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Abstract

Background: Most of the mortality resulting from COVID-19 has been associated with severe disease. Effective treatment of
severe cases remains a challenge due to the lack of early detection of the infection.

Objective: This study aimed to develop an effective prediction model for COVID-19 severity by combining radiological outcome
with clinical biochemical indexes.

Methods: A total of 46 patients with COVID-19 (10 severe, 36 nonsevere) were examined. To build the prediction model, a
set of 27 severe and 151 nonsevere clinical laboratory records and computerized tomography (CT) records were collected from
these patients. We managed to extract specific features from the patients’ CT images by using a recently published convolutional
neural network. We also trained a machine learning model combining these features with clinical laboratory results.

Results: We present a prediction model combining patients’ radiological outcomes with their clinical biochemical indexes to
identify severe COVID-19 cases. The prediction model yielded a cross-validated area under the receiver operating characteristic
(AUROC) score of 0.93 and an F1 score of 0.89, which showed a 6% and 15% improvement, respectively, compared to the models
based on laboratory test features only. In addition, we developed a statistical model for forecasting COVID-19 severity based on
the results of patients’ laboratory tests performed before they were classified as severe cases; this model yielded an AUROC
score of 0.81.
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Conclusions: To our knowledge, this is the first report predicting the clinical progression of COVID-19, as well as forecasting
severity, based on a combined analysis using laboratory tests and CT images.

(JMIR Med Inform 2020;8(11):e21604) doi: 10.2196/21604
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Introduction

In December 2019, an epidemic of pneumonia caused by a
newly identified coronavirus (SARS-CoV-2) emerged in China
and has been spreading worldwide ever since [1]. According to
the World Health Organization, to date, the COVID-19
pandemic has affected more than 200 countries worldwide,
causing global panic and contributing to fears of market
recession and mass unemployment. The novel virus causing
COVID-19 was identified to have originated from the
Orthocoronavirinae subfamily, the same subfamily as
SARS-CoV and MERS-CoV [2], and it was thus officially
named SARS-CoV-2. This virus might invade the human airway
epithelial cells by binding to the angiotensin-converting enzyme
2 receptor (ACE2), in a mechanism similar to that of SARS-CoV
[3,4].

The clinical features of COVID-19 are atypical, ranging from
mild systematic symptoms, including intermittent fever (83%)
and lower respiratory tract reactions such as cough (61%), to
less common ones such as shortness of breath (14.5%), muscle
ache (18.6%), headache (11.8%), and diarrhea (6.1%) [1,5].
Some patients with COVID-19 might develop severe
complications such as acute renal failure (2.1%), acute
respiratory distress syndrome (ARDS, 8.9%), or shock (2.2%),
and some might even die (3.7%) [1,6]. The clinical and
epidemiological spectrum of COVID-19 is quite diverse and is
still not fully understood. Previous reports have suggested that
the whole world’s population is generally prone to COVID-19
[7]. Nevertheless, older patients who have underlying diseases
such as cerebral infarction, chronic obstructive pulmonary
disease, bronchiectasis, or diabetes are more prone to severe
pneumonia, respiratory failure, septic shock, or even death
caused by multiple organ failure [6].

SARS-CoV-2 is highly infectious and can be primarily
transmitted through direct or indirect contact, droplets, and
aerosol. Diagnosis of COVID-19 usually involves a combination
of the patient’s travel history, clinical symptoms, and
radiological and biochemical findings. Patchy ipsilateral
pulmonary consolidations are visible on a computerized
tomography (CT) scan initially, during the early course of
COVID-19. As the infection progresses, the consolidations are
reduced and appear as bilateral ground-glass opacities, marking
the prominent radiological features of COVID-19 [8]. The
“white lung” radiograph, a characteristic finding suggesting
that the patient urgently requires oxygen inhalation, has only
been observed in a few critical patients with ARDS [9-11].
Other biochemical index changes associated with a COVID-19
diagnosis include lymphopenia, increased C-reactive protein
and lactate dehydrogenase (LDH) levels, and thrombocytopenia
[5].

