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Abstract

Background: Total joint replacements are high-volume and high-cost procedures that should be monitored for cost and quality
control. Models that can identify patients at high risk of readmission might help reduce costs by suggesting who should be enrolled
in preventive care programs. Previous models for risk prediction have relied on structured data of patients rather than clinical
notes in electronic health records (EHRs). The former approach requires manual feature extraction by domain experts, which
may limit the applicability of these models.

Objective: This study aims to develop and evaluate a machine learning model for predicting the risk of 30-day readmission
following knee and hip arthroplasty procedures. The input data for these models come from raw EHRs. We empirically demonstrate
that unstructured free-text notes contain a reasonably predictive signal for this task.

Methods: We performed a retrospective analysis of data from 7174 patients at Partners Healthcare collected between 2006 and
2016. These data were split into train, validation, and test sets. These data sets were used to build, validate, and test models to
predict unplanned readmission within 30 days of hospital discharge. The proposed models made predictions on the basis of clinical
notes, obviating the need for performing manual feature extraction by domain and machine learning experts. The notes that served
as model inputs were written by physicians, nurses, pathologists, and others who diagnose and treat patients and may have their
own predictions, even if these are not recorded.

Results: The proposed models output readmission risk scores (propensities) for each patient. The best models (as selected on
a development set) yielded an area under the receiver operating characteristic curve of 0.846 (95% CI 82.75-87.11) for hip and
0.822 (95% CI 80.94-86.22) for knee surgery, indicating reasonable discriminative ability.

Conclusions: Machine learning models can predict which patients are at a high risk of readmission within 30 days following
hip and knee arthroplasty procedures on the basis of notes in EHRs with reasonable discriminative power. Following further
validation and empirical demonstration that the models realize predictive performance above that which clinical judgment may
provide, such models may be used to build an automated decision support tool to help caretakers identify at-risk patients.

(JMIR Med Inform 2020;8(11):e19761) doi: 10.2196/19761
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Introduction

Approximately 60% of total hip arthroplasties (THAs) and total
knee arthroplasties (TKAs) are covered by Medicare nationwide.
The Centers for Medicare and Medicaid Services have focused
on total joint replacements as a high-volume and high-cost
procedure that should be monitored for cost and quality control
[1]. Therefore, bundled payment programs have been proposed
to decrease the cost of procedures, shorten length of stay, and
reduce the number of readmissions and revision surgeries for
THAs and TKAs without sacrificing quality of care [2,3].
Accordingly, bundled payment programs penalize service
providers for unscheduled or preventable readmissions [4]. In
Massachusetts, for example, Medicare penalized 78% of
hospitals for unscheduled readmissions between 2015 and 2016
[5]. In this case, the average penalty for hospitals was 0.7% of
the Medicare reimbursement [5]. Models that can identify
patients at high risk of readmission might help reduce the total
costs and may also improve patient outcomes.

The increase in the use and availability of electronic health
records (EHRs) has encouraged researchers to develop and
evaluate predictive machine learning (ML) models exploiting
EHRs. ML models built over EHRs have now been explored
for many clinical predictive tasks, including diagnosis,
classification, risk stratification, and medical event prediction
[6-9]. A survey of this work is available in a study by Shickel
et al [10].

Concerning predicting readmission, Shadmi et al [11] developed
a model for 30-day readmission using manually crafted features
derived from preadmission data. Similarly, Cai et al [12] used
logistic regression (LR) to predict readmission and other
outcomes for hospitalized patients. Nguyen et al [13]
demonstrated that incorporating EHR data from the full hospital
stay can improve 30-day readmission prediction, as compared
with incorporating EHR data from the day of admission alone.
The difference between our work and these previous efforts is
that we are specifically concerned with predicting readmissions
following surgery, rather than in general, which suggests a more
focused approach and evaluation.

