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Abstract

Background: Musculoskeletal conditions are managed within primary care, but patients can be referred to secondary care if a
specialist opinion is required. The ever-increasing demand for health care resources emphasizes the need to streamline care
pathways with the ultimate aim of ensuring that patients receive timely and optimal care. Information contained in referral letters
underpins the referral decision-making process but is yet to be explored systematically for the purposes of treatment prioritization
for musculoskeletal conditions.

Objective: This study aims to explore the feasibility of using natural language processing and machine learning to automate
the triage of patients with musculoskeletal conditions by analyzing information from referral letters. Specifically, we aim to
determine whether referral letters can be automatically assorted into latent topics that are clinically relevant, that is, considered
relevant when prescribing treatments. Here, clinical relevance is assessed by posing 2 research questions. Can latent topics be
used to automatically predict treatment? Can clinicians interpret latent topics as cohorts of patients who share common characteristics
or experiences such as medical history, demographics, and possible treatments?

Methods: We used latent Dirichlet allocation to model each referral letter as a finite mixture over an underlying set of topics
and model each topic as an infinite mixture over an underlying set of topic probabilities. The topic model was evaluated in the
context of automating patient triage. Given a set of treatment outcomes, a binary classifier was trained for each outcome using
previously extracted topics as the input features of the machine learning algorithm. In addition, a qualitative evaluation was
performed to assess the human interpretability of topics.

Results: The prediction accuracy of binary classifiers outperformed the stratified random classifier by a large margin, indicating
that topic modeling could be used to predict the treatment, thus effectively supporting patient triage. The qualitative evaluation
confirmed the high clinical interpretability of the topic model.

Conclusions: The results established the feasibility of using natural language processing and machine learning to automate
triage of patients with knee or hip pain by analyzing information from their referral letters.

(JMIR Med Inform 2020;8(11):e21252) doi: 10.2196/21252
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Introduction

Background
Currently, a pathway recommended for musculoskeletal
conditions such as knee or hip pain consists of their management

within primary care followed by referral to a multiprofessional
assessment and treatment clinic if a specialist opinion is required
[1]. The aging population increases the demand for health care
resources [2], emphasizing the need to streamline care pathways
to maximize efficiency and ensure patients receive optimal care
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for their needs. With this aim, referral prioritization systems
were developed for hip and knee pain and tested to fast-track
cases for surgical opinion based on referral information provided
by the primary care [3,4]. However, their prioritization criteria
lacked adequate sensitivity and specificity for patients moving
between surgical and conservative pathways. Information
conveyed in referral letters underpins the referral
decision-making process, but it has not been explored
systematically for the purposes of treatment prioritization for
musculoskeletal conditions. Automated analysis of referral
letters can identify variables that can be used alongside
demographic and health-related data to improve treatment
prioritization. Within the context of musculoskeletal conditions,
natural language processing (NLP) was used successfully to
automate the analysis of radiology reports [5,6] and patient
questionnaires [7].

Indeed, NLP has repeatedly demonstrated its feasibility to
extract clinical variables from clinical narratives, making them
available for large-scale analysis down the stream [8].
Traditionally, rule-based approaches have been commonly used
to extract variables of predefined types [9]. Machine learning
has long been hailed as a silver bullet solution for the knowledge
elicitation bottleneck, the main argument being that the task of
annotating the data manually is easier than that of eliciting the
knowledge. However, a recent systematic review of machine
learning approaches based on clinical text data revealed the data
annotation bottleneck to be one of the key obstacles to machine
learning approaches in clinical NLP [10]. However, the biggest
challenge for these applications to become part of routine
clinical practice is the problem of human interpretability of
automated outputs. Machine learning approaches may offer
faster development of algorithms and their performance
improvement, but some do so at the expense of the
interpretability of the results [11]. Topic modeling can kill both
birds with one stone. First, the aim of topic modeling is to
identify latent topics that can be used to organize a corpus,
where each document contains a mixture of topics in different
proportions. As an unsupervised method, it does not require
data to be annotated manually. This means that the algorithm
can readily utilize vast amounts of data, allowing the machine
learning model to more accurately capture statistically
significant patterns. Second, each topic is associated with a set
of words that are extracted automatically from the corpus based
on their distribution. The highest-ranked words can help interpret
the underlying semantics.

