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Abstract

Background: Novel coronavirus disease 2019 (COVID-19) is taking a huge toll on public health. Along with the non-therapeutic
preventive measurements, scientific efforts are currently focused, mainly, on the development of vaccines and pharmacological
treatment with existing drugs. Summarizing evidences from scientific literatures on the discovery of treatment plan of COVID-19
under a platform would help the scientific community to explore the opportunities in a systematic fashion.

Objective: The aim of this study is to explore the potential drugs and biomedical entities related to coronavirus related diseases,
including COVID-19, that are mentioned on scientific literature through an automated computational approach.

Methods: We mined the information from publicly available scientific literature and related public resources. Six topic-specific
dictionaries, including human genes, human miRNAs, diseases, Protein Databank, drugs, and drug side effects, were integrated
to mine all scientific evidence related to COVID-19. We employed an automated literature mining and labeling system through
a novel approach to measure the effectiveness of drugs against diseases based on natural language processing, sentiment analysis,
and deep learning. We also applied the concept of cosine similarity to confidently infer the associations between diseases and
genes.

Results: Based on the literature mining, we identified 1805 diseases, 2454 drugs, 1910 genes that are related to coronavirus
related diseases including COVID-19. Integrating the extracted information, we developed the first knowledgebase platform
dedicated to COVID-19, which highlights potential list of drugs and related biomedical entities. For COVID-19, we highlighted
multiple case studies on existing drugs along with a confidence score for their applicability in the treatment plan. Based on our
computational method, we found Remdesivir, Statins, Dexamethasone, and Ivermectin could be considered as potential effective
drugs to improve clinical status and lower mortality in patients hospitalized with COVID-19. We also found that
Hydroxychloroquine could not be considered as an effective drug for COVID-19. The resulting knowledgebase is made available
as an open source tool, named COVID-19Base.

Conclusions: Proper investigation of the mined biomedical entities along with the identified interactions among those would
help the research community to discover possible ways for the therapeutic treatment of COVID-19.
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Introduction

SARS-CoV-2 initially spread widely in China, then in Italy,
and has since been reported worldwide [1,2]. SARS-CoV-2 is
a novel coronavirus that causes COVID-19 [3]. Although
SARS-CoV-2 has gained attention as a consequence of the
global COVID-19 pandemic, other known human coronaviruses,
including betacoronaviruses (SARS-CoV, MERS, OC43,
HKU1) and alphacoronaviruses (229E, NL63), have resulted
in severe respiratory syndrome in patients and been of public
health concern [4]. To combat COVID-19, an urgent solution
is needed for the detection and therapeutic treatment of this
disease, which requires a comprehensive experimental
investigation of relevant biomedical entities (eg, genes,
noncoding ribonucleic acids [ncRNA], viruses, drugs) [5].
However, this is a relatively slow process due to the inherent
nature of experimental validation. As an alternative, faster in
silico methods can be applied [6,7], which can act as a filter
prior to wet lab validation. Virtual screening, molecular docking,
and other in silico methods have already been investigated to
discover drugs that may work against COVID-19 [8]. Still, this
is a daunting task due to the large number of possible
combinations of biomedical entities (eg, drug-gene pairs) that
need to be examined [9]. To enable comprehensive exploration
of potential therapeutic treatments, knowledge base solutions
are proposed; these would allow the scientific community to
focus on a relatively smaller number of potential biomedical
entities that may lead to the discovery of a novel treatment for
COVID-19.

Databases that focus on virus-related diseases for multiple hosts
already exist. For example, in ViRBase [10], the authors
highlighted the association between ncRNAs and viruses in 20
hosts. The VISDB database, based on literature mining,
integrated the virus interaction site in humans for five DNA
oncoviruses and four RNA retroviruses [11]. Virus Pathogen
Resources (VIPR) developed a portal that collected a
comprehensive set of information related to coronavirus and
hepatitis C virus (HCV), as well as other viruses [12,13].
However, none of the abovementioned databases are particularly
useful for COVID-19/SARS-CoV-2, as those databases were
not specific to the novel coronavirus, or they provided very
limited information about the associated genes, or they did not
include other factors involved in coronavirus-related diseases,
drugs, and drug side effects. Moreover, there is no one
knowledge base that has integrated all biomedical entities
specific to COVID-19/SARS-CoV-2. To address this gap, we
explored the potential of machine intelligence to automatically
mine the scientific literature, with the goal of developing the
first comprehensive knowledge base that integrates several
biomedical entities associated with COVID-19/SARS-CoV-2.
To achieve this, we leveraged state-of-the-art natural language
processing algorithms, sentiment analysis, and deep

learning–based techniques and applied them to a large corpus
of coronavirus-related scientific literature.