Antiviral medication and glucocorticoids are most commonly
used for the clinical treatment of COVID-19, with antibacterial
medication sought when bacterial co-infection is detected [12].
Given the insufficient clinical trial data for the safety and
efficacy of remdesivir and chloroquine, there is still no
persuasive evidence for effective medicine for the treatment of
COVID-19 [13]. It is noteworthy that approximately 11.5% of
all reported patients with COVID-19 developed severe illness
characterized as ARDS. These patients were transferred to an
intensive care unit, as they required mechanical ventilation and
even extracorporeal membrane pulmonary oxygenation
(ECMO), the efficacy of which is very limited according to a
retrospective study, wherein 5 of 6 patients receiving ECMO
eventually died [14,15]. In fact, the mortality rate of severely
ill patients with a confirmed diagnosis of COVID-19 is 60%,
indicating the importance of early detection and prediction of
COVID-19 severity [14,15]. However, at present, it is a critical
challenge to identify a patient with COVID-19 who might
require intensive care before certain clinical symptoms are
observed. Therefore, there is an urgent need to develop an
effective prediction or forecasting model for patients with
COVID-19.

Our study aimed to address this challenge: we developed a
prediction model for COVID-19 clinical progression, by
combining radiological outcome based on CT scans with
biochemical indexes. To extract essential features from CT
scans, we segmented the lungs from the CT volumetric images
by using a deep convolutional neural network (CNN). Finally,
we also developed a model to forecast COVID-19 severity based
on the results of the patients’ laboratory tests before the patients
were classified as severe cases. To our knowledge, this is the
first study to report a prediction model for assessing COVID-19
severity by combining radiological outcomes with clinical
biochemical indexes. We believe that our prediction model will
shed light on predicting disease severity for all patients with
COVID-19.

Methods

Patient Information
We collected samples from 46 patients who visited People’s
Hospital of Yicheng City between January 16, 2020, and March
4, 2020, and were diagnosed with COVID-19 according to the
Chinese Government Diagnosis and Treatment Guideline (Trial
5th version; Medicine, 2020). For a confirmed diagnosis of
COVID-19, nucleic acid was extracted from sputum or throat
swab samples using a nucleic acid extractor (EX3600, Shanghai
Zhijiang Biotechnology Co.) and a nucleic acid extraction
reagent (No. P20200201, Shanghai Zhijiang Biotechnology
Co.).
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Fluorescence-based quantitative polymerase chain reaction
(PCR; ABI7500) and SARS-CoV-2 nucleic acid detection kit
(triple fluorescence PCR, No. P20200203, Shanghai Zhijiang
Biotechnology Co.) were used for nucleic acid detection. This
kit uses a one-step reverse transcription–PCR combined with
Taqman technology to detect RNA-dependent RNA polymerase
(RdRp), envelope (E), and nucleocapsid (N) genes. PCR results
were concluded to be positive if (1) RdRp gene was positive
(cycle threshold [Ct]<43) and either E or N gene was positive
(Ct<43), or (2) if two sequential tests for RdRp were positive
and those for E and N genes were negative. The 46 study
patients with COVID-19 were classified into 2 types: (1)
nonsevere, comprising patients showing mild symptoms without
radiological manifestations of pneumonia, fever, or respiratory
tract symptoms with radiological manifestations of pneumonia,
and (2) severe, comprising patients meeting any of the following
criteria—respiratory rate ≥30 breaths/min, pulse oxygen
saturation ≤93% in resting state, partial pressure of arterial
oxygen ≤300 mm Hg (1 mm Hg=0.133 kPa), respiratory failure
requiring mechanical ventilation, shock incidence, and
admission to intensive care unit with other organ failure. In
total, 10 patients were categorized as severe cases and 36, as
nonsevere cases. The last follow-up of these patients was on
March 10, 2020.

Ethics Approval
Approval for studies on CT screening and clinical test results
was obtained from the Medical Ethics Committee of The
People’s Hospital of Yicheng City, China (2020Yc002)

Data Collection
We collected and reviewed clinical information of 46 patients
with COVID-19 after admission, including clinical signs and
symptoms, comorbidities, travel history, laboratory tests, and
CT scans. To consolidate all patients’ records into a single table,
missing records for a given day were noted as “NA” (not
available). In all, we obtained 178 records (27 severe and 151
nonsevere cases) from 105 different laboratory tests and chest
CT images. Note that throughout the clinical course, each patient
had more than one record variably classified as severe or
nonsevere. Patients with at least one severe record were
classified as severe cases.

Data Processing and Statistical Analysis
We identified 44 laboratory tests that had more than 50%
missing values (NA), and we then imputed the NAs with the
mean values. Related laboratory tests were identified based on
the criterion that the P value (Mann-Whitney U test) between
the severe and nonsevere groups is smaller than .05. In all, we
found that 36 laboratory tests were related to the detection of
COVID-19 severity. The patients’ CT images were processed
using a pretrained CNN with a U-Net structure [16] to segment
the lung lobes from the background. The intensities were then
normalized to grayscale for all patients before further analysis.