Related Work
A popular topic modeling algorithm is the latent Dirichlet
allocation (LDA) [12]. LDA is a three-level hierarchical
Bayesian model in which each document is modeled as a finite
mixture over an underlying set of topics and each topic is
modeled as an infinite mixture over an underlying set of topic
probabilities. Although LDA is used frequently in NLP research,
it is yet to make a significant mark on clinical NLP, which is
still heavily biased in favor of supervised learning methods [10].
Nonetheless, LDA is steadily finding its clinical applications,
such as improving clinical process efficiency [13-15], predicting
hospital readmission [16], patient safety [17-19], and patient
phenotyping [20-22]. Some of the topic models were specifically

evaluated for interpretability from a clinician's perspective
[14,16]. To improve coherence and interpretability of topics,
some approaches combined LDA with clinical terminologies,
such as the Medical Dictionary for Regulatory Activities [18]
and the Systematized Nomenclature of Medicine Clinical Terms
[15]. Typical reasons cited for choosing LDA over supervised
learning approaches include alleviating the need for
labor-intensive data annotation, avoiding human annotation
bias, and the potential to identify latent topics in the data that
may not be apparent a priori. The latter is particularly important
in clinical scenarios with unknown unknowns, such as patient
safety [17-19]. In terms of training a topic model, many
approaches struggled to fine-tune the number of topics as one
of the key hyperparameters of the LDA algorithm. In most cases,
a plausible justification for the number of topics was lacking,
for example, 25 [20], 100 [17,18], 75 [16], 50/100/150 [14],
and 50/100/200 [21].

The research gaps identified in this overview of related work
are as follows. Despite finding various clinical applications,
LDA is yet to be used to support triage. The biggest challenge
for these applications to become widely adopted in clinical
practice is the perception of interpretability. However, few
studies have specifically evaluated the interpretability of the
LDA outputs from a clinician's perspective. Clinical
terminologies have been combined with the LDA to improve
interpretability, but the resources used to support such
functionality do not include the Unified Medical Language
System (UMLS), which offers a unique opportunity to abstract
clinical concepts into higher categories of knowledge. Finally,
for the topics to be easily distinguishable (and, hence,
interpretable), their number needs to reflect the latent themes
and patterns present in a given data set. However, none of the
considered approaches provided a strategy to infer the value of
this hyperparameter from the data. In this study, we addressed
these four gaps.

First, we applied the LDA to a corpus of referral letters and
used topics as features to automatically classify each letter
against a list of potential treatments. This can then be used to
automate patient triage, that is, assort them into priority groups
according to their medical needs. Second, we proposed a novel
method for evaluating the interpretability of topics. Third, we
used the UMLS to incorporate the interpretation of clinical
concepts at different levels of abstraction into the LDA. Finally,
we systematically fine-tuned the number of topics using a
measure of topic coherence.

Methods

Data Collection
Data collection was originally described in the study by Button
et al [23]. In summary, patients were eligible to take part in the
study if they were referred by their general practitioner for joint
(knee or hip) pain, they were aged 18 years or older, they could
provide informed consent, and they could speak English fluently.
The exclusion criteria included pain secondary to other health
conditions such as rheumatoid arthritis, pain secondary to joint
replacement, surgery for the same joint within the last 12
months, or having already received treatment at the
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primary-secondary care interface for the same condition within
the last 6 months.

The care pathway is illustrated in Figure 1. A patient with joint
pain is referred by a clinician from their general practice to a

specialist clinic in secondary care, which could be an orthopedic
clinic, general practice with musculoskeletal specialism, or
advanced physiotherapy clinic. Appropriate treatment is
suggested when the patient is seen in secondary care.

Figure 1. Musculoskeletal care pathway for adults with hip and knee pain. GP: general practitioner.

Patients were recruited from one Local Health Board, an
administrative unit within the National Health Service in Wales,
which supports a population of around 445,000 people. A total
of 634 participants were recruited between August 2016 and
January 2017, and their referral letters were collected. The
follow-up data collection was completed in June 2018. This

included recording of any treatments performed. A subset of
576 patients with complete data, including the original referral
letter and the corresponding treatments, was used in this study.
The distribution of their treatments is given in Table 1. Note
that a single patient may have had multiple treatments.
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Table 1. The distribution of treatment referrals.

Total number of patients, nTreatmentID

53Orthopedic referralO1

173Discharge (no further appointments booked)O2

101InjectionO3

15NutritionistO4

152PhysiotherapyO5

112Diagnostic imagingO6

99SurgeryO7

223Review appointmentO8

16Any other referralO9

System Design
The main research question addressed in this study is as follows:
Can triaging patients (into cohorts) based on their referral letters
be semiautomated? To that end, we designed a system that can
support referral decision making (Figure 2). A corpus of referral
letters was used to train a topic model with the ultimate aim of
using topics to narrow down the choice of potential treatments
and streamline the referral pathway. To reduce potential
overfitting to a relatively small training data set, we regularized

and generalized its text content. First, the text was regularized
by applying a set of linguistic rules designed to reduce
idiosyncrasies associated with clinical sublanguage, covering
punctuation, acronyms, abbreviations, orthographic and lexical
variation, and personal names of patients and clinicians.
Subsequently, an external medical language system was used
to effectively normalize the terminology used, making the topic
model robust with respect to terminological variation. The
following sections describe the three modules in greater detail.

Figure 2. System design for topic modeling of referral letters.

