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Abstract

Digitization of health records has allowed the health care domain to adopt data-driven algorithms for decision support. There are
multiple people involved in this process: a data engineer who processes and restructures the data, a data scientist who develops
statistical models, and a domain expert who informs the design of the data pipeline and consumes its results for decision support.
Although there are multiple data interaction tools for data scientists, few exist to allow domain experts to interact with data
meaningfully. Designing systems for domain experts requires careful thought because they have different needs and characteristics
from other end users. There should be an increased emphasis on the system to optimize the experts’ interaction by directing them
to high-impact data tasks and reducing the total task completion time. We refer to this optimization as amplifying domain expertise.
Although there is active research in making machine learning models more explainable and usable, it focuses on the final outputs
of the model. However, in the clinical domain, expert involvement is needed at every pipeline step: curation, cleaning, and
analysis. To this end, we review literature from the database, human-computer information, and visualization communities to
demonstrate the challenges and solutions at each of the data pipeline stages. Next, we present a taxonomy of expertise amplification,
which can be applied when building systems for domain experts. This includes summarization, guidance, interaction, and
acceleration. Finally, we demonstrate the use of our taxonomy with a case study.

(JMIR Med Inform 2020;8(11):e19612) doi: 10.2196/19612
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Introduction

Recent advancements in data availability (eg, digitization of
health records) and deep neural networks [1] have led to the
resurgence of artificial intelligence. This has served as a catalyst
for data-driven decision making in many domains. However,
for high-stakes applications, such as financial and health care
domains, it is rare for domain experts to execute decisions solely
based on artificial intelligence algorithms [2]. Domain experts

in this context are individuals who are not necessarily trained
in computational fields but inform the design and are end users
of data-driven algorithms (eg, health care providers, hospital
administrators). Note that domain experts can have different
levels of expertise in their specific domain (eg, interns, residents,
attendings), and we do not differentiate between these levels in
this work. Although the role of experts has been studied in
clinical decision support (CDS), we find a gap in their
involvement in the data analysis pipeline, which we focus on
in this work.

Figure 1. Domain expertise amplification.
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Domain expert involvement remains necessary in the health
care domain, but this involvement brings significant challenges
and implications for data-driven applications. Domain experts
are expensive resources with limited time for these efforts, and
excessive reliance on domain expertise could potentially lead
to systems that are overly customized and not reproducible or
scalable. Owing to these challenges, designing systems for them
requires careful consideration. To address these challenges, we
present a framework for amplified intelligence that identifies
the points in the process where expertise can be effectively
leveraged. Amplification of expertise then refers to the process
of automating redundant or inferable tasks, so that domain
experts can focus their efforts on tasks that require domain
knowledge. This is a synergy between the domain expert and
the system, which involves summarization of data and decisions,
guidance toward insights, interaction by the domain expert, and
acceleration of input (Figure 1).

Prior Work
There is active research on interactive and human-in-the-loop
systems in many computer science disciplines. The database
and visualization communities have produced numerous tools
[3-8] to aid data scientists with data wrangling and analysis. At
the decision-making stage, the machine learning community
has looked at making black box models explainable [2,9-12],
while the human-computer interaction (HCI) community has
been studying how differences in explainability affect decision
making [13,14]. Finally, the crowdsourcing community has
concentrated on human-powered computation by optimizing
tasks (eg, simplifying tasks [15], minimizing the number of
questions [16,17], optimizing workflows [18-20]). However,
we focus on data-powered experts by amplifying expertise.
Although we draw from prior work, systems designed for health
care domain experts require special consideration because they
have characteristics that distinguish them from data scientists
and crowdworkers.

