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Abstract

Background: Semantic textual similarity (STS) is one of the fundamental tasks in natural language processing (NLP). Many
shared tasks and corpora for STS have been organized and curated in the general English domain; however, such resources are
limited in the biomedical domain. In 2019, the National NLP Clinical Challenges (n2c2) challenge developed a comprehensive
clinical STS dataset and organized a community effort to solicit state-of-the-art solutions for clinical STS.

Objective: This study presents our transformer-based clinical STS models developed during this challenge as well as new
models we explored after the challenge. This project is part of the 2019 n2c2/Open Health NLP shared task on clinical STS.

Methods: In this study, we explored 3 transformer-based models for clinical STS: Bidirectional Encoder Representations from
Transformers (BERT), XLNet, and Robustly optimized BERT approach (RoBERTa). We examined transformer models pretrained
using both general English text and clinical text. We also explored using a general English STS dataset as a supplementary corpus
in addition to the clinical training set developed in this challenge. Furthermore, we investigated various ensemble methods to
combine different transformer models.

Results: Our best submission based on the XLNet model achieved the third-best performance (Pearson correlation of 0.8864)
in this challenge. After the challenge, we further explored other transformer models and improved the performance to 0.9065
using a RoBERTa model, which outperformed the best-performing system developed in this challenge (Pearson correlation of
0.9010).

Conclusions: This study demonstrated the efficiency of utilizing transformer-based models to measure semantic similarity for
clinical text. Our models can be applied to clinical applications such as clinical text deduplication and summarization.

(JMIR Med Inform 2020;8(11):e19735) doi: 10.2196/19735
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Introduction

Semantic textual similarity (STS) is a natural language
processing (NLP) task to quantitatively assess the semantic
similarity between two text snippets. STS is usually approached
as a regression task where a real-value score is used to quantify
the similarity between two text snippets. STS is a fundamental
NLP task for many text-related applications, including text
deduplication, paraphrasing detection, semantic searching, and
question answering. In the general English domain, semantic

evaluation (SemEval) STS shared tasks have been organized
annually from 2012 to 2017 [1-6], and STS benchmark datasets
were developed for evaluation [6]. Previous work on STS often
used machine learning models [7-9] such as support vector
machine [10], random forest [11], convolutional neural networks
[12], and recurrent neural networks [13] and topic modeling
techniques [8] such as latent semantic analysis [14] and latent
Dirichlet allocation [15]. Recently, deep learning models based
on transformer architectures such as Bidirectional Encoder
Representations from Transformers (BERT) [16], XLNet [17],
and Robustly optimized BERT approach (RoBERTa) [18] have
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demonstrated state-of-the-art performances on the STS
benchmark dataset [19] and remarkably outperformed the
previous models. More recently, the Text-to-Text Transfer
Transformer model [20] and the StructBERT model [21] have
further improved the performance on the STS benchmark. These
studies demonstrated the efficiency of transformer-based models
for STS tasks.

Rapid adoption of electronic health record (EHR) systems has
made longitudinal health information of patients available
electronically [22,23]. EHRs consist of structured, coded data
and clinical narratives. The structured EHR data are typically
stored as predefined medical codes (eg, International
Classification of Diseases, 9th/10th Revision, codes for
diagnoses) in relational databases. Various common data models
were used to standardize EHR data to facilitate downstream
research and clinical studies [24]. However, clinical narratives
are often documented in a free-text format, which contains many
types of detailed patient information, such as family history,
adverse drug events, and medical imaging result interpretations,
that are not well captured in the structured medical codes [25].
As free text, the clinical notes may contain a considerable
amount of duplication, error, and incompleteness for various
reasons (eg, copy-and-paste or using templates and inconsistent
modifications) [26,27]. STS can be applied to assess the quality
of the clinical notes and reduce redundancy to support
downstream NLP tasks [28]. However, up until now, only a few
studies [29-31] have explored STS in the clinical domain due
to the limited data resources for developing and benchmarking
clinical STS tasks. Recently, a team at the Mayo Clinic
developed a clinical STS dataset, MedSTS [32], which consists
of more than 1000 annotated sentence pairs extracted from
clinical notes. Based on the MedSTS dataset, the 2018
BioCreative/Open Health NLP (OHNLP) challenge [33] was
organized as the first shared task examining advanced NLP
methods for STS in the clinical domain. In this challenge, two
different teams explored various machine learning approaches,
including several deep learning models [30,31]. Later, more
teams competed in the 2019 National NLP Clinical Challenges
(n2c2)/OHNLP STS challenge with a larger clinical STS dataset
[34]. During this challenge, many new emerging NLP
techniques, such as transformer-based models, were explored.

