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Abstract

Background: Early detection of childhood developmental delays is very important for the treatment of disabilities.

Objective: To investigate the possibility of detecting childhood developmental delays leading to disabilities before clinical
registration by analyzing big data from a health insurance database.

Methods: In this study, the data from children, individuals aged up to 13 years (n=2412), from the Sample Cohort 2.0 DB of
the Korea National Health Insurance Service were organized by age range. Using 6 categories (having no disability, having a
physical disability, having a brain lesion, having a visual impairment, having a hearing impairment, and having other conditions),
features were selected in the order of importance with a tree-based model. We used multiple classification algorithms to find the
best model for each age range. The earliest age range with clinically significant performance showed the age at which conditions
can be detected early.

Results: The disability detection model showed that it was possible to detect disabilities with significant accuracy even at the
age of 4 years, about a year earlier than the mean diagnostic age of 4.99 years.

Conclusions: Using big data analysis, we discovered the possibility of detecting disabilities earlier than clinical diagnoses,
which would allow us to take appropriate action to prevent disabilities.

(JMIR Med Inform 2020;8(11):e19679) doi: 10.2196/19679
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Introduction

Providing intervention support early by detecting a child's risk
factors for disability helps to prevent not only the disability
itself, but also secondary disability by eliminating the risk
factors [1-8]. When detection is delayed, the risk of
developmental delay is also increased, as the child is unable to
perform developmental tasks. If a child's disability is detected
after 6 years of age, the child has passed the optimal period of
language development, which leads to difficulties in language
communication [9].

The main reasons for delayed detection are initial perception
by parents, the physician’s wish to delay diagnosis until the

prognosis is clearer, or a mistaken assumption by parents that
the disorder will improve [3,10]. Childhood developmental
delays are difficult to diagnose from a single symptom, as there
is a possibility that a temporary delay in development is
erroneously considered a disability. If there is no intervention,
due to a delay in the detection of the risk of disability in infants
and toddlers, the prognosis may not be good [5].

In order to detect a child's disability early, parents must
recognize the indications early and request related assistance;
policy should provide support to make this possible. However,
there is a limit to policy that expands support for assessment
costs and reach. Public awareness and education that enables
parents to recognize disabilities early should be implemented,
but also, in the long run, a system should be established in which
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the government can identify risk factors in children even if
parents do not recognize them early. It is, therefore, necessary
that institutions, such as daycare centers and hospitals, are
trained to detect risk factors of disability as soon as possible
and to provide parents with relevant information.

Utilizing health insurance big data for early detection may open
many possibilities. In South Korea, a system of compulsory
medical insurance benefits was initiated in 1977 under the
National Health Insurance Act; more than 97% of the public
now have obligatory medical insurance, and all related data,
including those on diseases and health, are kept and managed
by the Korea National Health Insurance Service (KNHIS)
[11,12]. With the enactment of the Elderly Long-Term Care
Insurance Act in 2007, information relating to the health,
nursing, and medical care of older adults is gathered and stored
in a cutting-edge information and communications technology
database [13]. The data provided by KNHIS contain not only
health care provider information but also vast amounts of data
(about 2.1 trillion) from people’s birth to death [14].

Machine learning techniques that allow computer models to
learn knowledge from data [15] can be used to analyze big data
such as those in the sample cohort data from KNHIS. Since the
medical insurance data contain physician diagnosis records for
individuals, the information can be used to label the data, where
it becomes a supervised learning problem [16]. Moreover,
database classification is a type of supervised learning. It is a
process of analyzing existing data to determine the class of
newly observed data [17]. Problems that require classification
into multiple classes are called multiclass problems.

With the recent availability of national health insurance big data
for research purposes, relevant research has commenced.
However, since the big data from KNHIS includes sensitive
personal information, only some modified data can be used and
analyzed through remote access to the KNHIS computer
systems. When applying for data export, only deidentified
analysis results are made available. Due to these limitations,
big data analysis using the health insurance data is still in its
infancy [18]. One study [19] that uses KNHIS big data analyzed
the correlation between certain diseases, such as sinusitis surgery
and asthma. Another study [20] identified diseases that were
more likely to occur by using similar group-based data analysis
to develop an app service that provides personalized disease
and hospital information.