Methods

Data Sets
For this study, we used the COVID-19 Open Research Dataset
(CORD-19) [14], generated by the Allen Institute for AI. The
data set contains over 138,000 scholarly articles related to
COVID-19 and the coronavirus family of viruses. The data set
was collected using the following query to search PubMed,
PubMed Central (PMC), bioRxiv, and medRxiv: “COVID-19”
OR “Coronavirus” OR “Corona virus” OR “2019-nCoV” OR
“SARS-CoV” OR “MERS-CoV” OR “Severe Acute Respiratory
Syndrome” OR “Middle East Respiratory Syndrome.” This
query covers most research articles related to COVID-19 and
other coronaviruses (eg, MERS, SARS) and we searched up
until June 9, 2020. Unless otherwise specified, we considered
both the abstract and full body of the manuscripts (when
available) for downstream analysis.

Source of Dictionaries
We collected gene names from HUGO Gene Nomenclature
Committee (HGNC) [15], Protein Data Bank (PDB) entries
from PDB [16], micro ribonucleic acids (miRNAs) from
miRBase [17], disease names from Disease Ontology (DO)
[18], drug names from DrugBank [19], and drug side effects
from Side Effect Resource (SIDER) [20].

Overview of Methodology
We extracted disease-drug, disease-gene, drug-PDB pairs, and
their corresponding sentences from the CORD-19 literature in
a co-occurrence–based approach. To evaluate the effectiveness
of the disease-drug pairs, we used both a pretrained model
(TextBlob) and an unsupervised model (developed by the
authors using the Word2Vec model and K-means clustering)
to determine the sentiment scores of the sentences extracted for
each pair. We further used these sentiment scores along with
the minimum distance between the disease and drug term in the
corresponding sentences as input features of our neural network
model, which we used for the final classification of the
disease-drug pairs (as positive or negative). To determine the
confidence level of the extracted disease-gene associations, we
transformed each disease and gene of a pair into two separate
vectors using the Word2Vec model and calculated their cosine
similarity. We used the known disease-gene associations from
the DisGeNET database as the gold standard to determine the
confidence level of the new associations on the basis of cosine
similarity measures. Finally, we extracted the side effects of
the drugs that were found by our mining from SIDER.
Additionally, a feedback mechanism was incorporated into
COVID-19Base to collect feedback from users for future use.
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Extracting Disease-Drug Interactions
We extracted disease-drug interactions from the CORD-19
literature and classified them into one of two categories (labels):
positive and negative. The positive label means the drug is
potentially effective against COVID-19, and the negative label

means the opposite. We also determined a confidence score,
which indicates our level of confidence in that automatic label.
Figure 1 shows the workflow of extracting disease-drug
interactions and predicting the effectiveness of drugs against
diseases with confidence scores.

Figure 1. Flowchart of extracting disease-drug interactions and predicting the effectiveness of drugs against diseases with confidence scores. CORD-19:
COVID-19 Open Research Dataset.

Disease and Drug Name Extraction
To extract relevant disease-drug pairs from the CORD-19
literature, we employed a dictionary-based approach to detect
mentions of diseases and drugs in the literature. We used Disease
Ontology [18] and DrugBank [19] to prepare the disease and
drug dictionaries. We leveraged the Aho-Corasick algorithm
[21] to search the drug and disease names, considering the large
size of the drug and disease dictionaries and the corpus itself.
The Aho-Corasick algorithm is a string-searching algorithm
that efficiently locates multiple patterns in a large amount of
text. The time complexity of the algorithm is O(n + m + z),
where n is the length of the text, m is the total length of all the
patterns to be searched, and z is the total number of occurrences
of the patterns in the text.

Disease-Drug Pairs Extraction
After extracting the disease and drug names separately, we
wanted to mine the literature and identify the sentences that
contain the disease and drug pairs to semantically evaluate their
interactions. For this purpose, we searched for every

disease-drug pair from our disease and drug list in the CORD-19
literature and collected every sentence where a co-occurrence
was found. We then created a document for every disease-drug
pair, combining all extracted sentences. Thus, we built a
disease-drug pair to document mapping. We did not use a
pattern-based approach here (as was done previously in [22])
as this could result in missing some sentences containing
disease-drug pairs.