The idea of using ML to predict the risk of complications in
patients following surgery goes back at least a few decades [14].
Recent efforts have demonstrated the general feasibility of
predicting target postoperative complications [15,16]. We do
not attempt to exhaustively review these efforts. To the best of
our knowledge, none of these efforts have taken an exclusively

data-driven approach, without the need for manual feature
extraction, to predict the risk of any complications leading to
readmission following hip or knee arthroplasty. We aim to
address this gap in the literature. These predictions can be made
passively and automatically with data from EHRs. If shown
superior to direct clinical judgments, these predictions might
eventually assist prioritization of proactive care and potentially
mitigate complications that lead to readmissions.

This is important, partly because of the high volume of surgeries.
In 2017, 700,000 knee replacement procedures were performed
in the United States, and this number is likely to increase to
3.48 million surgeries by 2030 [17]. Given the rapid increase
in the number of arthroplasty procedures, the need for quality
and cost control in general and reducing readmissions and
revision surgeries is increasingly clear. Readmissions occur for
many reasons, but the 3 most common causes for readmission
are surgical site infection, ileus or obstruction, and bleeding
[4,17,18].

As noted above, there have been previous efforts to predict
readmission risk following hip or knee surgery; however, these
have relied on structured predictors manually entered by domain
experts. This feature extraction process is onerous and precludes
automatic and passive monitoring to identify at-risk patients.
Our main contribution in this work is the development and
evaluation of models for predicting postsurgery readmission
directly from EHRs using unstructured clinical notes. In
addition, we explored whether neural models induced over
clinician notes perform as well or better than simple LR models
induced over structured tabular data in the EHRs.

Methods

Data Set
This is a retrospective analysis for which we used EHR data
corresponding to 10,534 patients. We received approval from
the institutional review board (protocol number 2016P002062
at Partners Healthcare) to conduct this analysis. Subjects were
adults aged 18 years or older who were admitted for hip or knee
surgery between 2006 and 2016 for either inpatient or outpatient
care. These subjects were covered by Medicare, Medicaid, or
a private insurance. Our analysis included patients who
underwent hip arthroplasty (current procedural terminology
[CPT] codes: 27130, 27132, 27134, 27236, 27137, 27138,
27120, and 27125) or knee arthroplasty (CPT codes: 27445,
27446, 27447, 27486, and 27487) during this period. This
yielded a data set comprising 7174 patients (Figure 1).
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Figure 1. Cohort selection flow chart.

We excluded patients who were aged above 90 years at the time
of surgery because of the inherent high risk of complications
[19-21], implying that no model is needed for these cases. We
also excluded patients for whom no notes were present, which
may have induced a sample bias, although we do not have reason
to believe this is the case. Figure 1 provides a cohort selection
flowchart.

Data Types
Our models exploited (textual) clinical notes to inform
predictions. We also considered the use of structured data
elements within EHRs for comparison, but we encoded this
automatically without domain and ML experts in the loop.

Data Extraction and Encoding
Our primary data set consisted of clinical notes written by
clinicians (doctors, nurses, and other health care professionals).
These notes described patient demographics, procedures,
surgeries, medications, and other medical services rendered to
patients. In addition to the free text, notes sometimes contained
automatically generated tables (eg, list of laboratory tests).
Textbox 1 shows the EHR fields that were considered. In
addition to the notes corresponding to these, we often had
corresponding structured information. We describe how we
preprocess this in the following section.

Textbox 1. Categories of features from electronic health record data used.

Patient level:

• Demographic information

• Health history

• Health information

• Vital information

• Laboratory test results

• Comorbidities

• Medication information

• Radiology

• Procedures

• Surgical

• Pathology

• Diagnosis

Hospital level:

• Admission information

Encounter (visit)
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Structured Data Preprocessing
We extracted information pertaining to demographic, diagnostic,
encounter, health history, procedures, and medications from
patients’ records (Textbox 1). Patient encounters are associated
with multiple diagnosis codes, including principal, secondary,
and other diagnoses. We considered all diagnosis codes when
determining whether a readmission was due to surgical
complications. We encoded medications and diagnoses as sparse
indicator vectors. To process diagnosis International
Classification of Diseases (ICD) codes, we mapped ICD-9 codes
to ICD-10. We retained only the first 3 ICD-10 characters to
reduce sparsity.