We then analyzed the intensities of the 3D CT volumes within
lung masks to obtain CT features for each record.

Severity Prediction Models
Prediction models were developed to predict patient severity
based on laboratory and CT signatures collected at
corresponding dates. Each patient record was considered a
sample for a model; as a result, 178 samples were evaluated
using those models. Before using model prediction, we used
random forest importance score, mutual information, and fold
change as possible approaches to select important model features
while avoiding potential overfitting. We found mutual
information to be the most robust approach. We considered
different candidate machine learning models, including random
forest classifier, gradient boost classifier, XGB classifier, logistic
classifier, and supported vector machine. Random forest was
found to be the best classifier, and model parameters were
optimized using a genetic algorithm (Tree-Based Pipeline
Optimization Tool). The area under the curve of the receiver
operating characteristic (AUROC) and F1 scores were used to
evaluate model accuracy considering the dataset imbalance. All
models were trained with 5-fold cross-validation with stratified
train-test splits that preserve the percentage of samples in severe
and nonsevere groups. All cross-validated results were averaged
over 20 runs.

Severity Forecasting Models
Forecasting models were built to forecast patient severity based
on laboratory and CT signatures collected from nonsevere cases
at admission. In these models, instead of the patients’ records,
the patients themselves were considered as samples to build
forecasting relationships. CT records were not collected as
frequently as laboratory tests were performed, and initial,
nonsevere CT records were not available for 3 severe cases.
Therefore, we built two separate random forest models based
on CT features and laboratory tests with 7 and 10 severe cases,
respectively. Other model details were identical to those of the
severity prediction models.

Results

Overview of Study Patients
We collected clinical data of 46 patients with COVID-19 who
were admitted at the People’s Hospital of Yicheng City, between
mid-January and early-March 2020. We recorded 305
biochemical test results from 105 different tests, based on the
clinical reports of all 46 study patients (Multimedia Appendix
1). General patient information is shown in Table 1. The general
trend that older patients with COVID-19 tend to develop more
systemic symptoms was not observed in our study [17].
However, patients with comorbidities, especially diabetes and
hypertension, tended to develop more severe symptoms than
others. Moreover, patients with severe COVID-19 typically
experienced fatigue, anorexia, malaise, chest congestion, and
shortness of breath.
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Table 1. Characteristics and symptoms of study patients.

ValuesCharacteristic

Nonsevere cases (n=36)Severe cases (n=10)All cases (N=46)

46.5 (24-71)56.8 (33-71)48.8 (24-71)Age in years, mean (range)

Sex, n (%)

19 (53)6 (60)25 (54)Male

17 (47)4 (40)21 (46)Female

Exposure, n (%)

19 (53)5 (50)24 (52)Wuhan

2 (6)2 (20)4 (9)Family

5 (14)0 (0)5 (11)Community

10 (28)3 (30)13 (28)None

Comorbidity, n (%)

6 (17)5 (50)11 (24)Hypertension

4 (11)2 (20)6 (13)Cardiovascular disease

1 (3)2 (20)3 (7)Chronic liver disease

2 (6)3 (30)5 (11)Diabetes

1 (3)0 (0)1 (2)Leukoderma

1 (3)0 (0)1 (2)Chronic kidney disease

1 (3)0 (0)1 (2)Hyperuricemia

2 (6)0 (0)2 (4)Chronic lung disease

Symptoms , n (%)

22 (61)6 (60)28 (61)Dry Cough

7 (19)2 (20)9 (20)Cough with phlegm

Fever

5 (14)3 (30)8 (17)High

10 (28)4 (40)20 (43)Mid

17 (47)3 (30)14 (30)Mild

16 (44)9 (90)25 (54)Fatigue

24 (67)9 (90)33 (72)Anorexia

24 (67)10 (100)34 (74)Malaise

4 (11)3 (30)7 (15)Headache

1 (3)0 (0)1 (2)Nausea

3 (8)2 (20)5 (11)Diarrhea

0 (0)1 (10)1 (2)Dyspnea

11 (31)5 (50)16 (35)Chest congestion

13 (36)6 (60)19 (41)Shortness of breath after activity

In all, 52% (24/46) patients had a travel history to or from
Wuhan within the past 1 month, and 20% (9/46) patients had
clear exposure history in the local city (Table 1). According to
the patients’ medical records, 80% of the severe cases had one
or more comorbidities, whereas only 34% of the nonsevere
cases had comorbidities. This finding is consistent with that of
previous studies [18]. Moreover, 81% (37/46) patients had cough
and only 20% (9/46) patients reported sputum production. Fever
was the most common symptom; however, severe cases (7/10,

