence pairs in Table 1. For the first sentence
pair, a domain-specific understanding of PACU as an
abbreviation for post anesthesia care unit is necessary to infer
the high semantic equivalence. For the fourth sample sentence
pair, domain-independent understanding of the difference in
polarity between Positive and Negative is necessary to infer the
low similarity equivalence.

To address the lack of sufficient training data and leverage the
domain-specific and domain-independent aspects of clinical
semantic similarity, we propose an approach that combines the
following:

• an iterative intermediate multi-task training step for
effective transfer learning employing other related annotated
data sets

• an ensemble module that combines language models
pretrained on both domain-specific and domain-independent
data sets and also incorporates other features.

Iterative Intermediate Training Using MTL
We performed iterative multi-task training on a
transformer-based language model using annotated data sets
from related tasks to induce representative knowledge of the
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target task. With each iteration, annotated data sets from related
tasks were added or removed. Following data set selection, the
language model was then trained using MTL on the selected
data sets, fine-tuned on the target task, and its results were
evaluated and error analysis was performed to determine the
data set selection for the next iteration. We refer to this entire
process as iterative intermediate training using multi-task
learning (IIT-MTL).

IIT-MTL is analogous to traditional feature-based machine
learning methodologies, where performance evaluation and
error analysis lead to feature selection used to train the model.
In IIT-MTL, instead of feature selection, data set selection is
employed to select data sets. Figure 2 presents IIT-MTL
compared with the traditional machine learning approach.

For the ClinicalSTS task, ClinicalBERT was used as our base
model as it was pretrained on a clinical corpus and provides
clinically specific contextual embeddings most suited to our
task. Through IIT-MTL, a refined clinical domain-specific
language model, IIT-MTL on ClinicalBERT
(IIT-MTL-ClinicalBERT), is obtained that has been iteratively
tuned for high performance on the ClinicalSTS task.

In the following sections, we present each step of IIT-MTL as
applied to the ClinicalSTS task: (1) the data set selection
process, including details of each iteration and data sets used;
(2) the MTL architecture with the task-specific layers considered
during the iterative process; and (3) fine-tuning on the target
task.

Figure 2. Comparison of traditional machine learning approach (left), where performance evaluation and error analysis lead to feature selection, and
our proposed iterative training using multi-task learning approach (right), where performance evaluation and error analysis lead to data set selection.

Data Set Selection
For effective performance on the target ClinicalSTS task, we
not only trained our model using MTL as an intermediate step
but also iteratively selected the data sets employed during this
process based on error analysis of the performance on the target
task. The selection of complementary data sets is critical to this
process as it significantly impacts the contextual representations
in the final model.

Several publicly available data sets were considered in these
iterations, including Semantic Textual Similarity Benchmark
(STS-B) [18], Recognizing Question Entailment (RQE) [57],
natural language inference data set for the clinical domain
(MedNLI) [24], and Quora Question Pairs (QQP) [58]. STS-B
consists of 8.6 K sentence pairs drawn from news headlines,
video and image captions, and natural language inference data,
each annotated with a score of 0 to 5 to indicate the degree of
semantic equivalence. RQE consists of 8.9 K pairs of clinical
questions, each annotated with a binary value to indicate
entailment (or lack of) between the 2 questions. MedNLI

consists of 14 K sentences extracted from clinical notes in the
Medical Information Mart for Intensive Care (MIMIC-III)
database [59], with each sentence pair annotated as either
entailment, neutral, or contradiction. QQP consists of 400 K
pairs of questions extracted from the Quora question-and-answer
website, each annotated with a binary value to indicate the
similarity (or lack of) between the 2 questions. We created 2
additional data sets for use in IIT-MTL for ClinicalSTS: a
sentence topic-based data set (Topic) and a medication named
entity recognition data set (MedNER). Topic was created on
sentences within the ClinicalSTS data set, where each sentence
was manually annotated with a label from a predefined list of
topics (eg, MED, SIGNORSYMPTOM, EXPLAIN, and
OTHER). MedNER was autogenerated using a medication
extraction tool [60] on 1000 randomly selected clinical notes
in the MIMIC-III database to recognize medications and its
related artifacts (eg, strength, form, frequency, route, dosage,
and duration). A summary of all data sets used is presented in
Table 2, with additional details provided in Multimedia
Appendix 1 [10,18,24,57,59-62].
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Table 2. Data sets used in multi-task learning.

