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Abstract

Background: As the manual creation and maintenance of biomedical ontologies are labor-intensive, automatic aids are desirable
in the lifecycle of ontology development.

Objective: Provided with a set of concept names in the Foundational Model of Anatomy (FMA), we propose an innovative
method for automatically generating the taxonomy and the partonomy structures among them, respectively.

Methods: Our approach comprises 2 main tasks: The first task is predicting the direct relation between 2 given concept names
by utilizing word embedding methods and training 2 machine learning models, Convolutional Neural Networks (CNN) and
Bidirectional Long Short-term Memory Networks (Bi-LSTM). The second task is the introduction of an original granularity-based
method to identify the semantic structures among a group of given concept names by leveraging these trained models.

Results: Results show that both CNN and Bi-LSTM perform well on the first task, with F1 measures above 0.91. For the second
task, our approach achieves an average F1 measure of 0.79 on 100 case studies in the FMA using Bi-LSTM, which outperforms
the primitive pairwise-based method.

Conclusions: We have investigated an automatic way of predicting a hierarchical relationship between 2 concept names; based
on this, we have further invented a methodology to structure a group of concept names automatically. This study is an initial
investigation that will shed light on further work on the automatic creation and enrichment of biomedical ontologies.

(JMIR Med Inform 2020;8(11):e22333) doi: 10.2196/22333
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Introduction

Background
Biomedical ontologies are formalized representations of
concepts and the relationships among these concepts for the
biomedical domain, and they play a vital role in many medical
settings [1]. The constructions of ontologies are labor-intensive
and time-consuming. In addition, their evolvements often require

concept enrichment that must be manually reviewed by domain
experts. Thus, automatic mechanisms are desirable in both
ontology construction and ontology maintenance tasks.

In recent years, many ontology learning (OL) efforts have been
made to automate the construction of ontologies from free text
[2]. An important subtask in the OL process is relation extraction
that aims to extract a novel relationship between known concepts
[3]. Putting aside the accuracy of extraction, the discovery of
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semantic relations from text has its drawbacks: one is that the
representations of concepts and relations in the text are usually
nonstandard, and the other is that the knowledge extracted from
text is often limited and not curated. Due to the widespread use
of biomedical ontologies [4], their quality has become very
important [5]. As such, in this study, instead of discovering
semantic relations from extrinsic information, we investigate
an automatic way of uncovering relations between ontology
concept names by leveraging the intrinsic knowledge of the
ontology itself.

An important observation of biomedical ontologies is that the
lexical patterns of the concepts often indicate, to a certain
degree, the structural relations between them, especially for
hierarchical relations. For instance, in the Foundational Model
of Anatomy (FMA) [6], Left hemidiaphragm is part of
Diaphragm, and Superior mediastinal lymph node is a
Mediastinal lymph node. We can notice that in each example,
the parent concept name is a substring of the child concept name,
as the parent is semantically more general than the child. Using
naming conventions in biomedical ontologies is a principle
recommended by the Open Biological and Biomedical Ontology
(OBO) Foundry [7]. In the literature, lexical-structural relevance
had been leveraged for many ontology-related tasks. For
instance, we used subphrases of concept names and structural
information for disambiguating terms in the FMA [8]. Also, the
approach of combining lexical and structural methods is widely
adopted in many ontology auditing studies [9-11]. Note that in
this paper, we use the terms “concept name” and “term”
interchangeably.

In this study, we propose an automatic approach for structuring
a given set of concept names based on their lexical granularity.
We started by investigating an automatic way to predict the
direct relation between 2 given concepts by employing machine
learning (ML) algorithms. Since word embedding tools such as
Word2Vec [12] and Bert-as-service [13] can extract the semantic
features of words and encode the words into feature vectors,
relations between words are retained to some extent. By feeding
encoded term pairs along with their corresponding relations into
ML models such as Convolutional Neural Networks (CNN)
[14], Long Short-term Memory Networks (LSTM) [15], or
Support Vector Machine (SVM) [16], we can train the models
as classifiers to predict the relations between given concept
names.

We selected the most common hierarchical relations in
biomedical ontologies for experiments: the is-a relation and the
part-of relation. The training dataset comprised randomly
selected pairs from the taxonomy and partonomy of the
ontologies. Each pair was either directly related by is-a or by
part-of. In addition, we added a third type of concept pairs to
the training set: concept pairs that are not directly related (ndr).
For each pair in the training set, we encoded the 2 terms to
vectors using Bert-as-service [13] at first. The subtraction of
the 2 vectors formed an input instance for ML models. After
training, the models were able to classify a given term pair (A,
B) into one of the 3 classes: (A is-a B), (A part-of B), or (A ndr
B).

Moving forward, provided with a group of concept names, we
aimed to determine how to structure them automatically by
utilizing the above ML classifiers. Intuitively, the relative
positions of all the concepts can be achieved by pairwise
comparisons. However, pairwise comparisons will not only
increase the algorithm complexity but also tend to introduce
false-positive relations. To deal with this problem, we deployed
our previous work [11] on concept granularity to obtain the
positions of concepts: Firstly, we determined all the parallel
concept sets (PCSs) in the given names. Secondly, we placed
them into different hierarchical levels based on their granularity,
forming PCS threads. Each thread determined a PCS hierarchy.
Lastly, we used the above ML models to determine the relations
between neighboring terms along the threads as well as relations
between certain terms from different threads. As a result, we
achieved the goal of predicting the whole taxonomy and
partonomy structures for the given names. To the best of our
knowledge, this is the first study that investigates automatic
semantic structure generation for a group of concept names in
biomedical ontologies.