Special Considerations in the Health Care Domain
First, domain expert input is usually needed for data tasks that
require experiential knowledge and judgment (such as medical
diagnoses and forensic analysis [21]). The critical and subjective
nature of these decisions necessitates transparency, both from
the algorithm and domain experts. Hence, the system needs to
summarize the impact of algorithmic or experts’ manipulation
of the data [22]. Second, due to their specialized training,
domain experts’ time is expensive and limited [23,24]. This
constraint makes it imperative that we build tools that provide
insights while reducing physical and cognitive effort [25]. Third,
as domain experts are trained in noncomputational fields,
systems designed for them should provide high-level interaction
capabilities. This is referred to as editable shared
representations between computers and humans [26]. Examples
include natural language interfaces and form-based input [27].
Finally, domain experts are highly trained individuals, which
allows systems to accelerate their input by using domain-specific
assumptions and ontologies [28,29]. Keeping these factors in
mind, expertise amplification involves summarization, guidance,
interaction, and acceleration (Figure 1). We will explore each
of these in detail in the following sections.

The Data Pipeline
There are opportunities to amplify expertise at all stages of the
pipeline. The data pipeline refers to the different stages that the
data need to go through before they can provide decision
support. It can roughly be broken into 3 stages: curation,
cleaning, and analysis. Tools at the end of the pipeline have
only looked at explaining models but not at amplification. In
contrast, tools at earlier pipeline stages have been designed
mainly for data scientists and not for experts. However, domain
experts are involved at every stage of the pipeline [27-31],
especially in clinical research settings where data sets contain
specialized information. Thus, there is a need to amplify domain
expertise throughout the pipeline. In this work, we provide
examples from the informatics literature to highlight the need
for expert involvement at each pipeline step. We then review
literature from the database, HCI, and visualization communities
about challenges and current approaches at different stages. On
the basis of our review, we present a novel taxonomy for
amplifying domain expertise and demonstrate its use with a
case study in empiric antibiotic treatment. Our review can serve
as a guide to new clinical research projects, and our taxonomy
can be applied when designing systems for experts, especially
for low-budget projects when there are limited resources and
availability of domain experts.

Challenges in the Data Pipeline

This section is organized to reflect the clinical data pipeline,
which often involves the following steps: data are curated from
the electronic health record (EHR) data warehouse and annotated
with external data sources, cleaned and validated, and analyzed.
Multiple people are involved in various stages of the pipeline.
The prevalent notion of the workflow is that a data engineer
restructures, cleans, and sets up the infrastructure for data
analysis, and a data scientist then analyzes and models the data,
which a software engineer implements into a decision support
system. A domain expert then consumes the end product to
make decisions. However, in clinical settings, domain expert
involvement is required at every step of the pipeline. Allowing
domain experts to directly and efficiently interact with data
removes the need for them to rely on a data engineer or data
scientist who can then focus on infrastructure and model
construction. Moreover, since domain experts are the
stakeholders in the output of data pipelines, in our experience,
they tend to be engaged users who want to interact with data
and leverage their expertise. In this section, we motivate domain
expert involvement with examples from the past five years of
research presented at the American Medical Informatics
Association’s annual symposiums. We then review the computer
science literature to identify current tools and opportunities for
expertise amplification at the 3 stages of the data pipeline: data
curation, data cleaning, and data analysis, as each of these
corresponds to a research area of its own.

Data Curation
Curating data sets for analysis can be a laborious process that
can involve combining multiple data sources and identifying
relevant attributes. Data integration and data discovery address
these problems.
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Data Integration
Medical data pipelines often involve data that were collected
for purposes other than answering the research question at hand.
This usually implies that information is not captured in a manner
fit for analysis [32,33], with issues such as missing metadata
information [34]. Moreover, in some situations such as rare
disease studies, the cohort size is too small for analysis [35],
while in other cases, external features such as air quality or drug
components [36-39] might be needed. One possible solution to
these data quality issues is to curate data from multiple
institutions and external sources. However, the different data
representations [35,40] pose challenges in entity matching,
metadata inference, and data integrity [41,42]. Data integration
aims to automatically resolve schema matching and entity
matching problems during data curation. For biomedical data
sets, integration can involve standardization by mapping to
ontologies with controlled vocabularies [43-45]. Although
current approaches use deep learning for integration [46-50],
generating a training corpus and validating results require
domain expert input. For example, Cui et al [35] require domain
experts to validate data curation efforts for studying sudden
death in epilepsy. In another example, building an automatic
concept annotator for standardizing biomedical literature [50]
required experts to manually annotate different concepts [51-54].
Furthermore, a domain expert will be able to catch
inconsistencies or errors made by an automated integration tool
much faster than a data engineer who is unfamiliar with the
domain. Thus, there is a need to build interactive data integration
tools for domain experts.