ExampleSizeDomainTaskData set

Sentence 1: “A young child is riding a horse”; Sentence 2: “A child is
riding a horse”; Similarity: 4.75

8600GeneralSentence pair similar-
ity

STS-Ba

Sentence 1: “Doctor X thinks he is probably just a normal 18 month
old but would like to know if there are a certain number of respiratory
infections that are considered normal for that age”; Sentence 2: “Prob-
ably a normal 18 month old but how many respiratory infections are
normal”; Ground truth: entailment

8900BiomedicalSentence pair classi-
fication

RQEb

Sentence 1: “Labs were notable for Cr 1.7 (baseline 0.5 per old records)
and lactate 2.4”; Sentence 2: “Patient has normal Cr”; Ground truth:
contradiction

14,000ClinicalSentence pair classi-
fication

MedNLIc

Sentence 1: “Why do rockets look white?”; Sentence 2: “Why are
rockets and boosters painted white?”; Ground truth: 1

400,000GeneralSentence pair classi-
fication

QQPd

Sentence: “Negative for difficulty urinating, pain with urination, and
frequent urination”; Ground truth: SIGNORSYMPTOM

1,300,000ClinicalSentence classifica-
tion

Topic

Sentence: “he developed respiratory distress on the AMf of admission,

cough day PTAg, CXRh with B/Li LLj PNAk, started ciprofloxacin and
levofloxacin”; Ground truth: ciprofloxacin [DRUG] levofloxacin
[DRUG]

15,000ClinicalToken-wise classifi-
cation

MedNERe

aSTS-B: semantic textual similarity benchmark.
bRQE: Recognizing Question Entailment.
cMedNLI: natural language inference data set for the clinical domain.
dQQP: Quora Question Pairs.
eMedNER: medication named entity recognition.
fAM: morning.
gPTA: prior to admission.
hCXR: chest x-ray.
iB/L: bilateral.
jLL: left lower.
kPNA: pneumonia.

We established 2 baselines by fine-tuning 2 pretrained language
models, BERT and ClinicalBERT, on the target ClinicalSTS
task. Using the stronger baseline of ClinicalBERT, a total of 5
iterations were performed in IIT-MTL for the ClinicalSTS task.
The selection of data sets for each iteration was decided based
on our understanding of the ClinicalSTS task and error analysis
of the results of the previous iteration. The data set selection
for each iteration is detailed as follows. For each iteration, D
indicates the set of data sets used for multi-task training,
following which the model is further fine-tuned to the target
ClinicalSTS task and evaluated before the next iteration.

• Iteration 1: D={STS-B}: STS-B was employed for
multi-task training because it conforms to the same task
(STS) in the general domain.

• Iteration 2: D={STS-B, RQE, MedNLI}: Next, we added
RQE and MedNLI, which are sentence pair classification
tasks in the clinical domain, and, hence, are similar to our
target task from a domain perspective.

• Iteration 3: D={STS-B, RQE, MedNLI, Topic}: Analysis
of the output from iteration 2 showed that sentence pairs

on different topics within ClinicalSTS express similarity
in different ways. Thus, we created and added the Topic
data set.

• Iteration 4: D={STS-B, RQE, MedNLI, Topic, MedNER}:
Analysis of the output from iteration 3 showed that
medication instruction sentences (eg, “Tylenol tablet 2
tablets by mouth as needed.”) were the worst performing
sentence pairs. To induce medication-related knowledge,
we created and added the MedNER data set to the mix.