To encode variables extracted from the health history table, we
concatenated one-hot indicator vectors for all categorical
features with numerical values. We encoded laboratory tests
using indicator vectors that represent whether a patient received
a specific test. For information pertaining to patient health
history, we excluded variables that were missing from nearly
all (≥99.9%) records (listed in the Multimedia Appendix 1). We
also encoded patient medications using indicator vectors. We
extracted admission-related information from encounter records
(eg, visiting information from admission and discharge sources).
For continuous variables, we replaced missing values with
averages taken over all patients or encounters as appropriate.
This extraction and preprocessing yields, for each patient z, T

encounter records that encode structured elements 

ordered by the encounter data, where .

Clinical Text Processing
Patients are associated with a list of free-text notes ordered by
the encounter date. We tokenize them, then lowercase and stem
words, which are then represented via indicator vectors (V). All
notes are concatenated with a special delineating marker

<NOTESEP>, yielding a single note of size where

, Lt represents the number of words in note for
encounter t.

Task Definition
We partitioned the data set at the patient level into train,
validation, and test sets with a ratio of 70:15:15 (Table 1). These
sets are mutually exclusive with respect to patients (ie, the same
patient never appears in more than one set). Demographic
statistics for training, validation, and testing sets are reported
in the Multimedia Appendices 2-4, respectively. We defined
the set of patients who experienced complications following
surgery that led to readmission within 30 days using ICD codes.
Specifically, we define this as the set of patients who underwent
hip or knee surgery and who were subsequently admitted as
inpatients within 30 days of their discharge under any of the
ICD-9 and ICD-10 complication codes: ICD-9 codes: 996, 996
{03,1-4,57,6,66,67,7,71-73,75-79}, 997, 998 and ICD-10 codes:
T84.{0X-7X, 81-86,89,9X}XA.

Table 1. The number of patients in training, validation, and testing data sets.

KneeHipData sets

Female (n=2173), nMale (n=1702), nFemale (n=1658), nMale (n=1641), n

1481116411901131Train

335267238262Validation

357271230248Test

We labeled patients who met this criterion as having been
readmitted due to complications following surgery (y=1). We
assumed that all other patients were not readmitted due to
complications (y=0). There is an inherent class imbalance [22]

here; most patients do not experience complications that lead
to readmission, that is, there are far fewer positive than zero
instances. We report readmission prevalence for hip and knee
surgeries in Table 2.

Table 2. Proportion of positive class (30-day readmission because of surgery complications) for hip and knee surgeries.

KneeHipSubset

0.0970.092Train

0.10.122Validation

0.1160.115Test

Models
We evaluated 2 standard neural models trained on the data set,
detailed below. In addition, we implemented a simple LR model
to serve as a reference.

Text is encoded into fixed-size representations for downstream
modules using an encoder. We experimented with a few such
encoders: Simple and unstructured count-based bag-of-word

(BoW) representations (analogous to the indicator vectors
encoding tests and medications) and neural encoders that operate
over embeddings of text and learn to represent notes via repeated
projection or recurrent modules.

Linear Models (Over Bag of Words)
For our linear model, we used l1- and l2-regularized LR over
BoW representations of patient notes or the structured data
associated with a given patient encounter. We considered 4
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different representations of patient notes and structured data
associated with a given patient encounter.

BoW variants:

• Binary BoW encodes the existence of a given word in a
note as a one-hot vector.

• Count BoW encodes the total number of occurrences of a

given word in a note, that is, .
• Term frequency–inverse document frequency scales word

counts inversely to the frequency with which they appear
in documents, emphasizing comparatively rare words.

• Finally, we experimented with encoding text via inferred
topic
distributions using Latent Dirichlet Allocation (LDA) [23].
In this variant, we encoded texts as vectors that encode the
proportions of (latent) topics present within them, as
estimated via LDA. We report results for LR models that
fit text and structured data.

Neural Encoders
Standard neural models first project words to lower-dimensional
embeddings (eg, 300 dimensions initialized to pretrained
embeddings). These embeddings are then passed through an
encoder module before making predictions. We considered the
following modules for inducing fixed-length representations of
embedded variable-sized textual inputs:

1. Average: Project and then average inputs. Specifically, we
first passed embeddings through a linear layer that projects
them onto a 256-dimensional space and then applied an
element-wise nonlinearity (ReLU).