Data Discovery
Data discovery refers to the process of finding relevant attributes
or cohorts for analysis. This is especially true for
multidisciplinary teams where the domain expert knows the
disease definition but is not familiar with the database schema.
At the same time, the data engineer can explore the schema but
might not recognize that a field is relevant. Integrating data
from multiple sources only exacerbates this problem. In the
informatics community, DIVA [55] aids in cohort discovery by
ingesting expert-defined constraints, while visual analytic
systems [56,57] such as CAVA provide an interactive interface.
In the database community, Nargesian et al [58,59] have looked
at finding unionable (more data points) and joinable (more
attributes) data for a given data set. These algorithms are useful
when trying to augment data sets with publicly available data
sets such as MIMIC [60] or even for exploring a complex
schema such as the Unified Medical Language System (UMLS)
[61]. In addition to using properties of the data to find possible
attribute matches, domain rules can be useful for identifying
relevant data subsets. This requires an interactive interface where
domain experts can look at subsets of interest and iteratively
join and filter the data [62] to find the required cohort. Recently,
query logs have been used to design precision interfaces [63,64]
that customize the interface for the user’s task.

Data Cleaning
After curating relevant data sets, data still need to go through
multiple preprocessing steps before they are analysis-ready.
These include identifying and fixing incorrect data, data

augmentation, and data transformation [65], all of which benefit
from domain expert involvement.

Error Fixes
EHR data are known to be messy and have errors and missing
values [66-68]. A typical data cleaning method is the use of
rule-based systems that identify dirty data by detecting violations
of user-specified rules or known functional dependencies
[69-78]. These systems do not optimize the expert’s rule
specification process. Crowdsourcing systems have also been
used to correct values [18,79], although they are not always an
option due to data complexity or confidentiality. Another
approach to identify and clean data is to augment the data with
external knowledge bases [80-82]. More recently, there have
been many approaches [83-85] that use deep learning for
automated data cleaning. Of note is Holoclean [84], which uses
a statistical model to combine various data repair signals such
as violation of integrity constraints, functional dependencies,
and knowledge bases. Although this achieves higher
performance than using each method in isolation, there is scope
for identifying which of the signals are performing the poorest
or what additional information would help improve the system’s
performance. Identifying this information, incorporating domain
knowledge, and presenting it succinctly to a domain expert
remain open problems.

Data Augmentation
Although data entry errors [86] and missing information can be
imputed by semiautomated methods, a more difficult problem
is that of creating a gold standard for training data, which is
referred to as data augmentation. Many health care applications
require annotating training data, for example, clinical text
annotation [87-89], CDS [90-92], identifying new terms for
ontologies [93], index terms for articles [94], and
disease-specific annotations [51,95,96]. However, very few
applications focus on optimizing the domain expert’s data
augmentation effort, which is eventually crucial to model
performance. A notable approach to this is the Snorkel system
[97], which automates data augmentation by learning the
labeling function, thus accelerating the domain expert’s input.
However, there are opportunities to make the initial labeling
process more interactive, as domain experts are required to write
code in Snorkel. Furthermore, the system does not provide
feedback on how labels affect the data set or final model, which
is crucial for building trust in medical pipelines. Examples of
interactive solutions include Icarus [28] for augmenting
microbiology data and Halpern et al's system [98] for annotating
clinical anchors. Both systems use an ontology to interactively
amplify domain expertise.