70%) had a higher proportion of mid- to high-grade fever (ie,
>38.9°C) than the nonsevere cases (15/36, 42%). More than
half of the patients (25/46, 54%) experienced fatigue, and
approximately three-quarters of them had anorexia (33/46, 72%)
or malaise (34/46, 74%); these symptoms were observed in
almost all severe cases (fatigue, 9/10, 90%; anorexia, 9/10, 90%;
and malaise, 10/10, 100%). Headache, nausea, diarrhea, and
dyspnea were rarely observed in both severe and nonsevere
cases. Moreover, less than half of all patients reported chest
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congestion (16/46, 35%) or shortness of breath after activity
(19/46, 41%), and these symptoms were approximately 20%
more common in severe cases than in nonsevere cases.

Prediction Based on Laboratory Tests
Data processing yielded 61 laboratory tests results, 36 of which
were significantly related to severity. Eight related laboratory
tests that showed the largest fold change are illustrated in Figure
1A. Among these tests, D-dimer, LDH, and lymphocytes were
found to be associated with mortality risk [17]. Principal
component analysis results clearly showed separation between
the severe and nonsevere groups, indicating that the
COVID-19–related laboratory tests can be used to identify
disease severity (Figure 1B). To build a statistical model to
predict severity, we first selected the most important laboratory
tests to avoid overfitting. Three different approaches—fold
change, random forest importance score, and mutual

information—were considered the top-ranking laboratory
features. In fact, the three approaches led to very similar ranking,
and the top features obtained from mutual information resulted
in the largest intersection with those obtained from the other
two approaches (Figure 1C). This finding suggests that mutual
information is the most robust feature selector among the three
abovementioned approaches; therefore, we used mutual
information to select laboratory features to be used in the model.
We used a random forest model with hyperparameters optimized
by a genetic algorithm (see Methods) to predict severity based
on laboratory features. Our results suggested that the prediction
accuracy does not further increase with an increase in the
number of laboratory features beyond 12. As a result, a signature
of the top 12 laboratory features was considered, and the
corresponding model yielded a cross-validated AUROC score
of 0.88 and an F1 score of 0.69 (Figure 1D).

Figure 1. Correlation of laboratory tests with COVID-19 severity. (A) Top-8 laboratory tests ranked by fold change. (B) Principal component (PC)
analysis of all laboratory tests. (C) Venn diagram of the top features selected by 3 different approaches: random forest importance score, mutual
information, and fold change. (D) Area under receiver operating characteristic of classification using a signature of 12 laboratory tests. The asterisk
annotations denote the following: * 1.00e-02<P≤5.00e-02, ** 1.00e-03<P≤1.00e-02, *** 1.00e-04<P≤1.00e-03, **** for P≤1.00e-04.

Extraction of CT Features
To extract CT features, we first segmented the lungs from the
CT volumetric images using a deep CNN, U-Net. Because the
CNN was pretrained with several annotated datasets, including
a COVID-19 dataset from MedSeg [16], we directly transferred
the trained CNN to segment CT images of the study patients.
The CT slices acquired across a clinical course of a patient are
shown in Figure 2A. Right after onset, the patient was diagnosed

with nonsevere disease, with no apparent opacity visible in lung
CT. The patient was classified as severe on Day 4, and this
continued for 2 weeks thereafter, with increasing amounts of
ground-glass opacity and patchy consolidation. The ground-glass
opacity and consolidation started to fade away from Day 27,
and on Day 30, the patient was confirmed to be asymptomatic.
As seen in Figure 2A, the opacity of the segmented lung lobes
is associated with disease severity. The opacity can be
represented by the intensity distribution within the segmented
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lung volumes (Figure 2B). Note that only the slices in the middle
are shown in Figure 2A for illustration purposes; all slices were
considered, however, to determine intensity distribution. As the
symptoms became severe, the background became increasingly
opaque, as indicated by the peak locations and peak heights of
the intensity distribution. The distribution also changed from
unimodal to bimodal. Therefore, we considered peak location
and height as well as the first four moments of the intensity
distribution (ie, mean, standard deviation, skewness, and
kurtosis) as CT features. Since the intensity distribution can
become bimodal, we also added the Otsu threshold to reflect
the bimodality and entropy to supplement standard deviation.
Three exemplary CT features observed along the clinical course
of the patient are shown in Figure 2D. Thus, Otsu threshold is