Related Work
In the literature, automatic methods were proposed to alleviate
human efforts from different aspects of the ontology lifecycle.
Many researchers utilized automatic methods to facilitate
semantic knowledge extraction for ontology enrichment. For
example, Pembeci et al [17] proposed a supervised ontology
enrichment algorithm by using concept similarity scores
computed via Word2Vec models to discover other related
concepts for a given concept. We refer to Liu et al [18] for more
references. For ontology concept name prediction, Zheng et al
[19] explored deep learning-based approaches to automatically
suggest new concept names in the Systematized Nomenclature
of Medicine-Clinical Terms (SNOMED CT), under the condition
that a bag of words is given. However, only a few studies
worked on automating relation prediction and concept
organization within ontologies. Zheng et al [20] verified whether
an is-a link should exist between a new child concept and an
existing parent concept in the SNOMED CT. Liu et al [21]
proposed a CNN-based method to support the insertion of new
concepts into the SNOMED CT: The CNN classifier was trained
by vectors translated from concepts using the Doc2Vec
algorithm. Afterward, it was able to decide if a given concept
has the is-a relation with existing concepts in the ontology.
Later, they also used a transfer learning method based on BERT
to support the insertion of new concepts [22]. A limitation of
the work is that at least one parent had to be given for the
concept to be inserted beforehand.

Our study differs from the above work mainly in the following
aspects: (1) Instead of predicting the insertion place of a new
concept or predicting the relation between a particular concept
pair, we predict the whole hierarchical structure for a given set
of concept names; (2) aside from names of the concepts, we do
not need extra information to predict their positions in the whole
group; and (3) instead of concatenating the child and the parent,
we encode them separately and use their subtraction as an input
instance for the ML models.
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Methods

Materials
We tested our methodology in the FMA [6], which is both a
theory of human anatomy and an ontology artifact. In particular,
it is a representation of the canonical, phenotypic structure of
the human body and its typical components at all biological
levels. It is a model suitable for machine manipulation with
more than 100,000 concepts, including macroscopic,
microscopic, and subcellular canonical anatomy.

For our analysis, we used version 5.0.0 of the FMA (Structural
Informatics Group at the University of Washington) [23]. It is
distributed as Web Ontology Language (OWL) files, which
enables the FMA to be stored in resource-description-frame
(RDF) data stores and made available for querying via SPARQL
[24]. In this study, we used Virtuoso (version 7.2.5.1; OpenLink
Software) as our RDF store [25].

Model Training and Testing for Direct Relation
Prediction

Data Preparation
We use the FMA to describe the data preparation process
without a loss of generality. We first extracted all the concept
pairs directly related by is-a or part-of from the FMA. The
resulting set, D, contained 104,665 is-a pairs and 61,878 part-of
pairs. All the children from D comprised a set C, and all the
parents from D comprised a set P. We then generated the third
type of pairs, which were pairs that are not directly related (ndr).

The ndr pairs consisted of 2 kinds: (1) pairs of terms that share
the same ancestor, and (2) pairs comprising a random concept

A in the FMA and a child of the sibling of A (ie, uncle-nephew
pairs). For the first kind of pair (pairs of terms that share the
same ancestor), we first found all the subtrees in the FMA with
sizes between 60 and 135. Then, for each of these trees, we let
all of its node terms pair with each other. If a direct is-a or
part-of relation did not connect the 2 elements of each pair, it
was an ndr pair added to the dataset D.

The reason that we chose these 2 kinds of ndr pairs are the
following: Since our ultimate goal was to organize a group of
closely related terms, ndr pairs in the training dataset should
not just be chosen at random. Thus, we intentionally included
ndr pairs that originated from the same subtrees into the dataset,
as the first kind of ndr pairs do, to help recognize ndr relations
in the target groups. As the subtrees should be neither too large
nor too small, only subtrees with moderate sizes between 60
and 135 were selected for our experiment. Note that although
is-a and part-of are both transitive relations, indirect is-a pairs
and indirect part-of pairs were classified as ndr pairs. For the
second kind of ndr pairs, we included certain uncle-nephew
pairs from the whole FMA dataset, as they tend to be
mispredicted to have parent-child relations.

The data preparation process is illustrated in Figure 1. Our
selection process of ndr pairs stopped when the number of ndr
pairs reached 3 times the summation of the numbers of is-a
pairs and part-of pairs. The ratio of these 2 kinds of ndr pairs
was 1:1; that is, we randomly selected 249,815 pairs from the
first kind of ndr pairs and the same number from millions of
uncle-nephew pairs. The number of ndr pairs was set much
larger than the numbers of is-a pairs and part-of pairs to better
match the real situations in the ontology.
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Figure 1. The data preparation process. The final dataset D consists of 3 parts: (1) all of the direct is-a and part-of pairs in the Foundational Model of
Anatomy (inputted by the yellow arrow); (2) ndr pairs of terms that share the same ancestor (inputted by the green arrow); and (3) ndr uncle-nephew
pairs (inputted by the red arrow).

Embedding
Our aim was to train an ML algorithm that was able to determine
whether 2 given ordered terms maintain 1 of the 3 relations
between them, namely, an is-a relation, a part-of relation, or an
ndr relation. Above all, the term pairs needed to be converted
to vectors, which is called embedding. To do this, firstly, we
used the Bert-as-service tool [13] to acquire the vector
representations for all words that appeared in the dataset D.
Each word was represented by a 768-length vector; thus, each
concept name in D was represented by a sequence of vectors.
Secondly, to align all the concept names, we padded all the
sequences’vectors to the same length of 20. Lastly, all the child
vectors were subtracted from their respective parent vectors to
create the input vectors for classification algorithms. We selected
subtraction rather than concatenation because subtraction would
catch the differentiation between the parent and the child. As a
result, each input vector took shape (1,20,768) and was labeled
by its corresponding relation.

Model Training and Direct Relation Prediction
We shuffled the input vectors along with their labels and used
80% of them as the training set, 10% of them as the validation
set, and the remaining 10% as the testing set. Since FMA terms
are all short texts, we selected the classic TextCNN proposed
by Yoon Kim [26], which is widely used in short-text
classification like our CNN model. The other classification
model we used was Bidirectional Long Short-term Memory
Networks (Bi-LSTM) [15], which is often used to model
contextual information in natural language processing tasks. In

our experiments, the parent term and the child term were used
as contextual information for Bi-LSTM to predict the
relationship between them.

We ran the models using Keras [27] on CentOS with 240 GB
of memory and 4 Tesla M60.