2. Bidirectional long short-term memory (BiLSTM) network:
We ran a single-layer BiLSTM [24] model over the
embedded sequence using a hidden layer size of 256 (128
dimensions for each direction).

Recurrent networks (such as BiLSTM) yield variable-sized
outputs that must be collapsed into a fixed-length vector. To
this end, we adopted a standard max-pooling layer over the
outputs of the 256 filters or hidden units. We also explored
aggregation via attention mechanisms [25], which allowed
models to upweight contextualized representations of specific
inputs; accordingly, these have greater influence over the
induced fixed-length vector. In the standard attention layer, the
model learns to score each encoder hidden state ht for the input
token t according to its relevance for the downstream prediction.
Scores are normalized into a distribution α, and a fixed-length
vector is induced by taking a weighted sum over the hidden

states emitted from the RNN: . We also explored
applying attention to the feedforward (projection) encoder.

In addition, we evaluated hierarchical representation learning
over clinician notes [26]. Our data contain reports from different
visits. Therefore, we can consider two-level representations:
visit level and patient level. An encoder can provide a
representation of individual visits, and then these encoded
segments can be combined (eg, via a second recurrent neural
network) to form a second-level representation of the patient.
The latter summarizes all visits. This is referred to as a
hierarchical representation. For this, we pass a single BiLSTM

to embed each patient’s notes separately (using attention), and
then we run another BiLSTM over the aggregated patient-level
representation of individual notes (associated with its own
attention distribution) to yield a fixed-length vector.

Finally, we presented preliminary results using bidirectional
encoder representations from transformers (BERT) [27] as
another text encoding strategy. Specifically, we used the clinical
BERT [28] instantiation of the model that was trained on clinical
notes from the MIMIC III data set. BERT is a deep bidirectional
model that conditions on both left and right context to provide
contextualized representations of words. BERT and similar
large pretrained transformer models [29] have achieved good
results across many natural language processing data sets and
tasks in general; specifically, they have yielded improvements
for 30-day readmission tasks on the MIMIC data set [30].

Class Imbalance
Most patients do not experience complications that result in
rehospitalization within 30 days. Therefore, the resulting data
sets are imbalanced, which can be problematic for standard ML
models. We experimented with multiple strategies to counteract
the class imbalance, including imposing class weights,
undersampling the majority class, and oversampling the minority
class. Undersampling provided consistent results across data
sets and the period of history considered, whereas other
strategies proved unstable.

Multitask Learning
The most straightforward approach to predicting 30-day
readmission due to complications following hip and knee
arthroplasties would be to treat them as an entirely separate
class of surgeries and build independent models for each type
of surgery. However, intuitively one might expect the
information in EHRs to be similar for complications resulting
from the respective types of surgery. We can exploit this to
improve predictive performance by using multitask learning
[31], in which some parameters are shared between models for
related tasks.

Performance Metrics
To quantify the performance of the models in predicting 30-day
readmission associated with surgical complications, we used
the area under the receiver operating characteristic (AUROC)
curve and accuracy, sensitivity, specificity, and precision, also
known as positive predicted value (PPV), at particular
thresholds. These are calculated using true positive (TP), false
positive (FP), true negative (TN), and false negative (FN) as
follows:

Recall (also known as sensitivity)=TP/(TP+FN)

Specificity=TN/(TN+FP)

Precision (also known as PPV)=TP/(TP+FP)

Accuracy=(TP+TN)/(TP+TN+FP+FN)

In practice, one would need to select an operational threshold
with corresponding sensitivity and specificity appropriate for
the intended use of the model.

To quantify model performance independent of a particular
choice of threshold, we report precision versus recall, and recall
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versus (1-specificity) and areas underneath the corresponding
curves for these constructed by sweeping thresholds (for
predicting 1 vs 0) over the predicted probabilities and record
corresponding metrics. The area under these can be taken as a
scalar quantifying model performance.