Anomaly Removal
As we automatically extracted the sentences containing the
disease-drug pairs, there was a possibility of errors in our
extracted data; therefore, we decided to check and remove any
abnormalities from our collected data before moving on to the
next stage of the pipeline. We used unsupervised anomaly
detection [23] for this task. Unsupervised anomaly detection
detects anomalies in an unlabeled data set by looking for
instances that seem to fit the remainder of the data set the least,
under the assumption that the majority of the instances in the
data set are “normal.” We used the K-means clustering algorithm
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[24], as it has been used for anomaly detection in several studies
[25-29]. We proceeded as follows. First, we used Doc2Vec [30]
to create a numeric representation of each document associated
with each disease-drug pair. We then fitted these representations
into our K-means model and observed two clear clusters of
easily discriminable sizes, where the smaller one consisted of
only 189 instances. As we know that anomalies differ from the
normal instances significantly and occur very rarely in the data,
we could assume that the instances of the smaller cluster were
indeed anomalies. We also checked a number of instances
manually to verify our assumption. We discarded these 189
instances from any further consideration.

Sentiment Analysis

Overview
We applied sentiment analysis to automatically assess the
effectiveness of a drug to treat a particular disease in the context
of each extracted drug-disease pair. First, we applied the concept
of transfer learning. We used TextBlob [31], which is a
pretrained sentiment analysis tool provided as a Python library.
However, it showed some inconsistency in some cases as
expected from a pretrained model and we felt it necessary to
perform unsupervised sentiment analysis, which is the second
model in our pipeline. We obtained a polarity score from the
TextBlob model and a sentiment rate from our unsupervised
model for each disease-drug pair, which were subsequently fed
to our neural network model to predict the final label.

TextBlob Model
TextBlob is a Python library that is widely used in natural
language processing tasks such as part-of-speech (POS) tagging,
noun phrase extraction, sentiment analysis, classification, and
translation. Given the sentences that we mined for each
disease-drug pair as input, TextBlob gives a polarity score
between –1 and 1. We recorded the polarity scores for each
disease-drug pair to use it as a feature for our neural network
model.

Unsupervised Model
We used the concept of K-means clustering again for
unsupervised sentiment analysis. First, we trained the Word2Vec
[32] model with our mined literature and got a vector
representation of every word. We then ran K-means clustering
on the estimated word vectors and found two clusters (positive
and negative). The positive cluster was decided on the basis of
the presence of several positive words (in the context of a
disease-drug pair), including “cure,” “preclude,” “inhibit,”
“prescribe,” “reduce,” and “modest.” On the other hand, the
negative cluster contained words like “risky,” “kill,” and
“danger.” We then assigned each word a sentiment value, either
+1 or –1, based on the cluster (positive or negative) they belong

to. We weighed this value by dividing it by the distance between
the word and the centroid of its cluster to describe the extent of
its potential positiveness or negativeness. We then calculated
the term frequency–inverse document frequency (tf–idf) score
[33,34] of each word in the sentence collection to consider the
significance of the unique words. Next, we built a tf–idf
representation, T, for each disease-drug pair by replacing each
word of the corresponding sentences with its tf–idf score and a
sentiment value representation, S, by replacing each word with
its sentiment value. Finally, we took their dot product (T▪S) as
the final sentiment rate of our unsupervised model.

Neural Network Model for Automatic Labeling and
Confidence Score

Overview
We used a deep neural network (DNN) model to automatically
predict the label and confidence score for our disease-drug pairs.
We used a relatively simpler neural network with two hidden
layers as such models commonly perform better for smaller
data sets compared to neural networks with many layers and
parameters [35,36].

Training Data
We manually labeled 200 disease-drug pairs to train our neural
network model. Among them, there were 110 positive instances
and the rest were negative.

Input Features
We used the polarity or sentiment score given by the TextBlob
and unsupervised models as the input features for our neural
network model, along with the minimum distance between the
disease and drug term in the corresponding document.