This study presents our machine learning models developed for
the 2019 n2c2/OHNLP STS challenge. We explored
state-of-the-art transformer-based models (BERT, XLNet, and
RoBERTa) for clinical STS. We systematically examined

transformer models pretrained using general English corpora
and compared them with clinical transformer models pretrained
using clinical corpora. We also proposed a representation fusion
method to ensemble the transformer-based models. In this
challenge, our clinical STS system based on the XLNet model
achieved a Pearson correlation score of 0.8864, ranked as the
third-best performance among all participants. After the
challenge, we further explored a new transformer-based model,
RoBERTa, which improved the performance to 0.9065 and
outperformed the best performance (0.9010) reported in this
challenge. This study demonstrated the efficiency of
transformer-based models for STS in the clinical domain.

Methods

Dataset
The 2019 n2c2 organizers developed a corpus of 2054 sentence
pairs derived from over 300 million deidentified clinical notes
from the Mayo Clinic’s EHR data warehouse. The sentence
pairs were divided into a training set of 1642 sentence pairs for
model development and a test set of 412 sentence pairs for
evaluation. Similar to the annotation scheme in the general
English domain, the challenge corpus was annotated by
assigning a similarity score for each sentence pair as a number
on a scale from 0.0 to 5.0, where 0.0 indicates that the semantics
of the two sentences are entirely independent (ie, no overlap in
their meanings), and 5.0 signifies that two sentences are
semantically equivalent. Annotators used arbitrary similarity
scores between 0.0 and 5.0, such as 2.5 or 3.5, to reflect different
levels of equality. Table 1 presents the descriptive statistics of
the datasets. The distribution of similarity scores is quite
different between the training and test datasets. In the training
set, the range with the most cases (509/1642, 31.0%) was (3.0,
4.0], whereas in the test set, most scores (238/412, 57.8%) were
distributed in the range (0.0, 1.0]. In this study, we denoted this
challenge dataset as STS-Clinic. In addition to the STS-Clinic,
we also used a general English domain STS benchmark dataset
from the SemEval 2017 [6] as an external source. We merged
the original training and development datasets to create a unique
dataset of 7249 annotated sentence pairs. We denoted this
combined general English domain dataset as STS-General and
used it as a complementary training set for model development
in this study. Compared to the STS-Clinic, the similarity scores
in STS-General were more evenly distributed in different ranges
(Table 1).

Table 1. Descriptive statistics of the datasets.

Annotation distribution, n (%)Sentence pairs, nDataset

(4.0, 5.0](3.0, 4.0](2.0, 3.0](1.0, 2.0][0.0, 1.0]

273 (16.6)509 (31.0)394 (24.0)154 (9.4)312 (19.0)1642STS-Clinica Training

34 (8.3)62 (15.0)32 (7.8)46 (11.2)238 (57.8)412STS-Clinic Test

1962 (27.1)1260 (17.4)1413 (19.5)1122 (15.5)1492 (20.6)7249STS-General Training

aSTS: semantic textual similarity.
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Preprocessing of Sentence Pairs
We developed a preprocessing pipeline to normalize each
sentence pair, including (1) converting all words to lower case;
(2) inserting white spaces to separate words from punctuation
(eg, “[ab/cd]” → “[ ab / cd ]”; “abc,def” → “abc , def”); and
(3) replacing two or more spaces or tabs (“\t”) with a single
space. We did not remove any stop-words from the sentences
and kept the original formats of the numbers without any
conversion. Since different transformer models adopted different
tokenization strategies (eg, WordPiece for BERT, byte pair
encoding for RoBERTa, and SentencePiece for XLNet), our
preprocessing automatically picked the appropriate tokenizer
according to the transformer model in use.