In the CNN model, we used 3 Conv1D layers and 2
MaxPooling1D layers following the input layer. After flattening
the last layer’s output, we added 2 dense layers such that the
former had a relu activation and the latter had a softmax
activation. The cost function we leveraged was
categorical-crossentropy in Keras. After training, for each input
vector that represents a pair of concept names, the CNN model
would predict a relation between the 2 concepts.

The second classification model we used was Bi-LSTM. After
the input layer, we added a Bi-LSTM layer with 32 memory
units in the middle. Then, we flattened the output of the last
layer to add a dense layer which had a softmax activation. Cost
function categorical- crossentropy in Keras was also used for
classification.

For both models, we set the training data to batches of size 512
and set the epoch parameter as 50. For each iteration, we used
the validation data to evaluate the model’s performance.

The testing set was used to evaluate the performance of each
model. By comparing the predicted results with the real
situations in the FMA, we calculated metrics such as the
precision, recall, and F1 scores for each model separately.
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To demonstrate the robustness of our trained models, we
repeated the above experiment 100 times and obtained the
average precision, recall, and F1 values. The training set,
validation set, and testing set were randomly divided each time,
but the 8:1:1 ratio was maintained. In the following step, we
selected a particular group of terms from each testing set and
automatically obtained the taxonomy and partonomy structures
among those terms.

Automatic Structuring for a Group of Concept Names

Algorithm Overview
The above ML models only predict if 2 given terms are directly
related by is-a or part-of. However, rather than predicting the
relation between 2 random terms, a more meaningful use lies
in the organization of a given set of closely related terms. To
achieve this goal, we needed to obtain their relative positions.

An intuitive solution is to use the pairwise comparison. Let the
target term set be Q. Suppose the number of terms in Q is M;
we will need M(M−1) times of testing to obtain the pairwise

relations among them. However, apart from time complexity,
another problem with this solution is that it will introduce too
many ndr pairs since real is-a or part-of relations in Q are quite
sparse. Thus, the prediction results for ndr pairs will easily
affect the prediction results for is-a and part-of pairs.

As such, to reduce the use of pairwise comparison, we deployed
our previous work [11] on concept granularity to obtain the
relative positions of the terms. Specifically, we divided the
target set into small parallel concept sets (PCSs) [11]. As parallel
concepts remain at the same level of granularity, it turned out
that, in the end, we only needed to organize the PCSs. To do
this, we first placed the PCSs into different hierarchical levels
based on their granularity, forming PCS threads. Each thread
determined a semantic hierarchy. Then, we determined the
hierarchy between different threads. Then, after the whole
structure was obtained, we utilized the trained ML models to
predict the relations between directly connected terms and thus
obtained the whole semantic map. This procedure is briefly
illustrated in Figure 2.

Figure 2. The use of lexical granularity to obtain the relative positions of terms. (1) Parallel concept sets (PCS) and PCS thread detection; 7 PCS nodes
and 4 PCS threads were detected in this example. PCS: represented by dashed rectangles; Concept names: represented by circles; Substring relations:
represented by dashed arrows. (2) Relation prediction. is-a or part-of relations predicted by the classification model: represented by solid arrows.

PCS Detection
A parallel concept set (PCS) is a set comprised of concepts
sharing the same level of conceptual knowledge [11], such as
symmetric concepts. A pair of concepts is called symmetric if
the concept names are the same but for the possible difference

in a single occurrence of the modifiers used [10]. For instance,
Lower extremity part-Upper extremity part is a symmetric
concept pair concerning the symmetric modifier pair Upper and
Lower.

In order to detect all the symmetric concept pairs in Q, we
needed to retrieve all the symmetric modifier pairs first. To do
this, we used the Stanford Parser [28] to obtain all the
noun-phrase (NP) chunks without prepositions. For all the
modifiers in those chunks, any 2 of them that share a common

context were selected to form a modifier pair. After retrieving
all the symmetric modifier pairs from Q, we easily detected all
the symmetric concepts using SPARQL queries [24]. In the end,
every symmetric term pair formed a PCS. For terms whose
symmetric counterparts could not be found in Q, each of these
formed a PCS by itself.

PCS Thread Detection
As noted, for hierarchical relations, the parent term is more
general than the child term and is usually a substring of the child
term. As a result, we can leverage the substring threads in Q to
organize the PCSs identified from the above step. We used

A B to represent that A is a substring of B. A substring

thread A0 A1... ...An−1 An would correspond
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to a parent-child thread A0 A1... ..An−1 An. Along each
parent-child thread, we generalized every term node to the PCS
that the term belonged to. As a result, all the PCSs were
organized into several threads. Each thread was named a PCS
thread. Note that some threads may only contain 1 PCS node.
Also, some PCSs may appear in several threads.

Relation Prediction
The relative positions of nonroot PCS nodes were determined.
Hence, we no longer looked for their parents elsewhere but only

predicted relations between concepts in neighboring nodes.
Specifically, we first paired each term in the PCS with its
substring term in the parent PCS. If no substring term was found
in the parent PCS, the term would be paired with every item in
the parent. As illustrated in Figure 3a, A, C, and B, C were
neighboring nodes along 2 PCS threads, respectively. Since the
right-most term in C had no substring in B, it was paired with
every term in B, represented by dashed arrows. Then, we
predicted the relations between the paired terms by leveraging
the previously trained classification models.

Figure 3. Determination of term pairs to be fed into machine learning models for relation prediction. Parallel concept sets (PCSs): represented by
rectangles; Concept names: represented by ovals. (a) A, B, and C are 3 PCS nodes; A, C and B, C are neighboring nodes along 2 PCS threads, respectively.
Substring relations: represented by solid arrows. As the right-most term C has no substring term in B, it is paired with every term in B, represented by
dashed arrows. Each arrow (solid or dashed) connects 2 terms such that the relation between them is predicted using classification models. (b) A and
B are 2 different PCS thread roots. Each root is paired with every PCS node in other threads under different roots; red dashed arrows are used to connect
them. For instance, (C, A) is such a pair. (c) Classification models are used to predict the pairwise relations between concept names in C and A from
the above step.