Experimental Setup
Before any experimentation, we separated the data into training,
validation, and testing sets. The validation data were used for
tuning the models and for selecting the final candidate model.
The testing set was used for the final evaluation but was not
used in any way during the model development and tuning.

Data Availability
Data supporting this study are not publicly available because
of the inherently sensitive nature of the data.

Results

We tuned all hyperparameters on the validation data set. Results
achieved under the best models are presented for both hip and
knee surgeries as measured on the validation set for (1) text
only and (2) structured data only, shown in Figure 2. The results
are reported for both the validation and test data sets, where we
expect better performance on the former given that we selected
hyperparameters based on this. We reported the results for
independent models and multitask models over text and
structured data separately.

Figure 2. A schematic feature encoding scheme. Structured data, when used, comprises both categorical and numerical elements. We encoded the
former using either indicators or an encoder module, whereas we packed the latter into a dense vector of values. Unstructured data (ie, textual notes)
are encoded using a sparse (indicator) representation and then optionally run through an encoder module. Colors are stylistics only. The “+” denotes
concatenation.

The best independent model for predicting 30-day readmission
due to any complications following a hip surgery over the
validation data set using text is the feedforward average model
with attention mechanism (AUROC=0.894; 95% CI
0.859-0.930); for knee surgeries, the simple feedforward average
model performs better (AUROC=0.946; 95% CI 0.929-0.964).
Similarly, the best independent model for predicting 30-day
readmission due to any complications following hip and knee
surgeries using structured data is an LR model with L1
regularization with an AUROC of 0.665 (95% CI 0.589-0.732)
and 0.689 (95% CI 0.630-0.749), respectively.

However, the best multitask model for predicting 30-day
readmission because of any complications following a hip or
knee surgery over text was a feedforward average model with
an AUROC of 0.858 (95% CI 0.802-0.915) and 0.937 (95% CI
0.916-0.960), respectively. Similarly, the best multitask model
trained over structured data was an LR model with L2
regularization (λ=0.001) with an AUROC of 0.676 (95% CI
0.617-0.738) following hip surgery and an AUROC of 0.664
(95% CI 0.591-0.738) following a knee surgery.
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Similarly, the BERT model for predicting 30-day readmission
due to any complications following a hip or knee surgery
achieved an AUROC of 0.735 (95% CI 0.701-0.785) and 0.820
(95% CI 0.782-0.843), respectively. Therefore, an independent
feedforward model over text was selected as the final model to
be evaluated for prediction of 30-day unplanned readmission

following knee surgery. Similarly, an independent feedforward
model with an attention mechanism developed over text was
selected as the model to be evaluated for prediction of 30-day
unplanned readmission following hip surgery (Figures 3 and
4).

Figure 3. Precision-recall curve (left) and area under the receiver operating characteristic (AUROC; right) curve for hip validation set. Individual model
text (blue), structured (orange), multitask models’ text (dashed blue), and structured (dashed orange).

Figure 4. Precision-recall curve (left) and area under the receiver operating characteristic (AUROC; right) curve for knee validation set. Individual
model text (blue), structured (orange), multitask models’ text (dashed blue), and structured (dashed orange).

We also experimented with a combination of text and structured
data (Figure 2). We have not included the results of this
experiment in this study because the predictive performance is
worse than what we achieved using the text alone. This may
seem counterintuitive, but the notes here are relatively rich in
information having been manually composed to convey salient
information; although these are also noisy at times. It is also
entirely possible that alternative feature encodings or model
architectures would result in improved model performance with
structured data.

We applied the best models (as selected on the validation set)
to the test set, realizing an AUROC of 0.846 (95% CI
0.823-0.871) for hip and 0.822 (95% CI 0.809-0.862) for knee
surgery.

These AUROCs indicate that the model discriminates between
high- and low-risk patients reasonably well. Operationally, such
models might conceivably be used to rank patients with respect
to their risk of requiring readmission owing to surgical
complications and then to provide proactive care (presumably
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prioritizing limited resources) accordingly. This use would
suggest capitalizing on the risk scores and corresponding
rankings induced by these directly.