Transformer Model-Based STS System
In this study, we investigated three transformer models (BERT,
XLNet, and RoBERTa) for clinical STS. BERT is a bidirectional
transformer-based encoder model pretrained with a combination
of masked language modeling (MLM) and next sentence
prediction. RoBERTa has the same architecture as BERT but
pretrained with a robust optimizing strategy. The RoBERTa
pretraining procedure used dynamic MLM but removed the
next sentence prediction task. XLNet is a transformer-based
model pretrained with the bidirectional autoregressive language
modeling method. Unlike the MLM used by BERT and
RoBERTa, the autoregressive language model uses data
permutation instead of data corruption and reconstruction. All
three transformer models provided two different settings: a
“BASE” setting and a “LARGE” setting. The main difference
between the BASE model and the LARGE model is the number
of layers. For example, the BERT-base model features 12 layers
of transformer encoder layers, 768 hidden units in each layer,

and 12 attention heads, while the BERT-large consists of 24
transformer blocks with a hidden size of 1024 and 16 attention
heads. The total number of parameters for the BERT-large
model is approximately 340 million, which is about 3 times
more than the BERT-base model. In this study, we explored
general transformers (pretrained using general English corpora)
using both the BASE model and the LARGE model. We also
examined clinical transformers pretrained using clinical notes
from the MIMIC-III database. For clinical transformers, we
adopted the BASE settings as we did not observe additional
benefits from using the LARGE setting.

As shown in Figure 1, our STS system has two modules: (1) a
transformer model–based feature learning module and (2) a
regression-based similarity score learning module. In the feature
learning module, transformer-based models were applied to
learn distributed sentence-level representations from sentence
pairs. In the similarity score learning module, we adopted a
linear regression layer to calculate a similarity score between
0.0 and 5.0 according to the distributed representations derived
from the transformers. We explored both single-model and
ensemble solutions. Figure 1A shows the single-model solution
where only one transformer-based model was used for feature
representation learning. Figure 1B shows the ensemble solution
where different transformer models were integrated. Ensemble
learning is an efficient approach to aggregate different machine
learning models to achieve better performance [35]. In this
work, we tried different strategies to combine the distributed
representations from two or three transformers as a new input
layer for the similarity score learning module. We explored
several methods to combine the distributed representations from
different transformers, including (1) simple head-to-tail
concatenation, (2) pooling, and (3) convolution.

Figure 1. An overview of our single-model and ensemble solutions for clinical STS. STS: semantic textual similarity.
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Training Strategy
As shown in Figure 2, we adopted a two-phase procedure to
train our clinical STS models. In the first phase, an intermediate
STS model was fine-tuned using the STS-General corpus.
Subsequently, the intermediate model was further fine-tuned

using the STS-Clinic corpus in phase 2. The fine-tuned model
from the second phase was used for final testing. We used 5-fold
cross-validation for hyperparameter optimization in both phase
1 and phase 2 training. We optimized the epoch number, batch
size, and learning rate according to the cross-validation results.

Figure 2. The two-stage procedure for clinical STS model development. STS: semantic textual similarity.

Experiments and Evaluations
In this study, we implemented our STS system using the
Transformers library developed by the HuggingFace team [36].
We also used the PyTorch-based general transformer models
trained using general English corpora maintained by the
HuggingFace team. The clinical transformer models were
derived by further pretraining these general transformer models

with clinical notes from the MIMIC-III database [37]. Table 2
shows the hyperparameters used for each transformer model.
For evaluation, the results were calculated as the Pearson
correlation scores using the official evaluation script provided
by the 2019 n2c2/OHNLP challenge organizers. To report the
P value for each Pearson correlation score, we adopted the SciPy
package [38].