In regard to the PCS thread roots, if all the threads shared 1
root, no further treatment was needed. If there existed more than
1 different thread root, we still leveraged pairwise comparison
to determine the parents for the roots: For each PCS thread root,
we first paired it with every PCS node in other threads, as
illustrated in Figure 3b. For instance, (C, A) was such a pair,
with C as the parent PCS and A as the child PCS (Figure 3c).
We used the ML models to predict the pairwise relations
between terms in those paired PCS nodes. As Figure 3c
illustrates, each term in C was paired with every term in A, and
the specific relation between each pair would be predicted by
the previously trained classification models.

Lastly, only is-a and part-of edges would be retained. For the
given group of terms, suppose the number of predicted is-a
relations was P, and the number of correct ones among them
was CP; then, the precision for is-a was calculated as CP/P.
Further, suppose the number of original is-a relations in the
FMA was O, and the number of them that were correctly
predicted was CO; then, the recall for is-a was CO/O.

Case Studies
To test the generalizability of our method, we selected a group
of terms from each of the testing sets in the 100 cross-validation
experiments for automatic structuring. As mentioned, the most
useful scenario happens when the terms are closely related
instead of semantically distant. Thus, we only selected terms
that belong to the same tree for experiments.

The process was as follows: Firstly, we collected all the term
roots in the testing set and collected all the is-a and part-of
descendants under them, forming a concept tree for each root.

Secondly, we picked out the trees with more than 20 elements.
Lastly, we randomly selected a tree and created a set formed
by all the terms in that tree as our study case. Note that we
manually assured that none of the concepts in the case studies
had appeared in the training set.

For the selected 100 cases, we followed the steps described
above to predict the whole semantic map among the concept
names in the groups. Our experiments separately leveraged the
2 previously trained models for direct relation prediction. By
comparing the predicted results with the real cases in the FMA,
we evaluated the performance of our methodology by calculating
the average precision, recall, and F1 values for all the cases.

For a more specific analysis of the results, we selected the
largest case with root “First Rib” among the 100 cases. The set
contained 57 concepts with 89 relations among them in the
FMA, including 34 is-a relations and 55 part-of relations, as
shown in Multimedia Appendix 1.

To demonstrate the advantage of our PCS-based method, we
performed another group of experiments for the case study on
“First Rib” based on primitive pairwise comparisons among the
whole set of concept names. We fed 3192 (from 57×56) term
pairs to the models for direct relation predictions. Then, a
comparison between the PCS thread-based method and the
primitive pairwise-based method was made for this case.
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Results

Classifiers Can Predict the Direct Relation Between 2
Given Concept Names
Using the remaining 10% of the data as the testing set in each
of the cross-validation experiments, we evaluated the
performances of the 2 models on direct relation prediction
between 2 given concept names. The average results are shown

in Table 1. The table shows that the models performed well on
this task, with both precision and recall above 0.9. This
demonstrates that machine learning models, when trained by
existing relations in the ontology, can be very effective at
predicting relations between new incoming concepts, provided
that their names are given. Based on this result, we invented
the PCS thread-based method and further investigated the
possibility of organizing a group of terms.

Table 1. Average performances of the 2 models on direct relation prediction (100 rounds).

Overallndrpart-ofis-aModel

F1RPRPRPRbPa

0.930.920.950.930.970.910.900.910.93Bi-LSTMc

0.910.910.920.920.940.900.890.900.91CNNd

aP: precision.
bR: recall.
cBi-LSTM: Bidirectional Long Short-term Memory Networks.
dCNN: Convolutional Neural Networks.

Automatic Structuring of Groups of Closely Related
Terms
In the 100 testing sets, we found that the sizes of all trees were
less than 60, and the 100 term groups we selected had an average
size of 25. The smallest group contained 20 terms and the largest
group contained 57 terms.

We applied the PCS-based algorithm to the 100 cases and
calculated the average precision, recall, and F1 values for is-a
and part-of based on Bi-LSTM and CNN, respectively. The
results are shown in Table 2; the overall F1 score using
Bi-LSTM was 0.79, which slightly outperformed the algorithm
using CNN.

Table 2. Average performances of the parallel concept set (PCS) thread-based algorithm on 100-term groups.

Overallpart-ofis-aModel

F1RPRPRbPa

0.790.760.830.680.820.790.84Bi-LSTMc

0.740.760.720.690.720.790.72CNNd

aP: precision.
bR: recall.
cBi-LSTM: Bidirectional Long Short-term Memory Networks.
dCNN: Convolutional Neural Networks.

To analyze the influence of PCS nodes that contain at least 2
symmetric terms (ie, big PCS nodes) on the performances of
the above algorithm, we calculated the proportion of big PCSs
among all the PCSs for each study case and demonstrated the
relation between the proportion and the F1 value (Figure 4). As
it indicates, the PCS-based algorithm's performance does not
have evident relevance with the richness of big PCS nodes.

Further, to demonstrate the usefulness of ML models in our
approach, we collected all the is-a and part-of pairs without
substring relationships in the 100 study cases and found 652
such pairs. Among the 652 pairs, 235 (36%) could be correctly
predicted by our algorithm using both models. For instance, we

correctly predicted the relation (Endplate of intervertebral
disk,is-a, Organ component) in which the 2 terms have no shared
word. In fact, the above ratio could have been much higher if
the pairs had actually fed into the ML models, as some pairs
without substring relationships were filtered out by the algorithm
beforehand. On the other hand, the 100 cases contained 1140
ndr pairs in which 1 term is a substring of the other. Of the 1140
ndr pairs, 931 (82%) were correctly predicted by both models
as ndr pairs.

As the above results show, our proposed algorithm works well
on both term pairs, with or without obvious lexical patterns.
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Figure 4. The relation between the proportion of big parallel concept set (PCS) nodes and the F1 value for 100 cases.

Specific Case Study on “First Rib”
For the specific case on “First Rib,” in the 57 concept names
to be structured, we detected 1 symmetric modifier pair, (left,
right). We first divided all the concepts into 37 PCSs. Of these
37 PCSs, 20 PCSs contained 2 terms and 17 PCSs contained
only 1 term. Then, based on lexical granularity, we found 29
PCS threads. Except for 1 thread that took “Fossa for first costal
cartilage” as its root, all the other 28 threads shared the same
root: “First Rib.”