Data Transformation
Other than fixing incorrect values and augmenting data sets,
often, data need to be restructured (eg, splitting values in a
column, reformatting dates). Data wrangling has emerged as a
separate field in the past decade because of data diversity.
Potter’s Wheel [99] is one of the first interactive data
transformation systems. It allows the user to specify data
transforms that are encoded as constraints and used to detect
errors. Building on this idea, systems such as Polaris [100] and
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Trifacta [4,101] infer syntactic rules from user edits. Similarly,
programming-by-example systems [102,103] learn
transformations from a set of input-output pairs. These
techniques have informed the autofill function of Microsoft
Excel. As many domain experts employ Excel for data
transformations and analysis [104], spreadsheet interfaces should
consider incorporating domain knowledge.

Data Analysis
We now move to the final step of the pipeline. This includes
exploratory analysis to identify attributes of interest and
explainability of models for decision making.

Data Exploration
During the exploration step, it is crucial for the domain expert
to be able to directly interact with the data for effective
hypothesis generation. However, domain experts often must go
through a data engineer to execute the relevant query [105,106]
or extract information from unstructured notes [107]. The data
are then validated by the domain expert through manual chart
review, since data engineers without domain knowledge may
apply naive filters that hide insights or find spurious correlations.
To address these challenges, the informatics community has
built tools to accelerate chart review [108] and allow interactive
filtering and analysis [109,110]. Finalizing an analysis data set
can then take multiple iterations of requests and validations
between the domain expert and data engineer. In some cases,
data engineers create custom dashboards for domain experts
[111-113], but the latter are then limited to brushing and linking
on the provided view. Mixed-initiative interfaces such as
Tableau [100] and Dive [5] recommend visualizations based
on statistical properties of the data but do not use
domain-specific ontologies that can enrich the domain experts’
interaction and accelerate their workflow.

Visualizations, when used appropriately, can provide effective
summaries and reveal patterns not immediately evident by
statistical overviews [114]. Summaries reduce the cognitive
load on domain experts during multidimensional data
exploration, allowing them to drill down to specific instances
as needed [115]. Although many visualization recommendation
systems exist for analyzing numerical data [7,116-118],
visualizations in health care often include categorical and text
data [119-122]. As such, node-link diagrams are a common data
representation and have been used for tracking family history
[123], decision making [22,124], and identifying hidden
variables [125]. Visual interfaces thus amplify expertise by
summarizing data. However, they can be more powerful if they
allow interaction, provide guidance by highlighting interesting
regions for exploration [126], and accelerate workflows by
extrapolating domain expert interactions based on properties of

the data [22]. Thus, there is a need to provide domain experts
with tools that allow for more sophisticated data interaction.

Explainability
Finally, we cannot discuss clinical pipelines without discussing
explainability. The interpretability of rule-based systems has
made them popular in a variety of clinical applications, including
decision support [127,128], antibiotic recommendation [129],
updating annotations [130], and auditing [131]. Interpretability
is essential because domain experts want a cause-and-effect
relationship, based on which actionable decisions can be made
[66,68,132]. Furthermore, health care providers may not use
models they do not trust, and building trust requires providing
context and explanations [2].

Current approaches in health care research use weights and
activation of features to characterize attribute importance
[133-135]. RuleMatrix [136] provides an alternate approach
where a set of rules represents the deep learning model. The
expert can explore various facets of each rule, such as data
affected, distribution, and errors. In another example, Cai et al
[29] built a tool to help pathologists find similar images to aid
in diagnoses. The tool allows domain experts to search for
similar images and then interactively refine the search results.
It allows refinement by region (crop an image), refinement by
concept (filter by extracted concepts from image embeddings),
and refinement by example (select multiple images as examples).
These refinement techniques are examples of acceleration, where
interactions are interpolated to the entire data set by learning
general functions. Explainability is thus key to the adoption of
deep learning models. Although they have mainly been applied
in the analysis stage of the pipeline, they are equally important
when applying automated algorithms to curation and cleaning.