Table 2. Hyperparameters for transformer models.

Learning rateaBatch sizeNumber of epochsModel

1.00E-0584BERT-baseb

1.00E-0583BERT-mimic

1.00E-0583BERT-large

1.00E-0543XLNet-base

1.00E-0543XLNet-mimic

1.00E-0544XLNet-large

1.00E-0543RoBERTa-basec

1.00E-0543RoBERTa-mimic

1.00E-0543RoBERTa-large

1.00E-0584BERT-large + XLNet-large

1.00E-0543BERT-large + RoBERTa-large

1.00E-0544RoBERTa-large + XLNet-large

1.00E-0523BERT-large + XLNet-large + RoBERTa-large

aThe learning rate is a tuning parameter in an optimization algorithm that determines the step size at each iteration while moving toward a minimum of
a loss function [39].
bBERT: Bidirectional Encoder Representations from Transformers.
cRoBERTa: Robustly optimized BERT approach.
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Results

Table 3 compares the performance of the different transformer
models on the test dataset. The RoBERTa-large model achieved
the best Pearson correlation of 0.9065 among all models, which
outperformed the two models we developed and submitted
during the challenge, including the XLNet-large (a Pearson
correlation score of 0.8864) and the BERT-large models (a
Pearson correlation score of 0.8549). For RoBERTa and XLNet,
the models developed using the LARGE setting pretrained using
general English corpora achieved better performances than their
BASE settings (0.9065 vs 0.8778 for RoBERTa; 0.8864 vs
0.8470 for XLNet, respectively), whereas the BERT-base
achieved a Pearson correlation score of 0.8615 that outperformed

the BERT-large model’s score of 0.8549. For all transformers,
the models pretrained using general English corpora (in both
LARGE settings and BASE settings) outperformed their
corresponding clinical models pretrained using clinical notes
from the MIMIC-III database. Among the ensemble models,
the BERT-large + RoBERTa-large model achieved the best
Pearson correlation score of 0.8914, which is remarkably lower
than the best model, RoBERTa-large. We also observed that
the performances of ensemble models were often in between
the two individual models (eg, BERT-large + RoBERTa-large
achieved 0.8914, which is between the BERT-large score of
0.8549 and RoBERTa-large score of 0.9065). The ensemble
model of all three transformers achieved a Pearson correlation
of 0.8452, which was even worse.

Table 3. Performances of the Pearson correlation on the test set.

P valuePearson correlation on test setModel

<.0010.8615BERT-basea

<.0010.8521BERT-mimic

<.0010.8549BERT-largeb

<.0010.8470XLNet-base

<.0010.8286XLNet-mimic

<.0010.8864XLNet-largeb,c

<.0010.8778RoBERTa-based

<.0010.8705RoBERTa-mimic

<.0010.9065RoBERTa-large

<.0010.8764BERT-large + XLNet-largeb

<.0010.8914BERT-large + RoBERTa-large

<.0010.8854RoBERTa-large + XLNet-large

<.0010.8452BERT-large + XLNet-large + RoBERTa-large

aBERT: Bidirectional Encoder Representations from Transformers.
bThe challenge submissions.
cThe best challenge submission (ranked 3rd).
dRoBERTa: Robustly optimized BERT approach.

Discussion

Principal Results
Clinical STS is a fundamental task in biomedical NLP. The
2019 n2c2/OHNLP shared task was organized to solicit
state-of-the-art STS algorithms in the clinical domain. We
participated in this challenge and developed a deep
learning–based system using transformer-based models. Our
best submission (XLNet-large) achieved the third-best
performance (a Pearson correlation score of 0.8864) among the
33 teams. Based on our participation, we further explored
RoBERTa models and improved the performance to 0.9065
(RoBERTa-large), demonstrating the efficiency of transformer
models for clinical STS. We also further explored three different
ensemble strategies to develop ensembled models using
transformers. Our experimental results show that the ensemble

methods did not outperform the unified individual models.
Another interesting finding is that the transformers pretrained
using the clinical notes from the MIMIC-III database did not
outperform the general transformers pretrained using general
English corpora on clinical STS. One possible reason might be
that the clinical corpora we used for training are relatively small
compared with the general English corpus. Further investigation
examining these findings is warranted.