Linguistic Processing
The linguistic preprocessing and normalization module
originally developed to support cohort selection from hospital
discharge summaries was adapted for this study [24]. In addition
to standard linguistic preprocessing operations, this module also
handles punctuation in clinical narratives, which can affect the
results of text segmentation algorithms developed for general
language [25]. However, its main purpose is to streamline
subsequent text analysis and reduce overfitting by regularizing
the text content. This involves basic string operations such as
lowercasing, fully expanding enclitics, and special characters.
It further normalizes text content by replacing a selected subset
of words and phrases with their representatives. Here, special
consideration is given to acronyms and abbreviations as they

are known to have a major impact on the retrieval of relevant
information [26]. These mappings are supported by a set of
local lexica whose content was adapted for this study to support
migration from the domain of hospital discharge summaries to
that of referral letters. To facilitate this process, we extracted
multiword terms (including their acronyms) from referral letters
automatically using FlexiTerm [27,28] and manually curated
the list of conflated term variants.

New functionality added to the linguistic processing module
includes recognition of personal names. Personal names, like
any other words, can be selected automatically as topic
descriptors. For example, if several patients were referred to Dr
Jane Doe, who is a physiotherapist, then her name may become
correlated with a physiotherapy theme in referral letters,
ultimately resulting in the words “Jane” and “Doe” emerging
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as the topic descriptors. Not only are these words not informative
of the topic but they also cannot be generalized to other data
sets where these names do not exist, or they refer to different
persons, thus rendering the model either inapplicable or
inaccurate. To prevent a topic model from overfitting to personal
names, they are replaced by a generic representative. For this
purpose, we originally considered existing named entity
recognition libraries (eg, [29,30]) to recognize personal names
in referral letters. However, having been designed with general
language in mind, their overzealous matching algorithm could
not distinguish between different uses of personal names. As
illustrated by the taxonomy for the rehabilitation of knee
conditions [31], many clinically relevant concepts feature
personal names, for example, Hoffa fat pad, Baker cyst, or
McMurray test. Replacing these mentions of personal names
with generic representatives would remove important content
that can be used to describe a topic. On the other hand, referral
letters are written using a formal style, which prescribes the use
of honorifics. This fact was exploited to define a set of regular
expressions based on honorifics and capitalization of personal
names to automatically recognize the names of patients and
clinicians. These names were replaced with a generic
representative. This approach preserved personal names used

to name body parts, diseases, tests, and any other medical
concepts.

Semantic Enrichment
As a statistical model, a topic model may benefit from
aggregating the distribution of synonyms (eg, “physio” and
“physiotherapy”). Linking synonyms gives the model a better
chance of capturing the semantics of underlying topics.
Linguistic preprocessing implements lexical normalization,
where both formal and informal abbreviations are translated to
a standard vocabulary. For instance, “TKR” and “physio” would
be translated to “total knee replacement” and “physiotherapy,”
respectively. However, the problem of term variation may still
persist. Examples from our corpus are many: “tear” versus
“rupture,” “painkiller” versus “analgesic,” “oedema” versus
“swelling,” “patella” versus “kneecap,” etc. The UMLS [32],
which integrates multiple terminologies, classifications, and
coding standards, maps such terms to concepts, which are
assigned a concept unique identifier (CUI). A CUI can be used
to markup synonymous terms in the text. Consider, for example,
the sentences given in Textbox 1. Concept markups can be
processed by topic modeling software similar to any other tokens
in the corpus and, therefore, can be used as potential topic
descriptors.

Textbox 1. Concept markups.

1. She struggles to take any painkillers/C0002771 stronger than paracetamol.

2. He is opposed to regular analgesics/C0002771.

3. His recent magnetic resonance imaging shows oedema/C0013604 and bursitis.

4. There is a little bit of swelling/C0013604 of the knee joint.

5. The magnetic resonance imaging showed a complex tear/C3203359 of the medial meniscus.

6. She has had a likely anterior cruciate ligament rupture/C3203359.

Moreover, concept markup can be used to effectively group
together multiword expressions. This may improve the
interpretability of topics. For example, when words describing
a topic are presented independently of one another, such as
“medial,” “joint,” “line,” and “tenderness” instead of “medial
joint line tenderness,” then it is unclear whether the word
“medial” refers to “meniscus” (“medial meniscus”), “ligament”
(“medial collateral ligament”), “condyle” (“medial femoral

condyle”) or indeed a “joint line” (“medial joint line”).
Similarly, it remains unclear which anatomical entity is affected
by “tenderness.” To alleviate this problem, topic modeling
approaches often use an n-gram language model [33], with n
being fixed to 2 and 3. Examples from our corpus (Textbox 2)
illustrate that an n-gram approach may be too rigid for
biomedical sublanguage, which is known for its terminological
variability [27,28].
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Textbox 2. Markup of multiword terms.