Therefore, amplifying domain experts’ abilities in the analysis
stage requires interactive data systems using a combination of
statistical algorithms and compelling visualizations. Moreover,
these systems need to follow design-study principles [137].
They need to allow interaction with domain experts for a needs
assessment and an empirical evaluation to ensure that correct
information is portrayed effectively. Otherwise, the system can
end up burdening and biasing the domain expert instead of
helping [13,101].

We have highlighted the need for domain expert involvement
in the pipeline and describe some of the challenges they
encounter. Although we have briefly expanded on some
available solutions, Table 1 provides a more comprehensive list
of references. Summarizing each technique is outside the scope
of this paper, but it provides a guide to interested readers for
further reading.
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Table 1. Review of current approaches for each data pipeline stage.

Domain expert roleCurrent solutions

Data curation

Data integration

Domain experts are needed to validate results of integration, and interactively correct
automated methods, which can then update their algorithm

• Schema matching [138-143]
• Interactive integration [144,145]
• Webtables integration [146-151]
• Machine learning [46-49]

Data discovery

Domain expert feedback is needed to finalize the analysis data set• Attribute search [58,59,152,153]
• Interactive querying [55,62-64]
• Visual analytics [56,57]

Data cleaning

Error fixes

Domain expert input can be used to identify and fix errors• Rule-based [69-77,154]
• Crowdbased [18,79,155,156]
• Knowledgebase [80-82]
• Machine learning [83-85]
• Functional dependency [15-23,25-54,58-165]

Augmentation

Domain experts can augment missing data with domain-specific rules• Machine learning [97,166,167]
• Interactive [28,98,168-170]

Transformation

Domain experts can restructure the data to make it semantically valid• Programming by example [102,103]
• Interactive rules [4,99-101]
• Foreign-key detection [153,171-175]

Data analysis

Exploration

Domain experts interact with summaries and outliers to draw insight• Optimize performance [176-179]
• Optimize insight [126,180,181]
• Provenance [182,183]
• Visualizations [5,7,116-118,184-188]

Explainable

Domain experts inform the model design to ensure explainability• Systems [189,190]
• Visualizations [9,12,29,136]
• Empirical studies [10,11,13,14]

Taxonomy of Expertise Amplification

The previous section elucidated the need for domain expert
involvement throughout the clinical data pipeline. In all steps,
domain expert involvement can improve automated methods
but must be implemented appropriately to ensure that the process
remains robust and reproducible. Taking this into consideration,

we propose a taxonomy that can be employed when designing
systems to amplify expertise in the clinical pipeline. Domain
expertise amplification by a system can broadly be categorized
into 4 dimensions: summarization, guidance, interactivity, and
acceleration, as shown in Figures 1 and 2. Thus, a system that
wishes to amplify expertise should apply one or more of these
dimensions. We demonstrate these categories with examples
from computer science literature.
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Figure 2. Taxonomy of expertise amplification: the first level shows the 4 dimensions that should be employed by a system for expertise amplification.
The second level enumerates the subdimensions along which amplification can be done, while the fourth level in gray shows tools that can be applied.

Summarization
The time constraints of experts along with transparency
requirements in the clinical domain motivate the need for
effective summaries of data and human decisions. Although
data summaries are important for analysis, summaries of human
decisions allow for improved explainability and reproducibility.

Data
An amplification system should summarize large and complex
data sets so that experts can meaningfully consume them. This
is relevant for identifying inconsistencies as well as for
open-ended exploration during analysis. It can be overwhelming
for an expert to go through large and wide tables. Therefore,
amplification systems should automatically summarize complex
data [191]. Although providing data samples [28,76] and
statistical summaries such as mean, variance, and standard
deviation can be useful for providing a bird’s eye view, they
are not always enough to reveal patterns [114]. In such cases,
visual summaries can provide additional insight, as done by the
CAVA system [56]. Multidimensional data can be visually
summarized by presenting each dimension as a coordinated
histogram with linked brushing and filtering [176].