The results of the automatic structuring of term groups based
on PCS threads and pairwise comparisons are shown in Table

3. The PCS thread-based method has higher precision, and the
pairwise-based method has higher recalls. The reason is that
the PCS thread-based method had filtered out certain pairs,
including those with real is-a or part-of relations between their
elements. On the other hand, the introduction of false-positive
results was expected of the pairwise method.

We analyzed the results from the “First Rib” case for our PCS
thread-based algorithm concerning the Bi-LSTM model to
demonstrate why some relations were wrongly predicted or
missed.

Table 3. The parallel concept set (PCS) thread-based algorithm versus the primitive pairwise-based algorithm on the “First Rib” case, using different
models.

Overallpart-ofis-aModel and Algorithm

F1RecallPrecisionRecallPrecisionRecallPrecision

Bi-LSTMa

0.800.780.830.630.711.01.0Alg1
b

0.780.940.660.900.551.00.94Alg2
c

CNNd

0.800.780.830.640.731.00.97Alg1

0.640.980.470.980.421.00.58Alg2

aBi-LSTM: Bidirectional Long Short-term Memory Networks.
bAlg1: PCS thread-based algorithm.
cAlg2: pairwise-based algorithm.
dCNN: Convolutional Neural Networks.
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Result Analysis on “First Rib” for the PCS
Thread-based Algorithm Concerning The Bi-LSTM
Model
Using the Bi-LSTM model, our approach predicted 83 relations
among the group of concept names, including 34 is-a relations
and 49 part-of relations. The results are illustrated in Multimedia
Appendix 2. All of the 34 is-a relations in the FMA were
successfully discovered by the model.

Compared to the 55 real part-of relations in the FMA, 35 part-of
relations were correctly predicted, which means that 20 part-of
relations in the FMA were missed by our method and 14
predicted part-of relations were unexpected. As a result, we
achieved an overall precision of 0.83 [from (34+35)/83] and a
recall of 0.78 [from (34+35)/89], as shown in Table 3.

The 14 unexpected part-of relations that do not exist in the FMA
can be divided into 3 types: (1) detected part-of relations that
connected the child to a further parent than that of the FMA;
(2) detected part-of relations that connected the child to a closer
parent than that of the FMA; (3) detected part-of relations that
did not exist in the FMA and had no counterpart relations in the
FMA.

The first type was detected part-of relations that connected the
child to a further parent than that of the FMA. As illustrated in
Figure 5, Type I, Periosteum of right first rib has a closer parent,
Bony part of right first rib, in the FMA, but the algorithm
connected it to its ancestor, Right first rib. The reason is that
the node Bony part of first rib is not lexically a substring of
Periosteum of right first rib and thus did not appear in the
corresponding PCS thread. Six predicted relations took this
type.

Figure 5. Types of unexpected part-of relations that do not exist in the Foundational Model of Anatomy (FMA). Black solid arrows represent relations
in the FMA successfully predicted by the model. Red arrows represent relations predicted by the model but not in FMA. Dashed arrows represent
relations in FMA that were missed by the model. (1) Example of the first type of predicted relations; (2) example of the second type of predicted relations;
(3) example of the third type of predicted relations.

The second type was detected part-of relations that connected
the child to a closer parent than that of the FMA. As illustrated
in Figure 5, Type II, the algorithm predicted the parent of
Articular cartilage of head of first rib to be Head of first rib”
instead of First rib. The reason is that only relations between
neighboring terms along PCS threads would be predicted, but
Head of first rib is in the middle of the other 2 terms. Six
predicted relations took this type.

The third type was detected part-of relations that did not exist
in the FMA and had no counterpart relations in the FMA.
However, the parent term is a substring of the child term, as
illustrated by the example in Figure 5, Type III. Two predicted
relations took this type.

Although the above instances do not exist in the FMA, they are
not all semantically wrong. For example, instances of the first
type can be inferred from relation transitivity. Moreover,
compared to the real cases in the FMA, the 6 instances of the
second type were more reasonable because they show a finer
granularity than their counterparts in the FMA. Also, the 2
instances of the third type were semantically correct.

On the other hand, the 20 missed part-of relations happened
due to 1 reason: their parent-child term pairs were not fed to
the model for prediction. As already described, for terms in
nonroot PCS nodes, we only searched for their parents in

neighboring parent PCSs. For the 20 missed cases, the parent
and the child were not in neighboring PCSs and thus could not
be discovered by our algorithm. For instance, in Figure 5, Type
I, Bony part of right first rib and Periosteum of right first rib
were not in neighboring PCS nodes along any thread, and thus,
the pair was not fed to the model for relation prediction.
Amongst the 20 missed cases, 11 cases came along with the
instances of the first and second types of unexpected part-of
pairs that did not exist in the FMA. As illustrated in Figure 5,
Types I and II, while the model predicted an extra new relation,
it would miss an old relation (a red arrow co-occurred with a
dashed arrow). Only the first type of instance did not appear in
the missed case because the intermediate parent was not in the
term group.

If those missed parent-child term pairs were fed into the
Bi-LSTM model, could they be correctly detected? Table 3
shows that the recall for Bi-LSTM was 0.94, which means that
most of the original relations in the FMA could be successfully
detected by the model if fed for prediction. However, as seen
in the results, the precision values would drop greatly for
primitive pairwise comparisons.

If the group of concept names to be structured do not show
much relevance in their linguistic features, the number of PCS
thread roots will increase. Under that circumstance, as our
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algorithm pairs each root with every term in the other threads
(Figure 3b), the number of term pairs fed to the ML models for
relation prediction will increase. In the extreme case, all of the
terms are roots by themselves, and the algorithm will turn into
a pure pairwise-based algorithm. Fortunately, biomedical
ontologies follow certain naming conventions, and meaningful
usage of our methodology lies in the construction of a group of
terms that are semantically close to each other; however, PCSs
will play an important role in most cases.