• Iteration 5: D={STS-B, RQE, MedNLI, Topic, MedNER,
QQP}: QQP was added in our final iteration as it is a
sentence pair classification task, although in the general
domain.

The final set of data sets used in the model for the ClinicalSTS
task (IIT-MTL-ClinicalBERT) was determined based on the
performance analysis of each iteration.

Intermediate MTL Architecture
The architecture of our intermediate MTL setup is shown in
Figure 3 and is based on the process specified in the study by
Liu et al [21].
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Figure 3. Intermediate multi-task learning and fine-tuning architecture. ClinicalSTS: clinical semantic textual similarity; STS-B: semantic textual
similarity benchmark; RQE: recognizing question entailment; MedNLI: natural language inference data set for the clinical domain; QQP: Quora question
pairs; MedNER: medication named entity recognition data set; ClinicalBERT: bidirectional encoder representations from transformers on clinical text
mining.

The lower shared layers are based on BERT-base architecture
[19], whereas the higher segregated layers represent task-specific
outputs. The task-specific layers correspond to the data sets
selected during the data set selection.

The input can either be a single sentence (X) or a pair of
sentences (X1, X2) delimited with the separating token ([SEP]).
All input texts are tokenized using WordPieces [63] and
truncated to spans no longer than 512 tokens. Following this,
tokens are added to the start ([CLS]) and end ([SEP]) of the
input. In the shared layers, a lexicon encoder converts the input
into a sequence of input embedding vectors, one for each token.
Next, a transformer encoder captures the contextual information
and generates a sequence of contextual embeddings. This
semantic representation is shared across all tasks and feeds into
multiple lightweight task-specific architectures, each
implementing a different task objective. In the training phase,
we fine-tuned the shared layers along with task-specific layers
using the multi-task objectives, detailed below:

• Sentence Pair Similarity: Suppose h[CLS] is the contextual
embedding of [CLS] for input sentence pair (X1, X2) and
wSPS is a task-specific parameter vector. We utilized a fully
connected layer to compute the similarity score

, where  is a real value
of range (−∞, ∞). We use the mean squared error as the
objective function:

     where y is the similarity score for the sentence pair.

• Single Sentence Classification: Suppose h[CLS] is the
contextual embedding of [CLS] for input sentence X and

wSSC is a task-specific parameter vector. The probability
that X is labeled as class c is predicted by logistic regression
with softmax:

     This task is trained using the cross-entropy loss as the
objective:

     where is the binary indicator (0 or 1) if the class label
c is the correct classification for X.

• Sentence Pair Classification: Suppose h[CLS] is the
contextual embedding of [CLS] for sentence pair (X1, X2)
and wSPC is a task-specific parameter vector. As the two
sentences are packed together, we can predict that the
relation R between X1 and X2 is given as

similar to single sentence
classification. We trained the task using the cross-entropy
loss as specified previously

• Token Classification: Suppose h[1:n] is the contextual
embedding for tokens Tok [1:n] in packed sentence pair (X1,
X2) and wTC is a task-specific parameter vector. The token
classification is trained using a per-entity linear classifier,
where the probability that Tok[j] labeled as class c is
predicted by logistic regression with softmax:

. Here, . This task is
trained using the cross-entropy loss as specified previously.

The process for training our intermediate MTL architecture is
demonstrated in Textbox 1. We initialized the shared layers of
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our architecture with the parameters of the pretrained
ClinicalBERT [46]. The task-specific layers were randomly
initialized. We jointly refer to them as θ. Next, we created
equal-sized subsamples (mini-batches) from each data set. For
every epoch, a mini-batch bt was selected (from each of the

MTL data sets detailed previously), and the model was updated
according to the task-specific objective for task t. We used the
mini-batch–based stochastic gradient descent to update the
parameters. A detailed explanation of the training parameters
is provided in Multimedia Appendix 2 [19,21,63-65].

Textbox 1. Multi-task learning algorithm.