Model Setup and Output
The DNN structure used in this study is similar to that shown
in Figure 2. It consists of one input layer with three neurons
(each neuron corresponds to one input feature), two hidden
layers with eight and four neurons respectively, and one output
layer containing one neuron for binary classification (positive
or negative). The transfer functions of the first and second
hidden layers were the rectified linear unit (ReLU) [37] and
hyperbolic tangent function (tanh) [38], respectively. The
transfer function of the output layer was a sigmoid function
[39]. We trained the DNN model using Xavier initialization
[40], which tries to make the variance of the outputs of a layer
equal to the variance of its inputs. We used Adam optimizer
[41] and the maximum training epoch was set to 500. We split
our labeled data into training and test sets on an 80:20 ratio. We
trained our model on the training data and achieved 75%
accuracy on the test set.
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Figure 2. Schematic diagram of the deep neural network used to predict the effectiveness of drugs against diseases.

Extracting Disease-Gene Associations
Figure 3 shows the workflow of extracting disease-gene
associations. We extracted gene names along with miRNAs
from the CORD-19 literature in a dictionary-based approach
using HGNC [15] and miRBase [17]. We then extracted their
associations with diseases in a similar process to the one we
had used to extract the disease-drug pairs and collected all the
abstracts where a co-occurrence was found. Next, we applied
the concept of cosine similarity [42] to confidently infer the
associations. We transformed each disease into vector V1, each
gene (and miRNA) into vector V2, and then calculated the cosine
similarity of V1 and V2 for each pair. To create the vector
representations, we trained a Word2Vec model with all the

collected abstracts. We used the DisGeNET [43] database as
the gold standard to evaluate the performance of cosine
similarity in predicting the gene-disease linkage. First, we
calculated the maximum, average, and minimum cosine
similarity of the pairs that were common both in our findings
and in the DisGeNET database. We found that 99.7% of the
newly discovered pairs lie within this range (determined from
DisGeNET) in terms of cosine similarity. We further classified
the associations into three classes (high, medium, and low) in
terms of confidence as follows: pairs having cosine similarity
closest to the maximum (minimum) of the known ones were
considered as high (low) confidence associations, and the
remaining ones (those closest to the average) as medium
confidence associations. Moreover, pairs that were also found
in the DisGeNET database were labeled as verified associations.
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Figure 3. Flowchart of extracting disease-gene and disease-miRNA associations and determining their confidence levels. CORD-19: COVID-19 Open
Research Dataset; HGNC: HUGO Gene Nomenclature Committee; miRNA: micro ribonucleic acid.

Extracting Drug-Protein Associations
We also extracted drug-protein associations from the CORD-19
literature, applying the same co-occurrence–based approach as
mentioned above. We used PDB IDs from the Protein Data
Bank [16] for extracting protein names. Unlike the disease-gene
associations, we did not apply the concept of cosine similarity
here as we did not find any suitable data set that could be used
as the gold standard in this case.

Extracting Side Effects of Drugs
The drugs we are suggesting through this literature mining may
come with different side effects. Therefore, we also explored
the possible side effects of the drugs. We collected the drugs

with their corresponding side effects from SIDER [20] and
mapped them with the drugs mentioned in the CORD-19
literature to extract the possible side effects.

Feedback Mechanism
We implemented a feedback mechanism in COVID-19Base for
future improvement. This mechanism enables expert users from
the scientific community to share their valuable feedback on
the label (positive or negative) for a particular interaction
determined by the automatic natural language processing–based
approach. The users can voluntarily label each sentence that is
mined from the literature as a source of an interaction. This
feedback will be recorded and further processed to enrich the
labeled data set, which can be leveraged in the next version of
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COVID-19Base to further improve the prediction quality for
determining effective disease-drug interactions. The
accompanying tutorial (user manual) on COVID-19Base
highlighted an example of how a user can use the feedback
mechanism.

Results

Terms and Interactions Highlighted in CORD-19 Data
Set
Based on our computational workflow, we identified 1805
diseases, 2454 drugs, 1910 genes, 11 miRNAs, and 70 PDB

entries from the CORD-19 literature (Table 1). Among the
disease-drug pairs, 21,581 were positive and 1318 were negative.
Among the disease-gene associations, 2088 were verified, and
82 associations were found with high-confidence, 12,231 with
medium-confidence, and 1488 with low-confidence. More
results are shown in Table 1. Notably, a small proportion (1.5%)
of the findings were manually labeled. Interestingly, we found
194 drug-PDB pairs for coronavirus-related diseases, which
indicates the rapid growth of experimental work to understand
the interaction mechanisms of drugs and target proteins.

Table 1. Pairs of terms as identified in the analyzed set of documentsa.