1. I could not reproduce pain with McMurray test/C3669149.

2. She does however experience pain on McMurray and Ege testing/C3669149.

3. He would be keen to consider a total knee replacement/C0086511 as his pain has increased.

4. She is relatively young for consideration of knee arthroplasty/C0086511.

5. She has poor mobility following a few revisions of a right knee prosthesis/C0086511.

6. He is a 67-year-old male who has had bilateral knee pain/C2220048 for a number of years.

7. She has persistent pain in both knees/C2220048 with regular effusions.

8. She has crepitus in his left knee with medial joint line tenderness/C0576135.

9. No swelling of the knee but tender medial joint line/C0576135.

10. He had an effusion present and was tender across his medial joint line/C0576135.

11. On examination there was tenderness along the joint line medially/C0576135.

MetaMap, a highly configurable dictionary lookup software,
can be used to discover the UMLS concepts in the text [34].
We used MetaMap to markup concepts such as those presented
in Textboxes 1 and 2. Table 2 provides the most relevant details
of the MetaMap configuration used. MetaMap also maps
concepts to semantic types. Like CUIs, they can be used for
markup. Semantic type markups can be used to unify concepts
depicting a common theme. As examples from our corpus
illustrate (Textbox 3), references to sports activities are very
diverse. Individually, they may not be selected as topic
descriptors because their occurrences are relatively rare.
However, when they are mapped to their semantic type (daily

or recreational activity (DORA)), we can observe common
themes emerging focusing on age, fitness, and injury: young,
physically active patients with a sports-related injury. These
factors play an important role in recommending the most
appropriate treatments. Their association with the given semantic
type means that it could be a useful topic descriptor. For
example, a clinician can reasonably assume that the given topic
refers to a cohort of young, fit patients with a sports-related
injury. Semantic type markups can be processed by topic
modeling software similar to any other tokens in the corpus and,
therefore, can be used as potential topic descriptors.
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Table 2. MetaMap configuration.

RationaleUsedDescriptionParameter

These are the least reliable form of variation, for example, “OA” has got at
least three full forms, for example, “osteoarthritis,” “optic atrophy,” and
“ocular albinism.” Local lexica were used in linguistic processing module
instead to enforce tighter control of acronyms and abbreviations.

NoAllows matching of acronyms and abbrevia-
tions.

a

This option allows for syntactic variants such as “meniscus tear” and “tear
of meniscus” to be conflated.

YesIgnores word order when matching a text
phrase to a candidate concept name.

i

This option adds flexibility to conflation of syntactic variants such as
torn/VBN meniscus/NN and meniscal/JJ tear/NN.

YesForces the use of all derivational variants in-
stead of only those between adjectives and
nouns.

D

Like acronyms and abbreviations, short words are highly ambiguous.NoEnables retrieval of candidates for two-char-
acter words occurring in more than 2000

UMLSa strings and one-character words oc-
curring in more than 1000 UMLS strings.

l

This option adds further flexibility to conflation of syntactic variants.YesGenerates variants dynamically rather than
by a table look up.

8

This option supports correct interpretation of certain words, for example,
“fall” used in “his pain started in April when he had a fall on his left knee”
should be interpreted as “a sudden movement downward, usually resulting
in injury” rather than “the season between the autumnal equinox and the
winter solstice.”

YesAttempts to disambiguate among concepts
scoring equally well in matching input text
by choosing concepts having the most likely
semantic type in the given context.

y

Instead of fixed n-grams, we prefer to identify the longest collocationally
stable word sequences, for example, a single concept “ligament tear” instead
of 2 separate concepts “ligament” and “tear.” In addition, longer matches
also reduce ambiguity, for example, recognizing “tear” as part of “ligament
tear” prevents its incorrect interpretation as “the fluid secreted by the lacrimal
glands.”

NoFavors mappings with more concepts over
those with fewer concepts.

Y

To reduce the number of incorrect interpretations, we limited concept
mappings to a fixed list of most relevant semantic types, which have been

selected manually by a clinical expert.b

YesRestricts to semantic types in the comma-
separated list.

J

aUMLS: Unified Medical Language System.
bThe full list of semantic types and their mappings is available from MetaMap Documentation [35].

Textbox 3. Markup of semantic types. DORA: daily or recreational activity.

1. This 22 year old was tackled in rugby/DORA [35] and sustained an injury.

2. She is a delightful 27 year old female who when skiing/DORA last year felt something pop in her knee.

3. He is normally quite active and enjoys football/DORA, which he is now unable to do.

4. It first started about an hour after playing badminton/DORA, which is something that he does.

5. He was previously very active and was involved in sport/DORA but has been unable to recently.

6. He is a keen ice hockey/DORA player.

7. Thank you for seeing this man who two years ago injured his right knee playing basketball/DORA.

8. She is a very athletic female, and back in 2013 had a netball/DORA injury.

9. It was not caused by trauma, but playing golf/DORA worsens it.

10. Patient is normally very fit and active playing tennis/DORA on a weekly basis.

Topic Modeling
To implement our topic modeling approach, we used the LDA
method, which discovers latent topics in a corpus of documents
based on a Bayesian statistical modeling approach [12]. This
approach was chosen to support patient triage for the following
reasons. By not fixing patient cohorts in advance, we wanted
to avoid the need for manual annotation of data. More