Discussion

Principal Findings
This study proposes an innovative approach to the automatic
construction of a given set of concept names with regard to is-a
and part-of relations, which can save significant labor for
domain experts in the ontology construction process. Our
method comprises 2 main steps: (1) automatic prediction of
direct semantic relation between 2 concept names using
classification models; experiments on the FMA show that
machine learning models can predict if 2 new terms are directly
related by a is-a or part-of relation, provided that they are trained
by existing relations; and (2) automatic construction of a group
of closely related concept names based on PCS threads. First,
we detected all the PCSs in the group and organized them into
PCS threads based on lexical granularity. Second, we obtained
the relative positions of different threads and the whole structure
of the group. Lastly, we determined whether there exists an is-a
relation or a part-of relation between each directly connected
term pairs, thus completing the construction of the taxonomy
and the partonomy structures.

Some concepts may have multiple is-a or part-of parents. As
analyzed, for terms in nonroot PCS nodes, except for the threads
they belong to, we do not look for their parents in other threads
anymore. However, since PCS threads may have convergences,
some terms may still be predicted to have multiple parents. In
fact, no matter whether it is for is-a or part-of, parents that are
not substrings of nonroot PCS nodes will be overlooked by our
algorithm, such as the missed part-of instances in the FMA. On
the other hand, all of the is-a relations were successfully
discovered because all of the is-a parents appeared above their
children along certain threads.

It is not a simple transition from step 1 to step 2. As shown by
our results, even though the performances of ML models on
relation prediction for randomly selected pairs may be quite
promising (Table 2), it was still difficult to obtain the semantic
structure for a set of terms using pure pairwise comparisons
(Table 3). The reason is that pairwise comparisons introduce
too many pairs: N terms will generate N(N−1) pairs since
direction matters. As the real connections among those terms
can be quite sparse, most of the pairs are actually ndr pairs,
which tremendously exceeds is-a pairs and part-of pairs. As
such, even a small portion of ndr relations that were wrongly
predicted as is-a or part-of relations could greatly decrease the
precision of the results for is-a and part-of relations. That is
why we introduced the PCS-based method, which only tested
pairs that have a high possibility of exhibiting is-a or part-of
relations between their elements. As a result, the number of

false is-a relations and false part-of relations was reduced.
However, on the other hand, the reduction of term pairs in the
PCS-based stage has its drawback. As the step filters out many
ndr pairs, it also misses some real relations between terms that
are not lexically related, which is why the recall values for the
PCS-based method were lower than that of the pairwise-based
method.

Future Work
To improve the performance of our PCS-based method, we need
to include more possible pairs to be inputted into the ML models
for relation prediction. This requires a mechanism to be able to
identify hierarchical relations between terms that are not
lexically related, and in the meantime, to avoid introducing
false-positive results. The difficulty lies in the ability to
distinguish the ndr pairs from the other 2 relations. Future
research may focus on the following aspects: (1) Although we
enlarged the set of ndr pairs in this study, it is still impractical
to collect all possible ndr pairs for classification; we will try
ML algorithms that are able to classify the relations based only
on positive samples, and hence, there will be no need to collect
ndr pairs then. (2) Except for the lexical information of the
concept names, we will try including additional knowledge such
as metadata or even structural information to the embedding
framework. (3) We tried 2 classic ML models in this study and
did not apply too much effort to parameter tuning or model
refinements. We believe that further exploration of this aspect
will also help.

Also, to make the methodology provided in this study scalable
to more cases in diverse ontologies such as SNOMED CT [29],
the key is for the ML models to be able to “interpret” the
semantic meaning behind each biomedical term. This will
require a suitable embedding method in the biomedical field.
In the future, we will try other embedding methods learned from
multiple sources of biomedical data, such as Cui2Vec [30] or
BioBert [31], to generalize the method to other cases.

The 100 cases we experimented with in the FMA are not large
because the closely related term trees in the testing sets are
relatively small. If the target group is much larger, the
performance of the proposed algorithm may not be as strong
since more terms will increase the number of ndr pairs. In the
future, we will try the methods mentioned above and will work
on larger term groups.

This study is an initial step toward automated ontology
construction. As the training dataset is collected from the same
ontology, the methodology we proposed in this study is
applicable, provided that a part of the ontology is already known.
To structure an ontology from scratch, the relations between
entities will have to be learned from other knowledge sources
such as the UMLS [32] or the literature. We believe our study
will provide insight for future studies in this field. Moreover,
the methodology provided here can be easily deployed for
determining insertion positions for incoming concepts in
ontology enrichment processes. Also, as the results show, some
predicted relations are more reasonable than the real cases,
which indicates that ontology quality assurance tasks can also
benefit from this study.
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Conclusions
In this study, given a set of closely related concept names in
the FMA, we investigated an automatic way to generate the
taxonomy and partonomy structures for them. We trained
machine learning models to predict if there exists a direct
hierarchical relation between 2 given terms; based on this, we

further proposed an innovative granularity-based method to
automatically organize a given set of terms. The 100 cases that
we studied in the FMA demonstrated that our method is effective
for structuring ontology concepts automatically, provided that
their names are given. We believe this pioneering study will
shed light on future studies on automatic ontology creation and
ontology maintenance.
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Multimedia Appendix 1
The original hierarchy map for the concept group “First Rib” in the Foundational Model of Anatomy. Red arrows represent 34
is-a relations; gray arrows represent 55 part-of relations.
[PNG File , 753 KB-Multimedia Appendix 1]

Multimedia Appendix 2
Result for the automatic structuring of 57 concept names. The nodes represent the 37 parallel concept sets (PCSs); dashed rectangles
represent PCSs with more than 1 term. The nodes in green are the 2 thread roots; arrows connect terms instead of PCSs. Gray
arrows represent the 69 correctly predicted is-a and part-of relations; yellow arrows represent the 20 missed part-of relations;
red arrows represent the 14 predicted part-of relations that do not exist in the Foundational Model of Anatomy (FMA).
[PDF File (Adobe PDF File), 35 KB-Multimedia Appendix 2]

References

1. Kimura J, Shibasaki H. Recent Advances in Clinical Neurophysiology. In: Proceedings of the 10th International Congress
of Emg and Clinical Neurophysiology. New York: Elsevier; 1995 Presented at: The 10th International Congress of EMG
and Clinical Neurophysiology; October p. 15-19.