Human Decisions
In addition to data, amplification systems need to summarize
algorithmic and human decisions as well. This is because
domain expert involvement is usually required in situations
where it is necessary to have high-quality data [2,21]. Hence,
amplification systems also require high transparency [189,192].
To support algorithm transparency, amplification systems can
show visual activation of features that led to the recommendation
[9] or similar cases in the data that serve as evidence for the
current recommendation [193]. Summarizing human decisions
can involve expressing data transformations as natural language
rules [4,28] and visual node-link diagrams [22]. Furthermore,
as summarized data provide an abstract or aggregate view, there
is a need for data transparency, meaning that experts should be
able to trace individual data points, which contributed to the
aggregate summary. This involves incorporating ideas from
provenance systems such as Smoke [182] and Scorpion [183],

which provide fast data lineage tracking. Finally, for each
application, empirical studies are needed to see what and how
information should be presented or summarized because too
much transparency can overwhelm and negatively impact the
expert [13].

Guidance
Although summaries provide a global view of the data, the goals
of exploratory analysis include finding insights and data quality
issues [191], which might require looking at a more detailed
view. Systems can guide experts by navigating to informative
subsets and by suggesting data transformations and edits.

Data Subset
Amplification systems should guide the expert’s navigation to
meaningful subsets. For example, SeeDB [116] automatically
finds interesting visualizations. Given a query, it defines
interestingness as the deviation of the query’s result set from a
baseline data set. In a similar vein, TPFlow [194] uses tensor
decomposition to guide users to interesting regions in
spatiotemporal exploration. For data cleaning, error detection
algorithms such as Uguide [78] and DataProf [76] use functional
dependencies and Armstrong samples, respectively, to find
incorrect tuples for human validation, while Icarus [28] presents
the expert with impactful subsets for data completion. Visual
summary tools such as Profiler [184] use statistics to find data
quality issues. When guiding users with visual summaries, it is
important to select optimal visual encodings to reveal relevant
insights or outliers. This can be informed from recent work by
Correll et al [185], which empirically evaluated different visual
encodings on their effectiveness in revealing data quality issues.

Edits
In addition to navigating data sets, amplification systems can
also guide experts by suggesting data transformations to edit
the data during the cleaning and preparation stage [4,28,103].
However, even in this case, transparency is required. This is
evidenced by the fact that in empirical studies of Proactive
Wrangler [101], users often ignored the suggested
transformation but then manually performed the same one
because the semantics of the operation were unclear. Methods
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to aid in data transformation transparency include showing
previews and transitions of the data changes [195] resulting
from the transformation operation.

Interaction
Along with making system internals explainable [10], allowing
experts to interact and modify data and the output of algorithms
increases their trust in amplification systems [11]. For empiric
antibiotic recommendation [196], this can involve allowing the
health care provider to edit model features. Providing interaction
comes at the cost of maintaining strict latency constraints since
experts expect to see the results of interaction almost
immediately [137]. Techniques for maintaining interactive
performance include sampling [197] and predictive prefetching
[198]. Interaction modes can include data transformation
suggestions and what-if analysis.

Data Transformation
The mode of interaction for data transformation in expertise
amplification systems also needs to cater to their background
and training. For example, transformations should be presented
as natural language statements [4] as opposed to code snippets
[97,154]. Although graphical user interfaces can decrease trust
and control for system administrators [199], they are needed in
amplification systems. Gestural query systems, such as
GestureDB [62] and DBTouch [200], and direct manipulation
interfaces might be preferable to domain experts who are
unfamiliar with SQL. Furthermore, domain experts’ affinity for
spreadsheet tools [104] motivates designing systems with
spreadsheet interfaces but advanced querying capabilities such
as Dataspread [201] and Sieuferd [202].