an excellent predictor for severity based on visualization. We
then analyzed all 178 CT records and determined the
corresponding intensity distributions (Figure 3A and 3B). We
found that distributions of severe and nonsevere cases were in
direct contrast in terms of peak height and skewness. Principal
component analysis also showed improved separation between
the 2 groups (Figure 3C). Among the 8 CT features examined,
peak location and entropy were not significantly related to
severity, whereas all the other 6 CT features showed a
statistically significant relation (Figure 3C). Mean and standard
deviation, as well as skewness and kurtosis, were highly
correlated; therefore, standard deviation and kurtosis were not
considered as CT features.

Figure 2. Computed tomography (CT) feature extraction. (A) Segmented lung images from the middle CT slice for a patient with a full course of
COVID-19 from nonsevere to severe and then from severe to nonsevere. The patient’s severe records are presented in red color. (B) Intensity histograms
of the volume CT within segmented lung masks for five consecutive records of the patient. (C) Peak location and Otsu threshold features from the
intensity histogram on Day 18. (D) Variation of 3 different CT features along the course of the disease.
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Figure 3. Computed tomography (CT) intensity distribution and extracted features of patients with COVID-19. (A) Intensity distribution of CT volumes
from nonsevere cases. (B) Intensity distribution of CT volumes from severe cases. (C) Principal component analysis of all CT features. (D) All CT
features between severe and nonsevere groups. “Peak” stands for peak location, and “height” stands for peak height. The asterisk annotations denote
the following: * 1.00e-02<P≤5.00e-02, ** 1.00e-03<P≤1.00e-02, *** 1.00e-04<P≤1.00e-03, **** P≤1.00e-04.

Prediction Based on CT and Laboratory Features
The CT feature extraction enables quantitative prediction with
signatures of both CT and laboratory features. We first analyzed
the Spearman correlation between the CT and laboratory features
(Figure 4A). Most features were not significantly correlated;
however, lymphocyte, neutrophil, D-dimer, and platelet–large
cell ratio showed good correlation with several CT features.
Similarly, we used mutual information to select features to be
used in the model. We used a random forest model with
optimized hyperparameters to predict severity from CT and

laboratory features. We selected a signature of 16 features from
the feature number analysis (Figure 4B). The corresponding
prediction model yielded a cross-validated AUROC score of
0.93 and an F1 score of 0.81 (Figure 4C), which are considerably
improved from the corresponding scores of the model with
laboratory tests only (Figure 1D). The signature includes CT
peak height, CT intensity mean, CT intensity skewness, CT
Otsu threshold, lymphocyte percentage, gamma-glutamyl
transpeptidase, LDH, C-reactive protein, white blood cell,
D-dimer, cholinesterase, neutrophil percentage, hemoglobin,
tricyclic antidepressant, albumin, and chloride.
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Figure 4. Prediction based on computed tomography (CT) and laboratory features. (A) Spearman correlation heatmap between CT and laboratory
features. “Peak” stands for peak location, and “height” stands for peak height. A summary table describing all CT and laboratory features and their
abbreviations is provided in Multimedia Appendix 2. (B) Model accuracy metrics with an increased number of features. (C) Area under receiver operating
characteristic of classification using a signature of 15 CT and laboratory features.

Forecasting Disease Severity
Forecasting disease severity has significant clinical importance,
as it allows clinicians to better prepare for treatment course. In
addition to predicting severity based on CT and laboratory
signatures, we also developed a statistical model to forecast
severity from patient records upon admission when they were
considered nonsevere. Although CT features are excellent
predictors of severity, they are not as good for forecasting,
yielding an AUROC of 0.68. In contrast, the random forest

model based on laboratory tests yielded an AUROC of 0.81,
indicating excellent forecasting predictability (Figure 5A). Other
metrics considered for forecasting are presented in Table 2. This
statistical model comprised 8 laboratory tests, among which
lymphocyte and neutrophil counts (percentage) showed the
highest fold change. In addition to comorbidity, we identified
8 laboratory tests that could be used for severity forecasting:
individual counts of lymphocyte, neutrophil, monocyte, and
eosinophil; red blood cell distribution width; hemoglobin;
procalcitonin; and platelet–large cell ratio.
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Figure 5. COVID-19 severity forecasted using the prediction model. (A) Forecasting severity using patient’s nonsevere records noted upon admission.
(B) Laboratory tests showing a significant relation to the severity forecast.