As far as we know, very little research has been done on
developing a systematic approach to the early detection of
disabilities using big data. Chang [21] examined a supervised
learning method for early intervention in children with delayed
development based on the clinical data of 516 children below
6 years of age. The study [21] analyzed the association between
language, motor, social, and cognitive development from
identified diseases, visual problems, psychological and
intellectual development, other diseases, and types of delay and,
using compositions of the decision tree, made 14 association
rules derived scores support and confidence scores. David and
Balakrishnan [22] applied a decision tree algorithm and rough
sets for the prediction of learning disabilities in school-age
children using a checklist of 16 most frequent signs and

symptoms of learning disabilities (n=513, area under the receiver
operating characteristic curve [AUROC] 0.985). Varol et al [23]
present the application of machine learning methods for early
prediction of reading disability, collecting 356 samples using
40 features, including demographics, pretesting, and weekly
monitoring (word identification fluency); the comparison was
made using 6 classification algorithms, and the best result was
an AUROC of 0.942. Although these studies [21-23] have
showed good learning results on specific disabilities, there are
limitations in applying them to all disabilities; since the data
used in these studies did not include lifelong records of people
with disabilities, temporal tracking for early detection may not
be feasible.

The purpose of this study was to detect risk factors for
disabilities in children as early as possible based on medical
data. Since we conducted early detection analysis on all
disabilities, including delayed developmental disabilities, the
results are likely to be more meaningful than those of previous
studies. By analyzing the effect of each correlation, the disease
that is the main cause of the disability could be identified. In
this study, various classification algorithms were developed and
optimized to find the best model for early detection. As it was
based on KNHIS big data, it can lead to more in-depth studies
of disabilities in the future.

Our research has the following novelties. As far as we know, it
is the first time that a study has investigated early detection
using comprehensive disability types using health insurance big
data. In order to find the age at which the disability can be
diagnosed early, we organized the data by age ranges and created
an optimal classification model for each age range. We used
multiclass classification algorithms to find the best model for
each age range. The earliest age range with clinically significant
performance shows the age at which disabilities can be detected
early.

Methods

Data
We used medical data extracted from the KNHIS Sample Cohort
2.0 DB, which is an anonymized research database with
information on health insurance qualifications, income, history
of the hospital and clinic use, and results of health examinations
and nursing institutions from 2002 to 2013, covering 1 million
people (2% of Korea's 50 million people). Each sample in
Sample Cohort 2.0 DB was labeled: no disability, physical
disability, brain lesions, visual impairment, hearing impairment,
and other disabilities. Other disabilities included all disability
types such as speech disability, intellectual disability, and mental
disorder. The database contains not only diagnostic codes based
on the International Classification of Diseases (ICD) but also
additional data such as prescription records, duration of
treatments, and frequency of treatments. The distribution of the
samples in Sample Cohort 2.0 DB is inherently imbalanced
[11,24]. This study complies with the bioethics policy by the
institutional review board of Korea National Institute for
Bioethics Policy (P01-201905-22-005).
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From the raw data, we selected samples for our analysis as
follows. The samples we were able to collect at the time of
analysis were records up to the age of 13 years, which would
not be an issue for early detection. First, data were extracted
from children with acquired disabilities with no missing records
from birth to recorded diagnosis, which yielded 804 data records.
We selected twice as many data records of children with
disabilities, which yielded 1608 data records, to prevent the
performance of our analytical model from being distorted by
having the number records for those without disabilities being
much more than the that of the records with disabilities.

Each sample was identified using a 7-digit personal
identification number. Disease diagnostic data and prescription
record data were extracted using personal identification
numbers. Information on the date of medical treatment and

diagnostic codes were available from the disease diagnostic
data, classified using disease classification division codes.
Prescription record data, such as the date and contents of
prescriptions, were extracted from the records. Information on
the number of medical actions and prescribed dosage was also
recorded.

To discover the age at when the disabilities occurred, the
medical records of each sample were organized in units of 1-year
increments. The distribution of samples is shown in Table 1.
Data for each age range were collected to construct a data set
and used for classification learning. In order to improve stability
and convergence speed during the optimization process, each
feature was transformed to have a mean of 0 and a standard
deviation of 1.

Table 1. Data samples by age range.