What-if Analysis
To support collaborative decision making, amplification systems
should allow for what-if analysis, where domain experts can
apply or test different decisions and assumptions and see how
it affects the data set. Collaborative decision making is important
for consensus and conflict resolution. Domain experts are highly
trained and experienced individuals in their fields, which affects
how they interact with systems [203,204]. Data pipeline tasks
that require their input need them to apply knowledge from
training and experience [28]. Such tasks inherently require
judgment, which can be biased and can vary between and within
domain experts [205]. To account for this bias, consensus from
multiple experts is needed. However, unlike crowdworkers,
where differences in results can indicate bad actors entering
random choices [18,206,207], in the case of domain experts,

they reveal differing judgments. As such, automatic conflict
resolution [208], such as majority voting, cannot be used because
disagreements require expert discussion [22]. Collaboration is
required for conflict resolution, and what-if analysis can speed
up this process. Capturing and sharing metadata is also useful
for collaboration [209-212].

Acceleration
Time constraints of domain experts necessitate the need to
accelerate their input provision. This involves designing
interfaces that aid the expert’s task and building interactions
that interpolate from edits to generalize to multiple data points.

Interface Design
Most experts use structured interfaces such as forms [213] or
free-text notes [214] for data entry or querying and spreadsheet
interfaces for data exploration [104]. Following user-centered
interface design and adhering to latency constraints is even
more essential for these systems. Query interface layouts can
be optimized by using statistical properties of the data [215-217]
and prior query logs [64,218], while spreadsheet interfaces can
be improved by incorporating higher expressibility [201,202].
The Usher [216] system, an example of the former, uses a
probabilistic model on prior input form data to optimize the
form structure. This involves showing highly selective data
attributes at the beginning of the form to reduce the complexity
at later stages, thus reducing the scope of error and accelerating
input provision.

Generalize
An advantage of building systems for domain experts is that
domain-specific information can be used to accelerate their
input. For example, Icarus [28] uses the organism and antibiotic
hierarchy encoded as foreign-key relations in the database to
generalize a single edit to a rule that fills in multiple cells,
accelerating the data completion process. In another example,
the system by Cai et al [29] allows domain experts to refine
result sets with domain-specific concepts extracted from image
embeddings.

Case Study

We illustrate our taxonomy with a case study from a
representative clinical data project: modeling empiric antibiotic
treatment (Figure 3). We apply the 4 dimensions of amplification
to the 3 stages of the pipeline. This is summarized in Table 2.
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Figure 3. Data pipeline for empiric antibiotic prediction. EHR: electronic health record.

Table 2. Applying 4 dimensions of amplification to the clinical data pipeline for empiric antibiotic prediction.

AmplificationDomain expert task

Data curation

Identify variables of interest, validate patients included in the cohort,
and make domain-specific exclusionary rules

• Summarization: present distribution of variables of interest
• Guidance: suggesting additional variables based on the selected ones
• Interactions: allow expert to select and remove data points
• Acceleration: suggest criteria based on the domain expert’s inclusion

and exclusion

Data cleaning

Augmentation

Fill in unreported microbiology susceptibilities with rules • Summarization: preview a rule by showing distribution of the cells
that will be impacted

• Guidance: show high-impact data subsets for edits
• Interactions: direct edits on interface and indirect edits via rules
• Acceleration: suggest general rules based on the domain expert’s

single edit

Validation

Validate data augmentation by examining rule set and consolidat-
ing them to remove conflicts

• Summarization: visual summary of rules and their relations
• Guidance: node size guides user to high-conflict areas
• Interactions: edit rule set by accepting and rejecting rules
• Acceleration: automatically remove redundant rules

Data analysis

Understand the model and its predictions for individuals and different
patient subpopulations