Number of extracted pairs of termsInteraction or association

22,899 (21,581 positive, 1318 negative)Disease-drug

15,889 (2088 verified, 82 high, 12,231 medium, 1488 low)Disease-gene

56 (48 medium, 8 low)Disease-miRNA

194Drug-Protein Data Bank

aPositive (negative) indicates an (in)effective association. High, medium, and low refer to confidence associations.

COVID-19–Related Terms and Interactions
Our computational workflow identified 514 drugs and 417 genes
that are directly associated with COVID-19 (Table 2). Among

the 514 drugs, 492 were found to have a positive association
and 22 had a negative association. Among the 417 genes, 347
were medium-confidence associations and 70 were
low-confidence associations.

Table 2. Biomedical terms that are related to COVID-19a.

Number of extracted pairs of termsInteraction or association

514 (492 positive, 22 negative)COVID-19–drug

417 (347 medium, 70 low)COVID-19–gene

3 (2 medium, 1 low)COVID-19–miRNA

aPositive (negative) indicates an (in)effective association. High, medium, and low refer to confidence associations.

Genes Related to COVID-19
Our automated workflow identified C-reactive protein (CRP)
as one of the COVID-19–associated genes with “medium”
confidence. CRP is a known clinical biomarker for SARS [44]
and the level of CRP increases significantly in patients with
SARS. The level of CRP was also higher for patients with
COVID-19 in some clinical cases [45,46]. More than 25 papers
(from the CORD-19 data set) related to the association between
CRP and COVID-19 were identified through our computational
workflow. Furthermore, the genes ELANE, AZU1, MPO,
PRTN3, CTSG, and TCN1 were shown to be significantly altered
in patients with COVID-19 [47], and our automatically prepared
knowledge base highlights all of them as associated with
COVID-19 with “medium” or “low” confidence. The ACE2
and TMPRSS2 genes are known to be involved in SARS-CoV-2
infection [48]; in fact, SARS-CoV-2 uses angiotensin-converting
enzyme 2 (ACE2) as a receptor for entry into host cells [49,50].
The spike protein of SARS-CoV-2 binds with the ACE2 receptor
and the protease TMPRSS2 mediates the infection process [51].
It is important to note that ACE2 and TMPRSS2 were not directly
listed in DisGeNET as genes associated with COVID-19. In

spite of that, our data-driven approach based on a gold-standard
data set from DisGeNET was able to infer the association of
ACE2 and TMPRSS2 with COVID-19 with “medium”
confidence, which suggests that our approach is efficacious.
Analyzing the complete ACE2 interaction network, Wicik et al
[52] listed several element genes (ACE2, ANPEP, DPP4, CCL2,
MEPIA, TFRC, ADAM17, NPC1, FABP2, TMPRSS2, CLEC4M)
and all of these genes were identified as COVID-19–associated
in our automatically prepared knowledge base. In addition, we
mined three miRNAs (hsa-miR-4661-3p, hsa-miR-429, and
hsa-miR-183) that were mentioned in the abstracts of
COVID-19–related literature.

Case Studies
In this section, we discuss interesting and useful findings from
our automatically prepared knowledge base in the context of
potential drugs that can be investigated for the potential
therapeutic treatment of COVID-19.
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Case Study 1: Dexamethasone Can be Considered an
Effective Drug for COVID-19
Dexamethasone, an inexpensive and commonly used steroid,
is a major breakthrough in the fight against COVID-19. We
found dexamethasone to be a positive (ie, effective) drug for
COVID-19, automatically labeled as such through our
computational workflow with a confidence score of 77.61%.
Our computational workflow also discovered the effectiveness
of this drug against pneumonia, respiratory failure, and diarrhea,
which are strongly correlated to COVID-19 [53,54]. Thus,
further exploration of this drug to fight COVID-19 is likely to
be fruitful. Recent studies suggest that dexamethasone reduces
the risk of death from COVID-19 from 40% to 28% for patients
on ventilators and from 25% to 20% for patients needing oxygen
[55].

Case Study 2: Ivermectin Might be Considered an
Effective Drug for COVID-19
Ivermectin is an effective drug against pneumonia and diarrhea,
and has recently been claimed to successfully treat patients with
COVID-19 as well [56]. It is a US Food and Drug
Administration (FDA)–approved drug used for parasitic
infections, which has the potential to be repurposed. Ivermectin
inhibits the replication of SARS-CoV-2 in vitro [57]. Recently,
a team of medical doctors in Bangladesh reported quick
recoveries of patients with COVID-19 using this drug [58]. We
found ivermectin to be a positive (ie, effective) drug for
COVID-19, automatically labeled with a confidence score of
77.91%. It was also labeled a positive drug for pneumonia and
diarrhea in our knowledge base.