importantly, an unsupervised approach can identify previously
unobserved patient groups beyond the boundaries of a
predetermined classification scheme. Unlike cluster analysis,
which can be used to support the same goal, topic modeling
allows cluster overlap. This makes the problem of referring
patients to multiple treatments easier to model. Interpretation
of such a model is supported by (1) word distributions per topic
and (2) topic distributions per document.
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We used an open-source implementation of the LDA algorithm
included in the Gensim library [36]. Each document was
represented by a bag of words (BOW), which means that word
positions and their local contexts were not taken into account.
This can be partly remedied by introducing n-grams into the
BOW representation. As described earlier, we opted to use

tokens that represent markups of concepts and semantic types
as an alternative to n-grams with added benefits of normalizing
lexical and syntactic variation associated with biomedical terms.
We ran experiments with different combinations of features, as
described in Table 3.

Table 3. Data sets used in experiments with different types of features included.

Semantic typesConceptsWordsData set

NoNoYesD1

NoYesYesD2

YesNoYesD3

YesYesYesD4

Hyperparameter Tuning
The performance of machine learning models depends not only
on the parameters whose values the model learns during the
training phase (eg, the weights for each word in a given topic)
but also on the values of hyperparameters (eg, the number of
topics), which are fixed before the training begins. The
predictive performance of different topic modeling algorithms
was found to vary substantially in practice. However, when the
hyperparameters were optimized, these differences diminished
significantly [37]. One of the key hyperparameters of the LDA
algorithm is the number of topics. The difficulty arises when

the number of relevant topics is not known a priori. An
insufficient or excessive number of topics could render an LDA
model too coarse or overly complex, respectively.

Perplexity, a measure of how well a probabilistic model predicts
a sample, is commonly used to evaluate topic models. It is
calculated as the inverse of the geometric mean per-word
likelihood, with lower values indicating better models [38]. A
heuristic approach based on the rate of perplexity change as a
function of the number of topics has been proposed to determine
an appropriate number of topics [39]. This approach would
suggest selecting 11 as the total number of topics based on the
values shown in Figure 3.

Figure 3. Perplexity as a function of the number of topics.

In general, perplexity was found not to be well correlated with
the human rating of topic interpretability [40]. Alternative
measures based on word coherence have been proposed to
remedy this problem [41]. We used 4 measures of topic
coherence, which are described in more detail in the Results

section. As Figure 4 illustrates, the coherence of stemmed and
lemmatized text achieved an optimum using 15 and 18 topics
labeled by red circles and blue squares, respectively. However,
at both points, topic coherence demonstrated opposite trends.
However, at another local optimum labeled by green triangles,
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topics modeled on stemmed and lemmatized text demonstrated
not only similar trends but also almost identical coherence
values. Given a small difference from the global optimum, we
selected 11 as the total number of topics to be able to switch

freely between stemming and lemmatization in subsequent
experiments. This choice also complied with the one based on
perplexity.

Figure 4. Topic coherence as a function of the number of topics.

Results

Intrinsic Evaluation
Recent studies have shown that optimizing a model for
perplexity may not yield human interpretable topics [40]. This
limitation has prompted further research into alternative ways
of estimating human interpretability. Newman et al [42]
introduced the notion of topic coherence, which is based on the
coherence of words that describe a topic. Different variants of

this measure have been proposed [41]. In principle, overall
coherence is averaged across word pairs in a topic and then
across topics. Therefore, the overall topic coherence depends
on the way the coherence between 2 words is measured. Figure
5 focuses on this problem. In principle, coherence refers to the
degree to which 2 words are related. Two approaches to
measuring relatedness can be used: one based on direct
co-occurrence (or collocation) and the other based on
co-occurrence with a shared set of other words.
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Figure 5. Corpus-based approaches to measuring word coherence.

In the first approach, 2 words are said to be collocated if they
co-occur more often than would be expected by chance. In
corpus linguistics, collocation is measured by estimating relevant
probabilities from a corpus of text documents, which can be
either the original corpus used to learn the topic model or a
reference corpus such as Wikipedia. Probabilities are estimated
using Boolean documents. The number of documents in which
the word (or a pair of words) occurs is divided by the total
number of documents. Neither the number of occurrences within
a document nor the distances between words are taken into
account; hence, the name Boolean. A virtual document can be
defined as a paragraph, sentence, or text window, which, by
being smaller parts of the whole document, indirectly account
for the distances between words.