Initialize model parameters θ

Create E by merging mini-batches (bt) for each data set in D

for epoch in 1,2,….., epochmax do

     Shuffle E

     for bt in E do

          Compute loss: L (θ) based on task t;

          Compute gradient: ∇(θ)

          Update model: θ=θ−η∇(θ)

     end

end

Fine-Tuning
After multi-task training, we fine-tuned the model on the target
ClinicalSTS task. As ClinicalSTS is a sentence similarity task,
we fine-tuned the sentence pair similarity task-specific layer of
the multi-task architecture (Figure 3) to train the model using
the ClinicalSTS data set. The predictions on the internal test
data set were evaluated, which drove the data set selection
process. A detailed explanation of the training parameters is
provided in Multimedia Appendix 2.

Ensemble Module
To induce both domain-specific and domain-independent aspects
of clinical semantic similarity, we leveraged other pretrained
language models in addition to IIT-MTL-ClinicalBERT in the
ensemble module. During this process, we fine-tuned other
pretrained language models on the target task, ensembled their
predictions with predictions from IIT-MTL-ClinicalBERT
(which was already fine-tuned during IIT-MTL), and then
incorporated additional similarity features. In the following
sections, we describe the (1) language models used, (2)
additional similarity features incorporated, and (3) different
ensembling techniques explored.

Language Models
A total of 4 language models were used in our ensemble module:
IIT-MTL-ClinicalBERT, BioBERT [44], MT-DNN [21], and
robustly optimized BERT approach (RoBERTa) [66].
IIT-MTL-ClinicalBERT, the output of IIT-MTL, was derived
from ClinicalBERT [46], and therefore, it provided clinical
domain-specific contextual embeddings. To provide contextual
representations from a similar but slightly different domain, we
used BioBERT, which is also BERT-based but has been further
pretrained on the biomedical corpus. To account for the
domain-independent aspects of clinical semantic similarity, we
used language models from the general domain, specifically
RoBERTa and MT-DNN. RoBERTa is based on BERT but has
been optimized for better performance, whereas MT-DNN
leverages large amounts of cross-task data, resulting in more
generalized and robust text representations. We selected
RoBERTa and MT-DNN for use in our ensemble module
because at the time of the 2019 n2c2/OHNLP challenge, they
achieved state-of-the-art results on multiple tasks similar to
ClinicalSTS, including STS-B [43], Multi-Genre Natural
Language Inference [23], Question answering Natural Language
Inferencing [67], and Recognizing Textual Entailment [68].
Table 3 presents an overview of the language models used in
our experiments.
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Table 3. Pretrained language models used in the ensemble module and their training corpora.

DomainCorpora for language model pretrainingLanguage model

GeneralWikipedia+BookCorpusMT-DNNa

GeneralWikipedia+BookCorpus+CC-News+OpenWebText+StoriesRoBERTab

BiomedicalWikipedia+BookCorpus+PubMed+PMCdBioBERTc

ClinicalWikipedia+BookCorpus+MIMIC-IIIfIIT-MTL-ClinicalBERTe

aMT-DNN: multi-task deep neural networks.
bRoBERTa: robustly optimized bidirectional encoder representations from transformers approach.
cBioBERT: bidirectional encoder representations from transformers for biomedical text mining.
dPMC: PubMed Central
eIIT-MTL-ClinicalBERT: iteratively trained using multi-task learning on ClinicalBERT.
fMIMIC-III: Medical Information Mart for Intensive Care.

Other Similarity Features
Under the hypothesis that aggregating similarity metrics from
different perspectives could help further boost performance, we
incorporated additional string similarity features to our
ensembled model. On the basis of the observation that
medication instructions appear frequently in our data set, we
incorporated medication features by (1) using a medication
information extraction system [69] to extract medications and
its related attributes (eg, drug name, dosage, duration, form,
frequency, route, and strength) from the text and (2) converting
the extracted attributes into composite features. We also
incorporated additional features shown to be useful in the
previous 2018 ClinicalSTS challenge, including domain-specific
features and phrasal similarity features. Details on these features
are provided in Multimedia Appendix 3 [50,51,69-71].