TotalOther disabilitiesHearing impair-
ment

Visual impair-
ment

Brain lesionsPhysical disabil-
ity

No disabilityAge range (years)

22865044731182401482Up to 1

21745044631182401371Up to 2

20525024430173401263Up to 3

19204994129162401149Up to 4

17794894027147401036Up to 5

1641473352313738935Up to 6

1480446321912237824Up to 7

1287400271710227714Up to 8

106832421168422601Up to 9

86626518147021478Up to 10

66519915115918363Up to 11

444134963914242Up to 12

2227132176123Up to 13

Feature Selection
Feature selection allows selection of a subset of relevant features
[25,26]. Good feature selection can make models easier to
interpret, shorten learning time, improve learning accuracy, and
help avoid the curse of dimensionality [27,28]. We used the
extra trees algorithm for feature selection, which is a method
of randomly partitioning nodes using a candidate characteristic
and then selecting the best partition among them, rather than
finding an optimal threshold for partitioning nodes to generate
a tree randomly [29]. For the implementation of feature
selection, we used ExtraTreeClassifier (scikit-learn, version
0.23.1; Python, version 3.6) [30].

Classification Algorithms
Since there are 6 categories in this study, it is a typical example
of multiclass classification. We compared classification
algorithms to develop the best model for the early detection of
disabilities. We used 4 algorithms in this study: k-nearest
neighbor, random forest, logistic regression, and gradient
boosting.

The k-nearest neighbor algorithm finds k training data closest
to the input and uses the output information of these data to
estimate the output [31]. Small k values indicate a high risk of
overfitting, while large values create boundaries with a high
propensity to generalization. A variety of methods, such as
Euclidean distance, Manhattan distance, and Mahalanobis
distance [32], may be used to find adjacent data.

In the random forest model, predictions are generated by
bagging several decision trees. Bagging is an ensemble
meta-algorithm designed to improve stability and accuracy.
Decision trees are similar to the game 20 questions; data are
continuously separated based on the characteristics of the data,
and the decision tree is classified into 1 correct answer [33,34].

Logistic regression is a linear model that predicts using linear
combinations of independent variables [35]. Logistic regression
estimates the probability for each group and classifies the data
into a group according to a threshold, so it can be applied to the
problem of classification [36].

Gradient boosting is a powerful learning algorithm that
combines gradient descent with boosting. Gradient descent is

JMIR Med Inform 2020 | vol. 8 | iss. 11 | e19679 | p. 3http://medinform.jmir.org/2020/11/e19679/
(page number not for citation purposes)

Jeong et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


an optimization method that reduces error by moving the error
function in the opposite direction to the derivative. Boosting is
a method that combines simple and weak learners to make more
accurate and powerful learners [37,38]. Even if the accuracy is
low, the model compensates for the calculated error [39].

Model Learning
To verify the generalization performance of the model, we
divided the data into training data (70%) and test data (30%).
Training data were used to train the model; test data were used
to evaluate the true classification performance of the trained
model.

To find the best model for detecting disabilities, the 4 algorithms
were trained. Each classification algorithm has hyperparameters,

which when adjusted, show very different performances.
Therefore, finding the optimal hyperparameter combination is
necessary [30]. We used a grid search to find the optimal
combination of hyperparameters for each algorithm. The model
was checked against other data to avoid generalization errors
during the grid-search process. We used 10-fold cross-validation
to avoid further partitioning of data for validation. We used
scikit-learn for all implementations.

Performance Metrics
To specify indicators used to evaluate models in this study, we
used confusion matrices such as Table 2. The confusion matrix
is easy to visually identify when evaluating model performance
[40].

Table 2. Confusion matrix for binary classification.

PredictedActual

NegativePositive

False negativeTrue positivePositive

True negativeFalse positiveNegative

Accuracy, the most common model performance indicator, is
used to show how accurately the model predicts the input data.
On the confusion matrix, accuracy is estimated by the sum of
the true values divided by the whole; accuracy = (true positive
+ true negative) / all. Precision or the positive predictive value
is an indicator of how accurately a model is able to predict a
positive; precision = true positive / (true positive + false
positive). Recall or sensitivity index is the ratio of actual values
detected by the model to the actual values; recall = true positive
/ (true positive + false negative). If the data are unevenly
distributed, accuracy can lead to distorted performance
estimates. The F1 score expresses the harmonic mean of
precision and recall. The F1 score gives equal importance to
precision and recall. If the data are unevenly distributed,
accuracy can lead to distorted performance estimates. Therefore,
using F1 scores to measure performance allows for better
performance comparisons than those using accuracy [41]; F1
score = 2 × precision × recall / (precision + recall). The
weighted average method was used to measure the average of

the indicators for each class; this method assigns a weight
according to the number of samples. The weighted average is
expressed by the following equation.

where is the weighted average, xi is the result from the ith
class, Nclass is the number of classes, and Ni-samples is the number
of samples in the ith class.