These probabilities are used to calculate pair-wise word
coherence measures such as pointwise mutual information (PMI)
[43], normalized pointwise mutual information (NPMI) [44],
or log-conditional probability (LCP) [45] as follows (small
positive is added to avoid logarithm of zero):

PMI compares the probability of 2 words co-occurring, P(wi,
wj), against the probability that they would co-occur under the
assumption of their independence, P(wi)P(wj). Higher values
indicate a stronger association between the 2 words. NPMI
follows the same logic, but it also imposes a fixed upper bound
of 1 to indicate perfect association by normalizing PMI using
the joint probability of 2 words. This makes its interpretation
more intuitive while also reducing the bias toward less
frequently occurring words. Both measures are symmetric,
which is not a property of human word associations. By basing
LCP on a simple conditional probability P(wi | wj), it adds
direction to measuring the association of 2 words.

Topic coherence is calculated by averaging the pair-wise word
coherence across its n words:
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Topic coherence measures based on PMI, NPMI, and LCP are
commonly referred to as CUCI (or CPMI) [42], CNPMI [46], and
CUMass [47], respectively. The problem with these measures is
that they may fail to identify synonyms as related words as they
do not co-occur regularly. However, we can reuse any of the
pair-wise word coherence measures to represent each word wi

as a vector whose j-th coordinate corresponds to C(wi, wj). On
the basis of the distributional hypothesis, which states that words
with similar distributions have similar meanings, we can use
cosine similarity between the corresponding vectors to estimate
the similarity between 2 words:

Topic coherence can now be calculated by averaging the
contextual similarity across its n words [46]:

In a comparative analysis, the best correlation with human topic
coherence ratings was achieved with CV [41], a topic coherence
measure that uses cosine similarity on context vectors based on
CNPMI but differs from Ccos in a way in which it aggregates the
similarity values. Instead of pair-wise comparison, each word
is compared with the set of top-ranked words whose context
vectors have been summed up.

The Gensim library [36], which was used to create topic models,
was also used to calculate their coherence. It implements 4
coherence measures: CUCI [42], CNPMI [46], CUMass [47], and
CV [41]. Table 4 reports their values obtained for topic models
extracted from the data sets described in Table 3. Overall, the
best results were achieved on data set D2, which was obtained
by annotating the original text with concepts from the UMLS.

Table 4. Topic coherence.

C VC UMassC NPMIC UCIData set

0.53−15.34−0.32−9.89D1

0.68−17.31−0.41−12.23D2

0.59−17.50−0.35−10.68D3

0.59−17.12−0.37−11.12D4

Extrinsic Evaluation
The extrinsic evaluation assesses the performance of a topic
model in the context of a predefined task. In an envisaged

scenario, topic modeling could be used to semiautomate patient
triage by using topics to predict the most appropriate treatments
(Figure 6). Our data set included the referral letters together
with subsequently received treatments (Table 1).

Figure 6. Supporting patient triage with topic modeling.

As a result of topic modeling, each referral letter was mapped
to a topic distribution vector. Each coordinate contained a score
that the letter received against the corresponding topic.
Effectively, the corpus was transformed into a document-topic
matrix. We trained a binary classifier for each treatment using
the document-topic matrix. It takes a topic distribution vector

of a referral letter as input and outputs a yes or no decision for
the corresponding treatment.

We used 10-fold cross-validation to measure its prediction
accuracy A=(TP+TN)/N, which was calculated using true
positives (TP), true negatives (TN), and the total number (N).
Cross-validation experiments were performed for each data set
described in Table 3. Given a small number of features
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combined with few instances of some treatment outcomes, we
opted for the k-nearest neighbor algorithm with k=5 in a quest

to reduce overfitting. The cross-validation results are shown in
Figure 7.

Figure 7. Predictive accuracy of a classifier trained on top of a topic model.

Not surprisingly, the worst results were achieved on discharge
and review appointment. One would intuitively expect that these
outcomes would be the least homogeneous with respect to topic
distribution. In other words, any musculoskeletal patient would
eventually be either discharged or reviewed, regardless of their
condition. The best results were achieved for the 2 most
imbalanced treatment outcomes, Nutritionist and Any other
referral, with only 15 and 16 positive instances, respectively,
out of a total of 576, where overfitting the majority class was
most likely to have occurred. The accuracy of predicting the
remaining treatment outcomes outperformed the stratified
random classifier by a large margin, indicating that topic
modeling could be used to support patient triage (Figure 6). On
average, the best accuracy was achieved on data set D2, which
augments the raw text features with domain-specific concepts.
The best performance is in line with the best topic coherence
recorded in the intrinsic evaluation (Table 4).