Table 2. Metrics of prediction and forecasting models. Mean and standard deviation values across 5 cross-validation splits are shown. AUROC: area
under the receiver operating characteristics.

Forecasting modelPrediction modelFeatures

Laboratory only, mean (SD)CT only, mean (SD)Laboratory and CTa, mean (SD)Laboratory only, mean (SD)

0.61 (0.23)0.55 (0.22)0.82 (0.05)0.75 (0.2)Precision

0.61 (0.11)0.56 (0.23)0.79 (0.1)0.7 (0.15)Recall

0.81 (0.14)0.68 (0.22)0.93 (0.03)0.86 (0.1)AUROCb Score

0.60 (0.16)0.56 (0.22)0.81 (0.05)0.69 (0.17)F1 Score

0.83 (0.06)0.78 (0.12)0.88 (0.03)0.87 (0.04)Accuracy

aCT: computed tomography.
bAUROC: area under the receiver operating characteristic.

Discussion

In this study, we collected clinical records from 46 patients with
COVID-19 (27 severe and 151 nonsevere records) and
developed a prediction model using a combination of
radiological outcomes and clinical biochemical indexes, to
identify disease severity. Using the model thus developed, we
successfully achieved an AUROC score of 0.93 to identify the
patient’s severity status. Furthermore, we established a model
for forecasting disease severity based on the combined features
recorded before the patients were classified as severe cases,
resulting in an AUROC score of 0.81.

In the history of confrontation between human beings and
pathogens, humans have always been prone to losing the battle
when the development of effective medicine or vaccine is
extremely difficult owing to the high variability of the
pathogenic genome, such as in the case of influenza virus, HIV,
or SARS. Even though the reported mortality rate of COVID-19
(1.4% [5]) is not as high as that of SARS (10% [19]), individuals
with underlying health conditions such as hypertension,
cardiovascular disease, chronic kidney disease, and diabetes

(2.89-, 3.84-, 2.22-, and 2.65-fold higher risk, respectively [20])
are much more vulnerable to COVID-19. Approximately half
of the patients with COVID-19 are above 50 years of age [5];
these patients are much more likely to develop severe symptoms
such as those characterized by ARDS or multiple organ failure.
Moreover, the significant need for early prediction of clinical
progression has aroused much attention worldwide, yet it
remains to be fully addressed.

Many studies highlight the potential hallmarks of COVID-19.
Biochemical and radiological outcomes are the most widely
recognized indexes in clinical treatment and decision making
[21]; these include interleukin-6 level [22], lymphocyte count,
neutrophil-to-lymphocyte ratio [23], aspartate aminotransferase
level [24], and ground glass opacity on CT scan images
[11,13,25]. An artificial intelligence tool focuses on early
detection by screening publicly available radiological results
of patients with COVID-19 with an accuracy of 86.7% [26-28].
Another recent study developed a system based on deep learning
models to quantify the infectious areas in the lungs of patients
with COVID-19, to predict the severity of clinical course [29].
A prognostic model based on the XGBoost algorithm with a
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reported accuracy greater than 90% used 3 biochemical features,
including LDH, to predict the mortality rate and clinical
outcomes [30], whereas another machine learning framework
based on random forest, decision tree, and support vector
machine used 3 different clinical features, including
aminotransferase, for early prediction of clinical severity [31].
However, the accuracy of the latter model was 70%-80% when
an adequate dataset was not available, as only incomplete
information from 53 patients was used for the analysis.
Interestingly, all published research for the prediction of clinical
severity focused on either biochemical or radiological indexes
only. To our knowledge, our study presents the first prognostic
model using both biochemical indexes and CT scan results based
on neural network and deep learning, which significantly

improves the predictive capability as suggested by an AUROC
score of 0.93. The limitations of this study include a limited
sample size and incomplete information about the patients’past
medical history—challenges often encountered by clinicians in
critical and urgent scenarios. Our future work will be focused
on increasing sample size and improving data quality.
Conclusions

In conclusion, the course of clinical progression might be clearer
with the application of our model, and we believe our effort
could provide useful opinions for early identification of severely
ill patients. Thus, advanced interventions could be applied to
potentially reduce mortality rates and alleviate the health care
burden regarding the management of COVID-19 cases.
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