Experiment Findings
Although previous studies [40-44] have shown that pretraining
transformer models with domain-specific corpora could enhance
their performances in domain-related downstream tasks (such
as clinical concept extraction), our results in this study indicated
that this strategy might not be helpful for clinical STS. For all
three types of transformers explored in this study, the models
pretrained using general English text consistently obtained
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higher scores than the corresponding models pretrained using
clinical text. For example, the Pearson correlation score achieved
by the RoBERTa-mimic was 0.8705; however, the
RoBERTa-base yielded a higher performance of 0.8778. Tawfik
et al [45] have similarly observed that the PubMed pretrained
BioBERT did not outperform the corresponding general BERT
model pretrained using English text on clinical STS.

In the clinical STS task, using STS-General (an STS corpus
annotated in the general English domain) as an extra training
set in addition to STS-Clinic could efficiently improve
performances for transformer-based models. Taking the
RoBERTa model as an example, the RoBERTa-large fine-tuned
using only the clinical text (ie, STS-Clinic) achieved a Pearson
correlation score of 0.8720; however, the same model fine-tuned
with both the general English text (ie, STS-General) and clinical
text (ie, STS-Clinic) achieved a score of 0.9065 (approximately
0.035 higher). We observed similar results for BERT and
XLNet. Without Phase 1 (Figure 2), the BERT-large and
XLNet-large models achieved Pearson correlation scores of
0.8413 and 0.8626, respectively, which are lower than the results
we submitted (0.8549 and 0.8864) using two-phase training.
We looked into the training datasets for possible reasons.
Although the STS-General and STS-Clinic were extracted from
different domains, there are common contents shared between
them. First, the annotation guidelines between the two datasets
were highly aligned. For both datasets, the annotation scale is
from 0.0 to 5.0, and each score reflects the same similarity level.
Since the two STS datasets were annotated by different
annotators, subjective annotation bias might be introduced (eg,
the judgement and agreement of semantic similarity among
annotators might be different in the two datasets). However,
our experiment results showed that training with both datasets
improved the performance despite the potential annotation bias.
Second, a considerable portion of STS-Clinic sentence pairs
are common descriptions that do not require comprehensive
clinical knowledge to interpret the semantics. Typical examples
include sentences extracted from Consultation Note or Discharge
Summary as follows:

Plan: the patient stated an understanding of the
program, and agrees to continue independently with
a home management program.

Thank you for choosing the name M.D. care team for
your health care needs!

On the other hand, there are many sentences in the STS-General
associated with healthcare. An example is exhibited below:

Although obesity can increase the risk of health
problems, skeptics argue, so do smoking and high
cholesterol.

Tang et al [30] have demonstrated that combining
representations derived from different models is an efficient
strategy in clinical STS. We explored similar strategies to
combine sentence-level distributed representations, including
vector concatenation, average pooling, max pooling, and
convolution. Surprisingly, our results showed that such ensemble
strategies did not help transformer-based STS systems. For
example, for the ensemble model derived from the BERT-large

and the XLNet-large models (ie, BERT-large + XLNet-large),
the achieved Pearson correlation scores for vector concatenation,
average pooling, max pooling, and convolution were 0.8764,
0.8760, 0.8799, and 0.8803, respectively. All the results were
approximately 0.01 lower than that for XLNet-large (0.8864).
We also observed that ensemble models’ performances were
consistently in between the two individual models (0.8549 for
BERT-large and 0.8864 for XLNet-large). Future studies should
examine this finding.