Case Study 3: Remdesivir Seems Effective Against
COVID-19
Remdesivir has been identified as a positive (ie, effective) drug
for COVID-19, automatically labeled as such through our
pipeline, with a confidence score of 68.18%. Thus, it seems to
be a promising drug for further investigation for treating
COVID-19. Interestingly, it was recently being considered as
an effective drug for treating COVID-19 [59]. Notably,
remdesivir is an antiviral drug originally developed for Ebola
treatment [60,61]. A recent clinical trial conducted by the
National Institute of Allergy and Infectious Diseases (NIAID)
showed that remdesivir helped patients with COVID-19 recover
faster and improved their survival rates. Adult patients treated
with remdesivir were found to recover 4 days faster, an
improvement of 31% compared to other patients; in addition,
the overall death rate dropped from 11.6% to 8% [62].
Remdesivir is now under consideration for use against
COVID-19 in more than ten clinical trials [63]. We found 6LU7
was one of the PDB entries for remdesivir. After exploring the
corresponding literature [64], we found that remdesivir was
shown to be an effective inhibitor of the main SARS-CoV-2
protease using molecular docking [65,66].

Case Study 4: Hydroxychloroquine Is Not an Effective
Treatment for COVID-19
Antimalaria drug hydroxychloroquine, which is one of the most
talked-about drugs for treating COVID-19, was also found in
our mining, albeit with a negative interaction. Our model found

it is a negative (ie, ineffective) drug with 64.67% confidence.
Additionally, it also revealed that this drug has 111 side effects
including anemia, hemorrhage, liver disorder, hepatitis
fulminant, cardiomyopathy, and cardiac failure, which makes
it a risky option, especially for patients with heart and liver
complications. Although the FDA had previously granted
authorization to use this drug for COVID-19, it has recently
cautioned against its use outside of a hospital setting or a clinical
trial due to its side effects and risk factors [67].

Case Study 5: Statins Drugs Could be Effective Against
COVID-19
Statins are effective as lipid-lowering drugs and mainly used
for the treatment of cardiovascular diseases [68]. Statins are
also well known for their anti‐inflammatory effects [69] and
some studies have supported the use of these drugs as part of a
COVID‐19 treatment protocol [70]. Multiple clinical trials
(eg, NCT04343001, NCT04380402) have been launched to
determine the efficacy of statins against COVID-19 [71,72]. In
our knowledge base, the majority of statin classes were shown
to be effective against COVID-19. For example, ulinastatin,
rosuvastatin, fluvastatin, and lovastatin were labeled as positive
(ie, effective) drugs against COVID-19 with 94.04%, 79.38%,
78.88%, and 70.75% confidence scores, respectively. Through
our automated computational workflow, we found only one
mention of atorvastatin in the literature [73]. In that single
article, Deliwala et al [73] mentioned atorvastatin as part of a
prevention plan against cortical stroke for a 31-year-old female
patient with COVID-19, without referring to the effectiveness
of atorvastatin against COVID-19. Consequently, our knowledge
base labeled atorvastatin with a negative sentiment and a rather
low confidence score (61.22%) for COVID-19. We anticipate
that as the number of articles related to atorvastatin use in
COVID-19 treatment protocols increases, our model will be
able to effectively infer the sentiment (effective versus
ineffective) of this drug. Based on our finding, it is safe to state
that statins, as low-cost and well-tolerated drugs, should be
investigated in more detail in clinical trials; such drugs may
help low- and middle-income countries in particular, where
expensive drugs might not be affordable.