2. Al-Aswadi F, Chan H, Gan K. Automatic ontology construction from text: a review from shallow to deep learning trend.
Artif Intell Rev 2019 Nov 08;53(6):3901-3928 [FREE Full text] [doi: 10.1007/s10462-019-09782-9]

3. Buitelaar P, Cimiano P, Magnini B. Ontology learning from text: methods, evaluation and applications. In: Frontiers in
Artificial Intelligence and Applications. Amsterdam: IOS Press; Jul 2005.

4. Bodenreider O. Biomedical ontologies in action: role in knowledge management, data integration and decision support.
Yearb Med Inform 2008:67-79 [FREE Full text] [Medline: 18660879]

5. Bodenreider O. Quality Assurance in Biomedical Terminologies and Ontologies. 2010 Apr 8 Presented at: A report to the
Board of Scientific Counselors; Apr 2010; Bethesda URL: https://morc1.nlm.nih.gov/pubs/pres/20100408-BoSC-QA.pdf

6. Rosse C, Mejino JLV. A reference ontology for biomedical informatics: the Foundational Model of Anatomy. J Biomed
Inform 2003 Dec;36(6):478-500 [FREE Full text] [doi: 10.1016/j.jbi.2003.11.007] [Medline: 14759820]

7. Schober D, Smith B, Lewis SE, Kusnierczyk W, Lomax J, Mungall C, et al. Survey-based naming conventions for use in
OBO Foundry ontology development. BMC Bioinformatics 2009 Apr 27;10:125 [FREE Full text] [doi:
10.1186/1471-2105-10-125] [Medline: 19397794]

8. Luo L, Xu R, Zhang GQ. Dissecting the Ambiguity of FMA Concept Names Using Taxonomy and Partonomy Structural
Information. AMIA Jt Summits Transl Sci Proc 2013;2013:157-161 [FREE Full text] [Medline: 24303256]

9. Agrawal A, Perl Y, Ochs C, Elhanan G. Algorithmic detection of inconsistent modeling among SNOMED CT concepts
by combining lexical and structural indicators. 2015 Nov Presented at: BIBM; 2015; Washington D.C p. 476-483. [doi:
10.1109/BIBM.2015.7359731]

10. Luo L, Mejino JLV, Zhang GQ. An analysis of FMA using structural self-bisimilarity. J Biomed Inform 2013
Jun;46(3):497-505 [FREE Full text] [doi: 10.1016/j.jbi.2013.03.005] [Medline: 23557711]

JMIR Med Inform 2020 | vol. 8 | iss. 11 | e22333 | p. 11http://medinform.jmir.org/2020/11/e22333/
(page number not for citation purposes)

Luo et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

https://jmir.org/api/download?alt_name=medinform_v8i11e22333_app1.png&filename=f3b6e389125e70c5d69a5fa50ba52857.png
https://jmir.org/api/download?alt_name=medinform_v8i11e22333_app1.png&filename=f3b6e389125e70c5d69a5fa50ba52857.png
https://jmir.org/api/download?alt_name=medinform_v8i11e22333_app2.pdf&filename=fad8f62ba81467c721d295d92140880d.pdf
https://jmir.org/api/download?alt_name=medinform_v8i11e22333_app2.pdf&filename=fad8f62ba81467c721d295d92140880d.pdf
https://doi.org/10.1007/s10462-019-09782-9
http://dx.doi.org/10.1007/s10462-019-09782-9
http://europepmc.org/abstract/MED/18660879
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=18660879&dopt=Abstract
https://morc1.nlm.nih.gov/pubs/pres/20100408-BoSC-QA.pdf
https://linkinghub.elsevier.com/retrieve/pii/S1532046403001278
http://dx.doi.org/10.1016/j.jbi.2003.11.007
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=14759820&dopt=Abstract
https://bmcbioinformatics.biomedcentral.com/articles/10.1186/1471-2105-10-125
http://dx.doi.org/10.1186/1471-2105-10-125
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=19397794&dopt=Abstract
http://europepmc.org/abstract/MED/24303256
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=24303256&dopt=Abstract
http://dx.doi.org/10.1109/BIBM.2015.7359731
https://linkinghub.elsevier.com/retrieve/pii/S1532-0464(13)00039-7
http://dx.doi.org/10.1016/j.jbi.2013.03.005
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=23557711&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


11. Luo L, Tong L, Zhou X, Mejino JLV, Ouyang C, Liu Y. Evaluating the granularity balance of hierarchical relationships
within large biomedical terminologies towards quality improvement. J Biomed Inform 2017 Nov;75:129-137 [FREE Full
text] [doi: 10.1016/j.jbi.2017.10.001] [Medline: 28987379]

12. Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of word representations in vector space. 2013 Sep 7. URL:
https://arxiv.org/abs/1301.3781 [accessed 2020-11-19]

13. Xiao H. Bert-as-service. URL: https://github.com/hanxiao/bert-as-service [accessed 2020-11-19]
14. Lecun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proc. IEEE

1998;86(11):2278-2324. [doi: 10.1109/5.726791]
15. Hochreiter S, Schmidhuber J. Long Short-Term Memory. Neural Computation 1997 Nov 01;9(8):1735-1780. [doi:

10.1162/neco.1997.9.8.1735]
16. Vapnik V. Statistical learning theory. Hoboken: Wiley; Sep 1998:401-492.
17. Pembeci I. Using Word Embeddings for Ontology Enrichment. Int J Intell Syst Appl Eng 2016 Jul 13;4(3):49-56. [doi:

10.18201/ijisae.58806]
18. Liu K, Hogan WR, Crowley RS. Natural Language Processing methods and systems for biomedical ontology learning. J

Biomed Inform 2011 Feb;44(1):163-179 [FREE Full text] [doi: 10.1016/j.jbi.2010.07.006] [Medline: 20647054]
19. Zheng F, Cui L. Exploring Deep Learning-based Approaches for Predicting Concept Names in SNOMED CT. 2018 Nov

3 Presented at: BIBM; 2018; Madrid. [doi: 10.1109/bibm.2018.8621076]
20. Zheng L, Liu H, Perl Y, Geller J. Training a Convolutional Neural Network with Terminology Summarization Data Improves