• Summarization: show probability of coverage with confidence interval
• Guidance: highlight covariates of concern
• Interactions: allow domain expert to select covariates to include
• Acceleration: show similar patients for who the model should be

updated
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At the data curation level, our domain expert, Lucy, must
provide the cohort definition along with variables of interest
(eg, demographics, comorbidities, allergies, etc) to a data
engineer, who pulls the relevant data from the EHR data
warehouse. After the data pull, Lucy looks through the initial
set and formulates additional exclusion rules to ensure that it
matches the clinical case definition. To implement these rules,
the data engineer annotates the data with microbiology
classification information of the UMLS metathesaurus [61].
This process could be improved with an expertise amplification
system. The system should summarize data by showing the
distribution of variables with linked brushing and filtering so
that Lucy could see how the variable distributions are correlated.
It could guide Lucy by suggesting correlated variables to the
ones she selects. During validation of the cohort, Lucy should
interactively be able to select data points to include. Finally,
the system should be able to accelerate Lucy’s validation by
suggesting exclusion rules based on her interactions.

After the cohort is finalized, Lucy faces a data cleaning task.
The microbiology laboratory provides data for only a subset of
antibiotics based on domain characteristics and institutional
preferences. When using these data for predictive modeling,
the unreported values must be filled by domain experts. To
address this, we built Icarus [28] to amplify expertise in data
augmentation. Icarus guides the domain expert by showing them
high-impact data subsets for edits. It allows both direct
interactions via edits and indirect interactions via rules. Finally,
Icarus accelerates task completion by leveraging the UMLS
classification to suggest general rules based on the domain
expert’s single edit. It also allows the domain expert to preview
the impact of a rule by summarizing the cells that will be
impacted.

Owing to the subjective nature of this task, multiple domain
experts need to come to consensus on unreported values. To
amplify the consensus process, we designed Delphi [22], which
visualizes the conflicts and redundancies in domain expert rules.
It provides an overview of the data by visually summarizing the
antibiotics and related rules in a node-link diagram. The node
sizes guide the expert to regions of high conflict by encoding
the number of data points affected. It allows domain experts to
interactively edit the rule set by accepting and rejecting rules.
Finally, it accelerates the domain experts’ task completion by
automatically removing redundant rules after each edit.

Once domain experts have come to a consensus, the data set is
ready for analysis. Our data scientist uses penalized logistic
regression to model resistance [219]. During this stage, Lucy
provides insights on the different variables and their relations.
After model creation, Lucy can analyze and validate the results
of the interactive analysis. For a given patient, the system should
summarize its results by showing the probability of coverage
along with confidence intervals. It should guide Lucy by
drawing attention to any abnormal covariates whose value
significantly deviates from others in the cohort. It should allow
Lucy to interactively select covariates and rerun the model for
a specific patient. It should accelerate the analysis by showing
similar patients for whom the model should also be updated.

Discussion

We have provided examples from the informatics literature to
motivate the need for domain expert involvement in all steps
of clinical data pipelines, from curation to analysis. Although
this work is based on our experiences, we have done our best
to do a targeted interdisciplinary review that can serve as a guide
to clinical data projects. Our work is related to previous surveys
in visual analytics in health care [188] and interactive systems
[137]. Our survey is unique in that it provides a taxonomy on
designing systems for amplifying expertise and focuses on the
clinical data pipeline. Specifically, expertise amplification
involves summarization, guidance, interactivity, and
acceleration. Our case study illustrates how these can be applied
to a clinical data pipeline.

Conclusions
Effectively engaging domain experts is crucial for the success
of data-driven workflows. We provide a novel framework for
developing systems that amplify domain expertise.
Amplification systems should summarize data, guide domain
experts’ data navigation, allow domain experts to interact and
update algorithms, and finally accelerate their task by learning
from their interactions. This framework draws on research from
multiple computer science disciplines. As we move toward
data-driven workflows, interdisciplinary methods are necessary
for the greatest impact. Empowering stakeholders to interact
with the data directly can lead to faster and more impactful
insights and decision making, which is vital for democratizing
data to benefit society.
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