Ensemble Methods
A total of 3 learning algorithms for regression were used for
ensembling language model outputs and features: linear
regression, Bayesian regression, and ridge regression. Note that
we also explored random forest and XGBoost, which were used
in the previous year’s winning systems, but found that they
underperformed, and therefore, we did not use those methods.
On the basis of the performance on the internal test data set, we
experimented with incrementally averaging different
combinations of the constituent model outputs while adding the
other similarity features previously described. A detailed
explanation of the training parameters is provided in Multimedia
Appendix 2.

Figure 4 presents an overview of our end-to-end system on the
ClinicalSTS task, consisting of an iterative intermediate
multi-task training step followed by an ensemble module. Note
that the intermediate MTL and fine-tuning portion of Figure 4
was presented earlier in more detail in Figure 3.

Figure 4. Overview of our end-to-end system. ClinicalBERT: bidirectional encoder representations from transformers on clinical text;
IIT-MTL-ClinicalBERT: iterative intermediate training using multi-task learning on ClinicalBERT; MT-DNN: multi-task deep neural networks;
RoBERTa: robustly optimized BERT approach; BioBERT: bidirectional encoder representations from transformers for biomedical text mining.
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Evaluation Metrics
We evaluated the proposed system using the evaluation script
released by the organizers of the 2019 n2c2/OHNLP challenge
to measure the Pearson correlation coefficient (PCC) between
the human-annotated (gold standard) and predicted clinical
semantic similarity scores. In the Results section, we report the
PCC on the internal test data set for each iteration in IIT-MTL
as well as on each combination of language models tried during
ensembling. We also report the PCC for our 3 official
submissions to the 2019 n2c2/OHNLP challenge on both the
internal test data set and withheld external test data set.

Results

Iterative Intermediate Training Using MTL
Table 4 presents the results of each iteration in IIT-MTL. In
comparison with the ClinicalBERT baseline, the addition of
complementary data sets improved the overall model
performance. Notably, not all data set additions resulted in
improved performance. This is highlighted in iteration 5, where
the addition of QQP led to a significant drop in performance.
As the model from iteration 4 showed the best performance on
the internal test data set, we adopted this variant for the final
IIT-MTL-ClinicalBERT model.

Table 4. Results of each iteration of iterative intermediate training using multi-task learning.

Pearson correlation coef-
ficient on internal test

Data sets used for iterative intermediate training approach using multi-task learningExperiment and language
model

QQPeMedNERdTopicMedNLIcRQEbSTS-Ba

BLf

0.834——————h1 BERTg

0.848——————2 ClinicalBERTi

Iterj

0.852—————✓k1 ClinicalBERT

0.862———✓✓✓2 ClinicalBERT

0.866——✓✓✓✓3 ClinicalBERT

0.870 l—✓✓✓✓✓4 ClinicalBERT

0.856✓✓✓✓✓✓5 ClinicalBERT

aSTS-B: semantic textual similarity benchmark.
bRQE: Recognizing Question Entailment.
cMedNLI: Natural Language Inference data set for the clinical domain.
dMedNER: Medication-NER data set.
eQQP: Quora Question Pair data set.
fBL: baseline.
gBERT: bidirectional encoder representations from transformers.
hIndicates data set was not used for this experiment.
iClinicalBERT: bidirectional encoder representations from transformers on clinical text mining.
jIter: iteration.
kIndicates data sets that were trained together in multi-task learning.
lItalics signify highest Pearson correlation coefficient obtained on internal test data set.