SNOMED CT Enrichment. AMIA Annu Symp Proc 2019;2019:972-981 [FREE Full text] [Medline: 32308894]
21. Liu H, Geller J, Halper M, Perl Y. Using Convolutional Neural Networks to Support Insertion of New Concepts into

SNOMED CT. AMIA Annu Symp Proc 2018;2018:750-759 [FREE Full text] [Medline: 30815117]
22. Liu H, Perl Y, Geller J. Transfer Learning from BERT to Support Insertion of New Concepts into SNOMED CT. AMIA

Annu Symp Proc 2019;2019:1129-1138. [Medline: 32308910]
23. Foundational Model of Anatomy. URL: https://bioportal.bioontology.org/ontologies/FMA [accessed 2020-11-19]
24. Harris S, Seaborne A. SPARQL 1.1 Query Language. URL: https://www.w3.org/TR/sparql11-query/ [accessed 2020-11-19]
25. Openlink Software. URL: https://virtuoso.openlinksw.com [accessed 2020-11-19]
26. Kim Y. Convolutional Neural Networks for Sentence Classification. 2014 Oct 25 Presented at: the 2014 Conference on

Empirical Methods in Natural Language Processing (EMNLP); 2014; Doha p. 1746-1751. [doi: 10.3115/v1/d14-1181]
27. Keras Documentation. URL: https://keras.io/ [accessed 2020-11-19]
28. The Stanford Parser. URL: https://nlp.stanford.edu/software/lex-parser.shtml [accessed 2020-11-19]
29. SNOMED International Homepage. URL: http://www.snomed.org [accessed 2020-11-19]
30. Beam AL, Kompa B, Schmaltz A, Fried I, Weber G, Palmer NP, et al. Clinical Concept Embeddings Learned from Massive

Sources of Multimodal Medical Data. Biocomputing 2020 2019 Aug 20 [FREE Full text] [doi:
10.1142/9789811215636_0027]

31. Lee J, Yoon W, Kim S, Kim D, Kim S, So CH, et al. BioBERT: a pre-trained biomedical language representation model
for biomedical text mining. Bioinformatics 2020 Feb 15;36(4):1234-1240. [doi: 10.1093/bioinformatics/btz682] [Medline:
31501885]

32. Bodenreider O. The Unified Medical Language System (UMLS): integrating biomedical terminology. Nucleic Acids Res
2004 Jan 01;32(Database issue):D267-D270 [FREE Full text] [doi: 10.1093/nar/gkh061] [Medline: 14681409]

Abbreviations
Bi-LSTM: Bidirectional Long Short-Term Memory Network
CNN: Convolutional Neural Networks
FMA: the Foundational Model of Anatomy
ML: machine learning
OL: ontology learning
OWL: Web Ontology Language
PCS: parallel concept set
RDF: resource description frame
SNOMED CT: systematized nomenclature of medicine-clinical terms
SVM: support vector machine
UMLS: Unified Medical Language System

JMIR Med Inform 2020 | vol. 8 | iss. 11 | e22333 | p. 12http://medinform.jmir.org/2020/11/e22333/
(page number not for citation purposes)

Luo et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

https://linkinghub.elsevier.com/retrieve/pii/S1532-0464(17)30220-4
https://linkinghub.elsevier.com/retrieve/pii/S1532-0464(17)30220-4
http://dx.doi.org/10.1016/j.jbi.2017.10.001
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=28987379&dopt=Abstract
https://arxiv.org/abs/1301.3781
https://github.com/hanxiao/bert-as-service
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://dx.doi.org/10.18201/ijisae.58806
https://linkinghub.elsevier.com/retrieve/pii/S1532-0464(10)00105-X
http://dx.doi.org/10.1016/j.jbi.2010.07.006
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=20647054&dopt=Abstract
http://dx.doi.org/10.1109/bibm.2018.8621076
http://europepmc.org/abstract/MED/32308894
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32308894&dopt=Abstract
http://europepmc.org/abstract/MED/30815117
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=30815117&dopt=Abstract
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=32308910&dopt=Abstract
https://bioportal.bioontology.org/ontologies/FMA
https://www.w3.org/TR/sparql11-query/
https://virtuoso.openlinksw.com
http://dx.doi.org/10.3115/v1/d14-1181
https://keras.io/
https://nlp.stanford.edu/software/lex-parser.shtml
http://www.snomed.org
https://doi.org/10.1142/9789811215636_0027
http://dx.doi.org/10.1142/9789811215636_0027
http://dx.doi.org/10.1093/bioinformatics/btz682
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=31501885&dopt=Abstract
http://europepmc.org/abstract/MED/14681409
http://dx.doi.org/10.1093/nar/gkh061
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=14681409&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/


Edited by G Eysenbach; submitted 10.07.20; peer-reviewed by R Abeysinghe, S Zhang; comments to author 28.07.20; revised version
received 11.08.20; accepted 29.10.20; published 25.11.20

Please cite as:
Luo L, Feng J, Yu H, Wang J
Automatic Structuring of Ontology Terms Based on Lexical Granularity and Machine Learning: Algorithm Development and Validation
JMIR Med Inform 2020;8(11):e22333
URL: http://medinform.jmir.org/2020/11/e22333/
doi: 10.2196/22333
PMID: 33127601

©Lingyun Luo, Jingtao Feng, Huijun Yu, Jiaolong Wang. Originally published in JMIR Medical Informatics
(http://medinform.jmir.org), 25.11.2020. This is an open-access article distributed under the terms of the Creative Commons
Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work, first published in JMIR Medical Informatics, is properly cited. The complete
bibliographic information, a link to the original publication on http://medinform.jmir.org/, as well as this copyright and license
information must be included.

JMIR Med Inform 2020 | vol. 8 | iss. 11 | e22333 | p. 13http://medinform.jmir.org/2020/11/e22333/
(page number not for citation purposes)

Luo et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://medinform.jmir.org/2020/11/e22333/
http://dx.doi.org/10.2196/22333
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&list_uids=33127601&dopt=Abstract
http://www.w3.org/Style/XSL
http://www.renderx.com/