Alternatively, one might seek to establish a binary threshold
over model outputs, indicating whether or not action needs to
be taken. The appropriate threshold will depend on the intended
use of such a predictive signal, which in turn would depend on
the clinical actions at one’s disposal and the resources available
to take these actions.

Hypothetically, we might entertain 2 settings: first, we prioritize
recall (ie, sensitivity) to identify patients who will need to be
readmitted without further intervention at the expense of
false-positives and, second, we instead prioritize precision (ie,
PPV) mindful of minimizing false-positives. These 2 settings
might correspond, respectively, to a provider who has plentiful
resources to provide proactive care (and so false-positives are
less of a concern) and a provider who has quite limited
resources, which need to be allocated carefully to mitigate
false-positive cases.

With this in mind, we selected somewhat arbitrary but
illustrative target metrics of 0.95 sensitivity for the former
setting and 0.50 precision for the latter. We then selected
corresponding thresholds on the validation data and report the
results achieved using these on the test data set. Using the first
(high-recall) threshold (recall=0.95; precision=0.36 on validation
data), the model for readmissions due to complications following
knee surgery achieved 0.79 recall and 0.27 precision on test
data (classifying everyone as positive achieves perfect recall
and 0.12 precision). The higher precision threshold
(precision=0.50; recall=0.86 on validation data) yields a
sensitivity of 0.70 and a precision of 0.40 on test data. For hip
surgery, the results are 0.86 recall and 0.22 precision for the
high-sensitivity threshold (compared with perfect recall and
0.21 precision) and 0.53 recall and 0.54 precision for the
high-precision threshold. We provide results for additional
thresholds in Multimedia Appendices 5 and 6.

The clinical utility of such models would, again, depend on how
predictions were used in practice.

Related Studies
Previous work has introduced models intended to predict the
risk of readmissions because of complications following
colorectal, cardiac, and abdominal surgeries. For example,
Martin et al [32] evaluated predictive factors of hospital
readmission rates for 266 patients undergoing abdominal
surgical procedures. Wick et al [33] studied the factors
associated with readmission using 7 years of data from 10,882
patients who had undergone colorectal surgery. A recent review
revealed that the previous predictive models included variables
such as patient comorbidities and records of previous
hospitalizations [34]. A few other efforts have examined
variables associated with severity of illness, laboratory tests,
clinical notes from the EMR, and overall health status [33].

The American College of Surgeons National Surgical Quality
Improvement Program (ACS-NSQIP) has developed a
web-based surgery risk prediction tool that uses structured
patient data and LR models to predict risks of complications

due to surgery [35]. Edelstein et al [36] evaluated how well
ACS-NSQIP can predict 30-day complications following knee
and hip replacement surgeries. Mesko et al [37] identified
variables predictive of readmission following hip or knee
arthroplasty. These approaches rely on a small set of predefined
predictors crafted by domain experts that must be manually
entered for individuals.

Discussion

Unplanned hospital readmissions impose burdens on the health
care system. It is imperative for providers to improve routine
follow-up protocols and provide better continuity of care with
primary care physicians and other clinicians [38]. Readmission
risk prediction models, such as those considered here, might
provide insights that could aid decision makers in reducing
rehospitalizations and readmissions by identifying patients who
might be prioritized to receive proactive care.

Hospital readmissions are a key performance indicator used to
measure the quality of care and cost effectiveness of the services
provided. In the state of Massachusetts, TKAs and THAs
corresponded to a relatively high rate of readmissions from
2010 to 2012 with 3.92% [39]. According to the Nationwide
Readmission Database [40] for 224,465 patients participating
in the database, the 30-day readmission rate for TKAs is between
3% and 4% depending on Medicare and non-Medicare
beneficiaries. A model developed by Urish et al [41] reported
that the overall median cost for each 30-day readmission was
US $6753 (SD 175), constituting 36% of the overall inpatient
cost for 30 days from the index procedures, which is quite
significant. Clair et al [42] reported the average cost of
readmission due to surgical complications after THA and TKA
as US $22,775 and US $24,183, for a 90-day readmission with
an average readmission time of 31 and 29 days, respectively.
The reported costs can be decreased significantly if an
appropriate prevention plan is implemented for high-risk patients
that are recognized by the adoption of our modeling approach.