Ensemble Module
Table 5 presents the results of the language model ensemble
experiments performed on the internal test data set. Here, the
statistical mean of the normalized language model outputs was
used as our ensemble method. Of the individual models,
IIT-MTL-ClinicalBERT and BioBERT, which were pretrained
on clinical and biomedical corpora, respectively, achieved higher

PCC as compared with MT-DNN and RoBERTa, which were
pretrained only on general domain corpora. In general,
ensembled models performed better than the individual
constituent models alone, with the combination of
IIT-MTL-ClinicalBERT, BioBERT, and MT-DNN resulting in
the highest performance (PCC 0.8809) on the internal test data
set.
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Table 5. Ablation study of language models utilized in the ensemble module. The statistical mean of the language model outputs was used as the
ensembling method.

Pearson correlation coefficient on inter-
nal test

Language model ensembleExperiment

RoBERTadMT-DNNcBioBERTbIIT-MTL-ClinicalBERTa

0.8711———f✓e1

0.8707——✓—2

0.8685—✓——3

0.8578✓———4

0.8754——✓✓5

0.8780—✓✓—6

0.8722✓✓——7

0.8741✓——✓8

0.8796—✓—✓9

0.8720✓—✓—10

0.8809 g—✓✓✓11

0.8769✓✓✓—12

0.8787✓✓—✓13

0.8764✓—✓✓14

0.8795✓✓✓✓15

aIIT-MTL-ClinicalBERT: iterative intermediate training using multi-task learning on ClinicalBERT.
bBioBERT: bidirectional encoder representations from transformers for biomedical text mining.
cMT-DNN: multi-task deep neural networks.
dRoBERTa: robustly optimized bidirectional encoder representations from transformers approach.
eIndicates which language models are included in the ensemble.
fIndicates language model was not used for this experiment.
gItalics signify the highest Pearson correlation coefficient obtained on internal test data set.

On the basis of the experiments presented in Table 5,
IIT-MTL-ClinicalBERT & BioBERT & MT-DNN was adopted
as the base combination of language models for our official
submissions. Table 6 presents the results of this base
combination of language models, with incremental addition of
other similarity features using four different ensemble methods.

Results are shown for both the internal and withheld external
test data sets. Note that the addition of domain-specific and
phrasal similarity features has been included in Table 6 for
completeness (although it resulted in lower performance)
because it was part of our official submissions.
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Table 6. End-to-end ensemble module and official submission results.

Pearson correlation coefficient on external testaPearson correlation coefficient on internal testaComponents

RRBRLRMeanRRdBRcLRbMean

0.89780.89780.89780.90060.87960.87950.87960.8809IIT-MTL-ClinicalBERTe & MT-

DNNf & BioBERTg

0.89750.89970.9010N/A0.88310.88320.8841N/Ah+ medication features

0.88750.89200.8861N/A0.87990.87410.8733N/A+ domain-specific and phrasal simi-
larity features

aItalics signify the Pearson correlation coefficient obtained on the internal and external test data set corresponding to the three configurations (components
and ensemble method) that were our official submissions to the 2019 n2c2/OHNLP challenge.
bLR: linear regression.
cBR: Bayesian regression.
dRR: ridge regression.
eIIT-MTL-ClinicalBERT: iterative intermediate training using multi-task learning on ClinicalBERT.
fMT-DNN: multi-task deep neural networks.
gBioBERT: bidirectional encoder representations from transformers for biomedical text mining.
hN/A: not applicable.

Official Submission
The best performing configurations on the internal test data set,
as shown in Table 6, were entered as our official submissions
to the 2019 n2c2/OHNLP ClinicalSTS challenge. The details
of each of our 3 official submissions are as follows:

• Submission 1: IIT-MTL-ClinicalBERT & MT-DNN &
BioBERT
• A statistical mean of the scores produced by the

language models, specifically IIT-MTL-ClinicalBERT,
MT-DNN, and BioBERT.

• Submission 2: IIT-MTL-ClinicalBERT & MT-DNN &
BioBERT+medication features
• A linear regression model trained on each component

output from Submission 1 and medication features.