Qualitative Evaluation
Qualitative evaluation is de facto the gold standard for
measuring the interpretability of a topic model. However,

involving human raters makes such an evaluation expensive to
implement in practice. For that reason, we singled out a topic
model with the highest coherence (Table 4) and classification
accuracy (Figure 7) for further evaluation with respect to its
interpretability. Its interactive web-based visualization (see
Figure 8 for an example) was created using pyLDAvis, a Python
library designed to help users interpret a set of latent topics [48].
Each topic was represented by a circle whose size reflects its
prevalence in the training corpus. The distance between the
centers of the 2 circles reflected the similarity between the
corresponding topics. Clicking on a circle resulted in a histogram
of the top 30 words most relevant to the corresponding topic.
Here, relevance was determined based on a parameter (0 1). By
default, λ was set to 1 to rank the words by their probability
within a topic. When λ was set to 0, the words were reranked
by their lift, which is defined as the ratio of a word's probability
within a topic to its marginal probability across the corpus. The
interactive interface allowed a user to adjust the value of λ
between 0 and 1.
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Figure 8. Interactive visualization of a topic model.

To measure the interpretability of topics, we designed
experiments using a novel protocol illustrated in Figure 9. In
this scenario, 2 medical doctors with specialization in physiatry
were paired. Independently, each clinician was presented with
an interactive visualization of the topic model (Figure 8). They
completed a survey in which they were asked to describe each
topic using a short free-text statement that generalizes the
collective meaning of the topic's 30 most relevant words as a

cohort of patients. No restrictions were imposed on the facets
used in their description (eg, age, fitness, or pathology) or the
choice of vocabulary. Although describing individual topics,
the 2 clinicians were also asked to estimate the confidence in
their final choice on a 5-point Likert scale: 0 (not confident at
all), 1 (slightly confident), 2 (somewhat confident), 3
(moderately confident), and 4 (very confident).
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Figure 9. Experimental protocol for measuring topic interpretability.

In the second phase, both clinicians gained access to the other
one's choice of a topic's description. They were then asked to
independently estimate the similarity of the 2 descriptions on
a 6-point Likert scale: −3 (very dissimilar), −2 (moderately
dissimilar), −1 (slightly dissimilar), 1 (slightly similar), 2

(moderately similar), and 3 (very similar). The average similarity
was used to estimate the interpretability of topics under the
hypothesis that high similarity implies high interpretability and
vice versa. The responses to the 2 questionnaires are presented
in Table 5.
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Table 5. The responses to topic interpretability questionnaires.

SimilarityConfidenceTopic and description

T1

Moderately
similar

Moderately confi-
dent

Symptomatic degenerative conditions related to the musculoskeletal system, most commonly the knee and
predominantly in females.

Very similarModerately confi-
dent

Chronic knee pain caused by an injury, causing problems for months and with a positive medical history.
Related to women, medial side, and examined by x-ray. In addition to injury, chronic diseases include os-
teoarthritis, which can be examined by radiological diagnosis and physical examination, which reduces the
range of motion and the ability to walk, and which can be treated with physical therapy and other procedures
to reduce the feeling of pain.

T2

Very similarModerately confi-
dent

Knee ligament injuries with a description of the type of ligament and associated symptoms, most commonly
effusion.

Very similarModerately confi-
dent

Traumatic and nontraumatic injuries of knee ligaments, especially the medial and anterior cruciate ligaments,
with swelling, effusion, and the involvement of the entire ligament leading to instability and locking of the
knee. The entire ligamentous apparatus and menisci need to be tested. A history of recurrent injuries plays
a role in the damage. Exercise and pain management are recommended.

T3

Very similarModerately confi-
dent

Diagnosis of the pathological condition predominantly by magnetic resonance imaging together with a de-
scription of the knee injury type.

Very similarModerately confi-
dent

Magnetic resonance imaging used to diagnose mostly knee damage, thinning of cartilage, lateral ligaments,
and hyaline and less for facets, fissures, and patellar problems.

T4

Moderately
similar

Moderately confi-
dent

Pathological conditions related to the hip.

Very similarSomewhat confi-
dent

Degenerative changes of the hip diagnosed by x-ray imaging, hip pain, decreased mobility, and reduced joint
space, possibly requiring a hip replacement. Osteoarthritis diagnosed from jagged edges and anti-inflamma-
tory processes. All these changes lead to a decreased range of motion and depression.

T5

Very similarModerately confi-
dent

Coping with sports injuries related to the musculoskeletal system.

Very similarModerately confi-
dent

Sports injury mostly caused by twisting. Treated with ibuprofen and bracing. Diagnosed by radiography.

T6

Very similarModerately confi-
dent

Medications for painful conditions of the musculoskeletal system.

Very similarSomewhat confi-
dent

Knee injuries treated with a variety of medications.

T7

Very dissimi-
lar

Moderately confi-
dent

Musculoskeletal condition (knee) that requires an invasive procedure.

Moderately
dissimilar

Slightly confidentInjuries that occur due to obesity and inactivity.

T8

Moderately
similar

Moderately confi-
dent

Degenerative changes in the musculoskeletal system resulting in reduced activity and comorbidities.

Slightly simi-
lar

Somewhat confi-
dent

Cardiovascular diseases associated with chronic lung disease, hypertension, coagulation disorder.

T9

Moderately
similar

Somewhat confi-
dent

Musculoskeletal condition (knee) more often in the female population.