We have evaluated several ML algorithms that predict the risk
of 30-day readmission following hip and knee arthroplasties by
using real-world (unstructured and structured) EHR data
obtained from the Partners Healthcare organization. On the basis
of the procedure report, the proposed model is able to detect
at-risk patients in cases even when there is no sign of
complications immediately following the surgery. As evidence
for this observation, we reproduce 2 deidentified procedure
examples in the Multimedia Appendices 7 and 8.

This study has several limitations, both technical and conceptual.
First, we have not evaluated the models’predictive performance
by comparing predictions with risk of complications of patients
as assessed by surgeons or other health care personnel. This
may prove to be a strong baseline, but to the best our knowledge,
none of the readmission studies used this baseline. However,
the fact that risk prediction tools (which rely on manual feature
extraction for individual patients) have been studied extensively
in this domain suggests a desire for predictive decision aids.

Second, this was a retrospective study using a convenience
sample of patient EHR data, which has inherent limitations.
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Third, although we have demonstrated that ML models can
realize reasonably strong overall discriminative performance
(in terms of AUROC), translating this into a useful tool in
practice would require specifying a threshold that might trigger
action. We evaluated a few such hypothetical thresholds but
did not have a clinical basis for these values at the time.
However, it is likely that this would depend on the setting in
which such models were used.

Fourth, we performed a naïve imputation for missing values,
but advanced techniques, including Bayesian [43] and neural
system attribution approaches [44], may improve execution.
We also excluded variables with a high portion of missing values
(≥99%) in patient records; according to domain experts involved
in this project, a few of these excluded variables are likely to
be clinically relevant. Fifth, we converted the medications and
laboratory results into indicator vectors, which may result in
information loss, though this was a choice made in consultation
with domain experts. Sixth, we used a manually handpicked set
of ICD codes to create labels, that is, to categorize patients as
experiencing complications or not; these ICD codes may be
incomplete and may introduce unknown biases in our positive
samples. Seventh, we excluded patients aged >90 years from
our analysis, as we consider such patients to be inherently at
high risk.

Finally, the smaller BERT models we used are limited by the
size of the document (512 words), whereas most reports here
are longer than the limit. In addition, we do not have resources
to pretrain BERT on our data set. That said, we tried to follow
the clinical BERT methodology to make predictions at the
sentence level first and then aggregate the predictions, but this
approach did not perform better than the existing neural encoders
on our tasks. Although we believe that a more careful application
of BERT may result in improvements, it is not a straightforward
task, one that needs more research and is not the main goal of
the paper.

Conclusions
We presented an ML approach to predict the risk of 30-day
readmission following hip or knee arthroplasty using data
directly gleaned from EHRs. Previous work on this important
problem relied on manually crafted and engineered features,
which neither scale nor allow automated surveillance of patients.

We found that our architecture and implementation using the
text only (ie, the clinician notes) yielded predictive performance
across tasks comparable with approaches using a combination
of structured data and text. This suggests that the text contains
rich information useful for predicting readmissions. In this case,
we also found that adopting a multitask approach (sharing
parameters between the models for complications following hip
and knee surgeries) did not improve model performance.

We did not aim to identify the specific complication that a
patient is comparatively likely to experience. Instead, we offer
a patient risk stratification model intended to be used to identify
high-risk patients (ie, those most likely to be readmitted) once
a clinically meaningful threshold is established. Patients deemed
at high risk of readmission because of complications may be
scheduled for additional near-term revisits, and in general, be
provided with additional proactive care and monitoring. For
example, for those identified as high-risk patients, the clinic
that is implementing this tool might have a nurse follow-up
scheduled for the patient to ensure a continuum of care. This
type of risk stratification followed by a nurse intervention in
high-risk patients has been shown to produce favorable
outcomes, including decreased hospitalizations and cost of care
for patients regardless of the complication type [45].

We hope that this initial effort inspires additional work on
automatically predicting the risk of readmission because of
complications ensuing from hip and knee surgeries because
such models have the potential to reduce costs and, more
importantly, improve patient outcomes.
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