• Submission 3: IIT-MTL-ClinicalBERT & MT-DNN &
BioBERT+medication features+domain-specific and phrasal
similarity features
• A ridge regression model trained on all features from

Submission 2 and phrasal similarity and
domain-specific features.

Our submission 2 achieved first place out of 87 submitted
systems with a PCC of 0.9010 based on the official results. Our
submission 1 achieved second place with a PCC of 0.9006.

With the release of the external test data set, we reran the
experiments for language model ensembling on the external
test data set. We identified the highest performing configuration
on the external test data set as the statistical mean of the scores
produced by the combination of IIT-MTL-ClinicalBERT,
MT-DNN, and RoBERTa, which resulted in a PCC of 0.9025.

Discussion

Principal Findings
Iterative intermediate training using MTL is an effective way
to leverage annotated data from related tasks to improve
performance on the target task. However, it is critical to select
data sets that can induce contextualized embeddings necessary
for the target task. If the network is tasked with making
predictions on unrelated tasks, negative transfer may ensue,
resulting in lower quality predictions on the target task.
Applying IIT-MTL to train ClinicalBERT with related
tasks—STS-B, RQE, MedNLI, Topic, and MedNER—resulted
in improved performance on the target ClinicalSTS task.
However, the addition of QQP to the MTL step resulted in a
significant drop in performance. This may be attributed to the
fact that, in contrast to the other data sets used, QQP was created
for a different sentence pair task (classification rather than
regression) on the general domain (as opposed to RQE and
MedNLI, which are on the clinical domain). This illustrates the
importance of data set selection for the effectiveness of the
intermediate multi-task training step.

Ensembling language models pretrained on domain-specific
and domain-independent corpora incorporates different aspects
of clinical semantic similarity. Table 7 presents the ground truth
for two sentence pairs, along with predictions from each
constituent model. The first sentence pair contains minimal
domain-specific terminology; hence, the models trained on
domain-independent corpora, MT-DNN and RoBERTa,
predicted scores closer to the ground truth. The low ground
truth score in the second sentence pair is because of dissimilar
clinical concepts within the text; hence, the models trained on
domain-specific corpora, IIT-MTL-ClinicalBERT and
BioBERT, predicted scores closer to the ground truth.
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Table 7. Sample sentence pairs with ground truth annotations and predictions from three language models used in the final ensembled system.

PredictionsGround
Truth

Sentence 2Sentence 1

RoBERTadMT-

DNNc
BioBERTbIIT-MTL-Clinical-

BERTa

2.512.151.010.612.5“We explained the risks, bene-
fits, and alternatives, and the
patient agreed to proceed.”

“The following consent was
read to the patient and accept-
ed to order testing.”

1.742.341.181.040.5“Negative for abdominal pain,
blood in stool, constipation, di-
arrhea and vomiting.”

“Negative for coughing up
blood, coughing up mucus
(phlegm) and wheezing.”

aIIT-MTL-ClinicalBERT: iterative intermediate training using multi-task learning on ClinicalBERT.
bBioBERT: bidirectional encoder representations from transformers for biomedical text mining.
cMT-DNN: multi-task deep neural networks.
dRoBERTa: robustly optimized bidirectional encoder representations from transformers approach.

Analysis of Model Performance
Our best official submission achieved a PCC of 0.9010 on the
external test data set. However, the model performance varies
significantly depending on the gold similarity scores. On the
low and high ends of the gold scores, [0-2) or [4-5], our model
achieves a PCC of 0.9234. However, in the middle range of the
gold scores, [2-4), it performs much worse with a PCC of
0.5631. The lower performance in the middle range can be
partially attributed to ground truth issues. Weak-to-moderate
interannotator agreement (0.6 weighted Cohen kappa) coupled
with the lack of an adjudication process (scores from 2
annotators were averaged to provide the gold score), led to
concentration of annotation errors in the middle range of the
gold scores. For example, greater disagreement between 2
annotators (eg, gold scores 1 and 5) will end up in the middle
range (final averaged score 3) as compared with low
disagreements (eg, 4 and 5 with the final score of 4.5). The drop
in performance in the middle range may also indicate that
although our model performs well at distinguishing completely
similar or dissimilar sentence pairs, it struggles in scoring
sentences with moderate clinical semantic similarity.