Very similarSlightly confidentMost commonly, popliteal cyst, a predisposition in occupations that require prolonged standing, can lead to
knee deformities. Excision is a recommended treatment.
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SimilarityConfidenceTopic and description

T10

Very similarSomewhat confi-
dent

Pain in the lumbosacral spine.

Very similarSlightly confidentChanges in the lumbar spine and pelvis due to osteoarthritis and infection. Accompanied by hot, burning
back pain and progression.

T11

Very dissimi-
lar

Moderately confi-
dent

Patients with amputation of the lower extremities.

Very dissimi-
lar

Slightly confidentPoor mobility due to asymmetries.

The average confidence was found to be 3.00 and 2.00 between
the two annotators. The average similarity was found to be 2.00
for both annotators. One participant was consistently more
confident than the other, but they were mostly not more than
one Likert point apart. The biggest discrepancy between the 2
Likert points was found for topics T8 and T11. When
cross-referenced against the topic similarity scores, most
dissimilar descriptions were observed. Overall, the participants'
perception of topic similarity was consistent, with one Likert
point difference throughout.

To generalize these findings, we calculated the interannotator
agreement for both confidence and similarity (Table 6). For this
purpose, we used Cohen kappa coefficient with linear weighting
[49-52]. The agreement on confidence was low. However, a
closer look at the distribution of confidence scores between the

2 participants revealed that one participant was consistently
more confident than the other. Therefore, the low agreement on
confidence in interpreting the topics was more likely to be
associated with the participants' own characteristics than the
topics themselves. Indeed, the participant with higher confidence
provided more generic descriptions, whereas the other paid
more attention to detail, which may have lowered their
confidence in believing that they addressed the task effectively.
Nonetheless, in the vast majority of cases (9 out of 11 topics),
the high similarity scores indicate that both generic and detailed
descriptions effectively referred to the same cohort, that is, a
group of patients who share common characteristics or
experiences such as medical history, demographics, and possible
treatments. Therefore, based on the hypothesis that high
similarity implies high interpretability and vice versa, we
conclude that the given topic model was highly interpretable.

Table 6. Interannotator agreement on topic description.

SimilarityConfidenceCharacteristics

0.73430.1391Observed kappa

0.11630.0925Standard error

0.5063-0.96230.0000-0.3204Confidence interval

0.73430.1391Maximum possible

11Proportion of maximum possible

Discussion

Principal Findings
This study explored the feasibility of using NLP and machine
learning to automate triage of patients with musculoskeletal
conditions by analyzing information from referral letters.
Specifically, we determined that LDA can automatically assort
referral letters into topics that are clinically relevant. In other
words, latent topics provide information that is considered
relevant when prescribing treatments.

First, our experiments confirmed that latent topics could be used
to automatically predict an appropriate treatment. A supervised
classifier based on latent topics as its sole feature consistently
outperformed the baseline method. Further improvements in
the performance of such classifiers stand to be gained by
incorporating other types of features that can be obtained from
the patients' electronic health records, for example,
demographics, body mass index, and imaging reports. However,

this was beyond the scope of this study, which was concerned
only with establishing the clinical relevance of automatically
extracted latent topics. On their own, these topics proved to be
sufficiently discriminative features for treatment
recommendations based on machine learning.

Second, our experiments confirmed that latent topics could be
interpreted by clinicians as cohorts of patients who share
common characteristics or experiences such as medical history,
demographics, and possible treatments. Specifically, the words
associated with each topic by the LDA algorithm proved to be
sufficiently descriptive to enable clinical specialists to interpret
the topic's underlying semantics.

The first set of experiments established the clinical relevance
of latent topics from a machine perspective: a treatment can be
recommended automatically for an individual patient. The
second set of experiments established the clinical relevance of
latent topics from a human perspective: a treatment can be
recommended by a clinician for an automatically identified
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cohort of patients. Both treatment recommendation scenarios
support the hypothesis that topic modeling can support patient
triage. Automating this process can be used to address areas
where bottlenecks exist. Efficient referral to appropriate services
such as analgesia or diagnostics not only improves patient
experience and health outcomes but also reduces queuing arising
from nonurgent demand, thus minimizing the delays for those
with urgent care needs.

Conclusions
Our approach used information contained in referral letters to
underpin the referral decision-making process. Successful
automation of this process has the potential to streamline care

pathways and ensure that patients receive timely and optimal
care. In clinical applications such as patient triage,
interpretability is the key to build trust for all stakeholders,
clinicians, and patients alike. Our approach to qualitative
evaluation sets a precedent in measuring the interpretability of
automated outputs, which is emerging as the next big challenge
for clinical NLP. The unsupervised aspect of the proposed
approach avoids the need for data annotation and, therefore,
can be readily deployed to tackle other bottlenecks along the
musculoskeletal pathway. For example, imaging and pathology
reports can be processed in the same way to automatically
redirect patients to the most appropriate services.
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