Results

Early Detection Using Only Disease Diagnostic Data
In our analysis using only ICD disease diagnostic data, we
selected the top 150 out of the 4344 disease diagnosis features.
Table 3 lists the 10 most important features.
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Table 3. Top 10 features in terms of importance when using only disease diagnostic data.

ImportanceFeature nameFeature code

0.0498Mental and behavioral disordersF_

0.0327Essential (primary) hypertensionI10

0.0161Unspecified hypertensionI109

0.0145Disorders of initiating and maintaining sleep
(insomnias)

G470

0.0133Unspecified as acute or chronic gastric ulcer
without hemorrhage or perforation

K259

0.0125ConstipationK590

0.0120Hyperlipidemia, unspecifiedE785

0.0120Spinal stenosis, lumbar regionM4806

0.0119Chronic gastritis, unspecifiedK295

0.0114Acute tonsillitis, unspecifiedJ039

In model learning, the random forest algorithm performed best
across all age ranges (results of the test data set are shown in
Table 4). Our aim was to find the earliest age range with an F1
score close to or above 80% to ensure clinical significance [42].
Although the F1 score for up to 6 years was 83.4%, this was
not meaningful because the average clinical diagnostic age was

4.99 years according to Sample Cohort 2.0 DB. Up to 4 years
had an F1 score of 79.6%, which is close to 80%, and the age
range is clinically meaningful. This model would detect
disability almost 1 year earlier, given that the average clinical
diagnostic age is 4.99 years.

Table 4. Model learning results when using only disease diagnostic data.

F1 scoreRecallPrecisionAccuracyParametersClassifierAge range (years)

0.6600.7030.6390.703n estimators: 16Random forestUp to 1

0.7250.7580.7180.758n estimators: 64Random forestUp to 2

0.7760.8000.7780.800n estimators: 64Random forestUp to 3

0.7960.8160.7980.816n estimators: 64Random forestUp to 4

0.7960.8180.7870.818n estimators: 64Random forestUp to 5

0.8340.8520.8330.852n estimators: 128Random forestUp to 6

0.8130.8360.8050.836n estimators: 64Random forestUp to 7

0.8350.8500.8360.850n estimators: 64Random forestUp to 8

0.8380.8540.8370.854n estimators: 128Random forestUp to 9

0.8360.8520.8320.852n estimators: 128Random forestUp to 10

0.8560.8730.8540.873n estimators: 64Random forestUp to 11

0.8630.8640.8660.864n estimators: 128Random forestUp to 12

0.9140.9220.9290.922n estimators: 64Random forestUp to 13

The confusion matrix of the analysis for the range up to 4 years
is given in Table 5. As the model was learned, the average for
each class was high. Thus, the results of the confusion matrix

indicate that most samples for children without disabilities were
well classified.
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Table 5. Confusion matrix when using only disease diagnostic data.

PredictedActual

Other disabilitiesHearing impair-
ment

Visual impair-
ment

Brain lesionsPhysical disabili-
ty

No disability

110000334No disability

500007Physical disability

10003404Brain lesions

101106Visual impairment

560001Hearing impairment

95009046Other disabilities

Early Detection Using Disease Diagnostic and
Prescription Data
A second analysis was performed by adding prescription record
data to the disease diagnostic data used in the previous analysis.

Prescription data included information on medications, treatment
materials, and medical practices received by patients. We used
the top 150 out of a total of 12,713 features, including 4344
diseases and 8369 prescription data. Table 6 lists the 10 most
important features.

Table 6. Top 10 features in terms of importance when using disease diagnostic and prescription data

ImportanceFeature nameFeature code

0.0215Social Maturity ScaleF6203

0.0124Mental and behavioral disabilitiesF_

0.0123Intelligence testF6201

0.0105Personal supportive psychotherapyNN011

0.0089Personality test (pictorial test)F6215

0.0087Childhood Autism Rating ScaleFY731

0.0075Family therapyNN031

0.0063Hypnotic sedatives130801ASY

0.0060Personal intensive psychotherapyNN013

0.0057Bender Gestalt TestF6240

In model learning, both random forest and gradient boosting
algorithms performed well (Table 7). In this analysis, the F1
score of the up to 4-year age range was 81.6%, which indicates
that the early detection of disabilities seems to be relatively

certain. In addition, as the F1 score for the up to 3-year age
range was 78.3%, it is possible that improvements could lead
to a diagnosis about 2 years before 4.99 years.
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Table 7. Model learning results based on disease diagnostic and prescription data.