To examine the statistical significance among different models’
results, we used a 1-tailed parametric test based on the Fisher
Z-transformation [46], adopted in the previous SemEval STS
shared tasks [2-4]. Our best model (ie, RoBERTa-large)
achieved a statistically significant higher performance than most
of our other solutions (see Multimedia Appendix 1) but was not
significantly better than the models XLNet-large (P=.07),
BERT-large + RoBERTa-large (P=.13), and RoBERTa-large
+ XLNet-large (P=.06). The significance analysis indicated that
these four models performed very similarly to each other.

Error Analysis
We compared the system prediction from our best model (ie,
RoBERTa-large) with the gold standards and identified sentence
pairs with the largest discrepancy in terms of the similarity
score. Among the top 50 sentence pairs, 26 of them had labeled
scores in the range of 0.0 to 1.0, and only 6 sentence pairs had
gold standard STS scores over 3.0. We further split the testing
results into two subsets using a threshold score of 2.5 on gold
standards and calculated the mean and median of the differences
between the gold standards and predictions. For the subgroup
consisting of sentence pairs with gold standard scores over 2.5,
the mean and median of difference were 0.46 and 0.37. For the
other subset (difference≤2.5), the mean and median of difference
were 0.69 and 0.66. Therefore, it was more challenging for the
system to predict appropriate STS scores for sentence pairs with
low similarity (gold standard score≤2.5) than for those with
high similarity.

We also observed that sentence pairs with high similarity scores
usually have a similar sentence structure where many words
occur in both sentences. Therefore, we hypothesized that the
STS models will assign higher scores to sentence pairs that
share a large portion of their lexicons and similar syntax. To
test our hypothesis, we adopted the BertViz package [47] to
profile the attention pattern of the RoBERTa-large model (ie,
our best STS model). BertViz can generate the attention pattern
between two sentences by linking words via lines, where the
line weights reflect the attention weights; higher line weights
indicate higher attention weights between the two words. Table
4 and Figure 3 show an example for two sentence pairs on a
similar topic from the training and test sets. In the first example
from the training set, the attention pattern has three dominant
attention weights (eg, “questions-questions”) and the similarity
score for this sentence pair is labeled as 5.0. However, the
attention pattern for the sentence pair from the test set also has
similar dominant attention weights (such as
“questions-questions”) but was labeled with a similarity score
of 0.0.
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Table 4. Transformer model attention visualization on two examples from STS-Clinic.

PredictionGold standardSentence pairCategory

N/Ab5Training • S1a: advised to contact us with questions or concerns.
• S2: please do not hesitate to contact me with any further questions.

2.50Test • S1: patient discharged ambulatory without further questions or concerns noted.
• S2: please contact location at phone number with any questions or concerns regarding

this patient.

aS: sentence.
bN/A: not applicable.

Figure 3. Transformer model attention visualization on two examples from STS-Clinic. STS: semantic textual similarity.

Limitations
This study has limitations. First, it is worth exploring methods
to effectively integrate clinical resources with general English
resources in transformer-based models. In this study, we
explored an approach by pretraining transformer-based models
with a clinical corpus (ie, MIMIC-III corpus). However, our
results showed that this approach was not efficient. Therefore,
new strategies to better integrate medical resources are needed.
Second, our clinical STS systems performed better for sentence
pairs with high similarity scores (ie, similarity score≥3 in gold
standard) whereas, for the sentence pairs with low similarity
scores (ie, similarity score<2 in gold standard), our systems still

need to be improved. How to address this issue is one of our
future focuses.

Conclusions
In this study, we demonstrated transformer-based models for
measuring clinical STS and developed a system that can use
various transformer algorithms. Our experiment results show
that the RoBERTa model achieved the best performance
compared to other transformer models. Our study demonstrated
the efficiency of transformer-based models for assessing the
semantic similarity for clinical text. Our models and system
could be applied to various downstream clinical NLP
applications. The source code, system, and pretrained models
can be accessed on GitHub [48].
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