Discussion

Principal Findings
In our knowledge base, through a computational workflow, we
not only extracted the drugs and other biomedical terms that
are mentioned in the literature, but also identified “term pairs”
based on their co-occurrence, which will allow the scientific
community to investigate in depth the associations between
term pairs like disease-gene and disease-drug. Many drugs were
associated with COVID-19, representing the cumulative effort
of the scientific community to repurpose existing drugs rather
than pursue novel drug discoveries, which is a rational approach
in a pandemic situation [74]. We leveraged an automated
approach to highlight the effectiveness of drugs against the
disease based on sentiment analysis of the text in the literature.
Through this literature mining, we found dexamethasone,
ivermectin, remdesivir, and others in the list of potential drugs
for COVID-19 treatment. We highlighted hydroxychloroquine
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as an ineffective drug against COVID-19. We extracted
disease-gene associations from the literature and, based on
cosine similarity against the gold-standard DisGeNET data set,
provided a confidence level for the associations between
diseases and genes. We found 194 drug-PDB associations, which
highlighted the large amount of work performed by the scientific
community to understand the mechanism behind drug-target
interactions and virus-host protein interaction mechanisms for
coronavirus-related diseases. Surprisingly, we found few
miRNAs related to COVID-19, indicating the primary focus of
the scientific community is toward protein-based drugs rather
than RNA-based drugs, though there have been successful
RNA-based antiviral drugs. One such drug is Miravirsen, which
binds miR-122 to prevent it from hybridizing with the RNA
genome of HCV, depriving HCV of its essential cellular cofactor
and blocking HCV replication [75]. We expect more research
along these lines in the coming months.

Research Implications
Currently, we are facing the largest public health emergency
since the 1918 influenza outbreak [76]. From the beginning of
this outbreak, the scientific community has invested large
amounts of effort to create vaccines and identify therapeutic
solutions. Vaccines for SARS-CoV-2 might come too late to
have any effect on the first wave of the COVID-19 pandemic
[77]. However, vaccines might be useful in subsequent waves
of COVID-19 or in a postpandemic scenario in which
COVID-19 becomes a seasonal virus [77]. In this scenario, the
identification of drugs with good efficacy and minimal side
effects is a rational goal that can be achieved in the near future
to combat SARS-CoV-2 [48]. Although promising
pharmacological results with repurposed drugs are emerging
every day, unfortunately, no drug has been approved thus far
for the treatment of COVID-19. Repurposed drugs are under
investigation worldwide, many in preclinical and clinical stages
[78]. With increasing information about SARS-CoV-2, along
with publications about similar respiratory diseases (eg,
pneumonia, SARS), it will be essential to investigate existing
drugs that are already known to be effective against other
respiratory diseases. As a prime example, dexamethasone, an
FDA-approved drug, was known to be effective against
pneumonia [79], respiratory failure [80], and other diseases.
However, there was no evidence of its effectiveness against
COVID-19 until its recent breakthrough in a clinical trial [55].
Although final approval of the drug is still pending, had it been
investigated earlier, more lives could have been saved.

The research in this study is expected to support the scientific
community and decision makers in identifying candidate drugs

with proper evidence from the scientific literature. This will
also help stakeholders explore existing drugs that are already
known to be effective against other respiratory diseases.
Although careful manual curation of the identified associations
of biomedical entities is the ultimate goal, our novel approach
estimates the effectiveness of drugs for coronavirus-related
diseases based on natural language processing, sentiment
analysis, and deep learning to help the scientific community
shorten the potential list of drugs, ultimately saving time and
resources.

Tool and Availability
We made our computational workflow and the resulting database
an open source tool named COVID-19Base for use by the
scientific community [81,82]. It not only identifies the terms
and associations, but also highlights the relevant literature
through its digital object identifier (DOI) so that any researcher
using this tool can easily check the original source for more
detailed information. As the number of scientific publications
related to COVID-19 is constantly increasing, we will update
the knowledge base on a monthly basis and integrate all recent
updates in the knowledge base. COVID-19Base has already
gone through its first transformation (from COVID-19Base 1.0
to COVID-19Base 2.0), as the CORD-19 data set was updated
during the manuscript preparation phase. The earlier version of
the CORD-19 data set contained about 44,000 papers, whereas
the current version includes more than 138,000. The knowledge
base materials and the source code of our computational
approach are available on GitHub [83].

Limitations
Understandably, our findings as presented in the knowledge
base may have some errors due to the inherent limitations of
the methods and approaches adopted. This is why the identified
inferences and associations are made available to users for
review and a feedback mechanism is included in
COVID-19Base.

Conclusions
We proposed a dictionary-based automated computational
workflow to find the associations of six different thematic areas
related to COVID-19/SARS-CoV-2 and other
coronavirus-related diseases in humans. We prepared a
knowledge base and made it available as a tool for the scientific
community. We believe this knowledge base will help the
research community explore the existing drugs and biomedical
entities for coronavirus-related diseases, and the lessons learned
before this outbreak will allow us to find an effective treatment
for COVID-19.
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