F1 scoreRecallPrecisionAccuracyParametersClassifierAge range (years)

0.6880.7320.6910.732C=0.1Logistic regressionUp to 1

0.7380.7670.7430.767learning rate: 0.4;
n estimators: 4

Gradient boostingUp to 2

0.7830.8020.8000.802n estimators: 128Random forestUp to 3

0.8160.8320.8190.832n estimators: 128Random forestUp to 4

0.8170.8350.8130.835n estimators: 32Random forestUp to 5

0.8530.8580.8500.858learning rate: 0.4;
n estimators: 4

Gradient boostingUp to 6

0.8340.8490.8300.849n estimators: 32Random forestUp to 7

0.8540.8660.8480.866n estimators: 128Random forestUp to 8

0.8570.8570.8590.857learning rate: 0.4;
n estimators: 4

Gradient boostingUp to 9

0.8850.8980.8780.898n estimators: 128Random forestUp to 10

0.9050.9140.9160.914n estimators: 64Random forestUp to 11

0.8290.8320.8330.832learning rate: 0.4;
n estimators: 1

Gradient boostingUp to 12

0.8930.8910.8960.891learning rate: 1.0;
n estimators: 1

Gradient boostingUp to 13

The confusion matrix of the analysis for the range up to 4 years
is given in Table 8. As this was a learned model, the average
for each class was high. The results of the confusion matrix,
therefore, indicate that most children without disabilities were

correctly classified. Children with physical disabilities were
still not well classified, but there was some improvement in
most classes.

Table 8. Confusion matrix when using disease diagnostic and prescription data.

PredictedActual

Other disabilitiesHearing impair-
ment

Visual impairmentBrain lesionsPhysical disabili-
ty

No disability

90000336No disability

100506Physical disability

11003604Brain lesions

104104Visual impairment

450003Hearing impairment

980017035Other disabilities

Discussion

In this study, we used big data analysis for early detection of
children who are more likely to have disabilities. An analysis
of the sample data suggests that it is possible to detect disability
early with accuracy at 3 or 4 years, which is before the average
diagnostic age of 4.99 years. This means that children who may
be at risk of disability due to various risk factors can be screened
early based on medical records alone and can receive appropriate
treatment to reduce the degree of disability.

The contributions of our study are described as follows. Our
study is one of the first to investigate early detection of
disabilities, covering all disabilities comprehensively based on
KNHIS big data. This shows that health insurance data is of
great value in analyzing disabilities and provides a basis for

future studies. To find the age at which disabilities can be
detected early, we set up a multiclass classification frame that
organizes data by age ranges and trains multiple algorithms to
select the best model. This frame can be further improved so
that it could be an important tool for experts in the field.

Our study has the following limitations. Though it would be
better if the disability was detected by age 3 years or earlier,
the early detection performance from the up to 3-year age range
did not exceed the clinically significant threshold of 80% due
to limitations in health insurance sample data. Another limitation
was that the other category of disabilities hampered the
performance of the model. Future research with more data and
detailed classification of other types of disabilities could lead
to a more accurate analysis. The imbalance of samples also had
an important impact on data analysis. In this analysis, the
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number of children with disabilities was 804; of which, 504 had
other types of disabilities. Since data on physical disability,
visual impairment, and hearing impairment were relatively less,
the model may not have learned sufficiently; therefore, it is
necessary to ensure that there is sufficient data for each type
when conducting further studies. We chose the best model based
on the F1 score, but in practice, depending on the situation, we
may choose the best model with the least false positives or false
negatives.

To improve the early detection model in the future, the following
work can be done in the future. In addition to the records of

diagnosed diseases and prescription medications used in this
analysis, various data such as health medical examination data,
are also collected by the National Health Insurance Service.
Incorporating these additional data to overcome the
abovementioned limitations could lead to the development of
more sophisticated models for early disability detection analysis.
Moreover, feature engineering is important because the number
of features can increase tremendously, and future studies require
a more diverse application and comparison of feature
engineering algorithms.
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