To further investigate this behavior, we studied how predictions
varied for each similarity interval using the withheld external
test data set. For this, we converted the continuous range gold
scores and our model predictions into 5 intervals: [0,1), [1-2),
[2-3), [3-4), [4-5]. Using these intervals, we then calculated the
F1-score by computing true positives, false positives, and false
negatives. A prediction is a true positive if the gold score is in
the same similarity interval as the prediction; otherwise, it is
termed as false positive (in the predicted interval) and false
negative (in the gold interval). Our best model achieves a
relatively high F1-score at the extreme ranges (0.77, 0.80, and
0.71 for [0,1), [1-2), [4-5], respectively) but struggles in the
middle intervals (0.23 and 0.44 for [2-3) and [3-4), respectively).

Limitations and Future Work
We acknowledge certain limitations of this study. First, these
results are specific to the 2019 n2c2/OHNLP ClinicalSTS data
set, which contains clinical text snippets from a single EHR
data warehouse (Mayo Clinic EHR data warehouse).
Furthermore, the chosen sentence pairs have high surface lexical

similarity (ie, candidate pairs must have ≥0.45 average score
of Ratcliff/Obershelp pattern matching algorithm, cosine
similarity, and Levenshtein distance), which limits the variation
in the data set. Thus, there is a need to validate this process on
a more diverse ground truth, which (1) contains clinical text
from multiple data warehouses and (2) allows for a less
restrictive sentence pairing. Second, we observed inconsistencies
in the ground truth, which may be inherent to a complex task
such as clinical semantic textual similarity. We have made
preliminary progress in quantifying these errors and their impact
on the results, but more work is needed in this direction. Finally,
although our system has achieved high PCC on the ClinicalSTS
task, additional research is still needed to understand how to
apply this foundational task to the real-world problem of bloated,
disorganized clinical documentation.

Although our system achieved state-of-the-art results in the
challenge, the proposed system has following avenues for
improvement and further exploration:

1. The data set selection process in IIT-MTL is largely manual,
driven by empirical observations and domain knowledge.
Recent developments in automatic machine learning
(AutoML), ranging from optimizing hyper-parameters using
random search [72] to discovering novel neural architectures
using reinforcement learning [73], have shown promising
results. We plan to explore AutoML to relieve this manual
effort in the future.

2. The language model ensemble works well for inducing
domain-specific and domain-independent knowledge.
However, this process remains largely intuitive. We plan
to explore how language modeling objectives influence the
domain adaptability of the learned language models on the
target task.

3. At the time of the challenge, we applied our IIT-MTL
methodology only to ClinicalBERT because of time
constraints. We plan to employ our IIT-MTL methodology
on other implemented language models and evaluate their
performance.

4. Our proposed system has a significant computational cost,
as we leverage several transformer-based language models.
We plan to explore the performance impact of replacing
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these models with their less computationally expensive
counterparts [74].

5. In our experiments, inclusion of domain-specific and phrasal
features led to a drop in performance. This is likely because
of effective learning of these features by pretrained
transformer-based language models, as observed in the
general domain [75,76]. We wish to investigate this
behavior further by utilizing probing tasks [77] in
transformer language models.

Conclusions
In this study, we presented an effective methodology leveraging
(1) an iterative intermediate training step in a MTL setup and
(2) multiple language models pretrained on diverse corpora,
which achieved first place in the 2019 ClinicalSTS challenge.
This study demonstrates the potential for IIT-MTL to improve
the performance of other tasks restricted by limited data sets.
This contribution opens new avenues of exploration for
optimized data set selection to generate more robust and
universal contextual representations of text in the clinical
domain.
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