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Abstract

Background: Computerized physician order entry (CPOE) systems are incorporated into clinical decision support systems
(CDSSs) to reduce medication errors and improve patient safety. Automatic alerts generated from CDSSs can directly assist
physicians in making useful clinical decisions and can help shape prescribing behavior. Multiple studies reported that approximately
90%-96% of alerts are overridden by physicians, which raises questions about the effectiveness of CDSSs. There is intense interest
in developing sophisticated methods to combat alert fatigue, but there is no consensus on the optimal approaches so far.

Objective: Our objective was to develop machine learning prediction models to predict physicians’ responses in order to reduce
alert fatigue from disease medication–related CDSSs.

Methods: We collected data from a disease medication–related CDSS from a university teaching hospital in Taiwan. We
considered prescriptions that triggered alerts in the CDSS between August 2018 and May 2019. Machine learning models, such
as artificial neural network (ANN), random forest (RF), naïve Bayes (NB), gradient boosting (GB), and support vector machine
(SVM), were used to develop prediction models. The data were randomly split into training (80%) and testing (20%) datasets.

Results: A total of 6453 prescriptions were used in our model. The ANN machine learning prediction model demonstrated
excellent discrimination (area under the receiver operating characteristic curve [AUROC] 0.94; accuracy 0.85), whereas the RF,
NB, GB, and SVM models had AUROCs of 0.93, 0.91, 0.91, and 0.80, respectively. The sensitivity and specificity of the ANN
model were 0.87 and 0.83, respectively.

Conclusions: In this study, ANN showed substantially better performance in predicting individual physician responses to an
alert from a disease medication–related CDSS, as compared to the other models. To our knowledge, this is the first study to use
machine learning models to predict physician responses to alerts; furthermore, it can help to develop sophisticated CDSSs in
real-world clinical settings.

(JMIR Med Inform 2020;8(11):e19489) doi: 10.2196/19489
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Introduction

Initiation of computerized provider order entry (CPOE) systems
has allowed physicians to order medications, laboratory tests,
and other ancillary services electronically [1]. CPOE systems
create an opportunity to improve patient care by decreasing
medication errors, reducing redundant test orders, and promoting
standardized clinical practice [2,3]. However, CPOE is often
integrated with a clinical decision support system (CDSS) in
order to make better clinical decisions through guidance, alerts,
and reminders. A CDSS is always combined with software
algorithms that generate alerts during orders entered into a
CPOE by physicians [4,5]. Each of these alerts addresses a
meaningful clinical issue relevant to the administration process
and has a positive impact on identifying and preventing
erroneous or less optimal prescription [6-8].

The productivity of CDSSs is often impaired by generating
distracting alerts in the system (ie, a high volume of clinically
irrelevant alerts) [9,10]. van der Sijs et al [11] suggested that
an ideal CDSS should have high specificity and sensitivity,
provide clear information, and facilitate safe and efficient
handling of alerts. A recent study reported that approximately
90%-95% of medication alerts are overridden by providers
[12,13], and more than half of overrides are due to alerts being
deemed clinically irrelevant [14]. The main concern is that these
large numbers of clinically irrelevant alerts might cause alert
fatigue and consume too much time and mental energy.
Moreover, it sometimes leads staff to override both critical
warnings and unimportant alerts. Getting frequent false alerts
can desensitize physicians so that providers always ignore and
mistrust alerts with acceleration [15]. Ignoring clinically relevant
alerts too much triggers patient harm and is associated with an
increased rate of mortality.

Until now, significant efforts and strategies have been
implemented in minimizing alert fatigue, such as the
administration of highly specific algorithms [16], customization
of third-party providers’ sets of alerts [17], and execution of

tiered severity grading to stratify and lessen the number of false
alerts [18]. Several studies suggested turning off frequently
overridden alerts [19], updating clinical content to deliver the
most current evidence at the point of care, and holding consensus
meetings between physicians and pharmacists [20]. Since
physicians increasingly adopt electronic prescribing, the
progression and proclamation of CDSS alerts might depend, in
part, on whether providers find medication safety alerts valuable.

Machine learning is comprised of a collection of techniques
that has the potential to learn complex rules and to identify
patterns from multidimensional datasets. It has been effectively
employed in many areas, such as disease risk prediction [21],
classification [22], and health care utilization [23]. To our
knowledge, no studies have examined machine learning
techniques regarding medication alert reduction in a large
number of alert analyses among physicians of different
specialties. We hypothesized that machine learning models
could predict physician responses, which would ultimately
directly assist in developing a sophisticated CDSS for reducing
alert fatigue. Therefore, the primary objective of this study was
to develop and validate machine learning models to reduce alert
fatigue by predicting physician responses. This study may
provide perspective on the perceived usefulness of CDSS alerts
in patient care and insights into how to design better alert
systems in real-world clinical settings. It can contribute to
minimizing the number of alerts in the user interface, ensuring
the appropriate prescription, and reducing the severity of
unintended consequences.

Methods

Ethical Approval and Study Process
This type of study does not require Institutional Review Board
review, following the policy of the National Health Research
Institutes in Taiwan, as it provides a large amount of
computerized, deidentified data. The entire study process is
shown in Figure 1.

Figure 1. Study design process. ATC: Anatomical Therapeutic Chemical classification system; AUROC: area under the receiver operating characteristic
curve; CDSS: clinical decision support system; EHR: electronic health record; ICD: International Classification of Diseases.

Data Source
We collected data from an electronic health record
(EHR)–integrated disease medication–related CDSS from a
university teaching hospital in Taiwan. We considered only
prescriptions that generated alerts due to a prescription error in

the CDSS. The data collection period was between August 2018
and May 2019. During the 10-month study period, 9213
prescriptions generated alerts that accounted for approximately
3% of total prescriptions provided by physicians.

JMIR Med Inform 2020 | vol. 8 | iss. 11 | e19489 | p. 2https://medinform.jmir.org/2020/11/e19489
(page number not for citation purposes)

Poly et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Data Preprocessing
The first step of this study was to clean the data. In the dataset,
lots of duplications of prescriptions appeared, which means
there were several prescriptions with the same patient’s
registration number, diagnosis code (ie, International
Classification of Diseases, 10th Revision, Clinical Modification
[ICD-10-CM]), and drug code (ie, Anatomical Therapeutic
Chemical [ATC] classification system code). Therefore, we
removed those prescriptions and kept the most recent
prescription. A total of 6453 prescriptions were considered to
develop machine learning–based prediction models. A
prescription with the Taiwan National Health Insurance code
as the diagnosis code was mapped to the ICD-10-CM code.
Data normalization was carried out by converting all the values
between 0 and 1. Finally, the data were converted into a matrix
that included the diagnosis code, drug code, department ID, and
physician ID.

Feature Selection
There could be more than 20 different clinical variables available
in a single prescription. Therefore, feature selection is essential
in order to keep the variables within a manageable size to be
able to optimize the prediction model. The feature selection
process was completed in three stages: (1) consultation with an
expert (YL) who is a physician and specialist in CDSSs, (2)
automated feature selection via machine learning algorithms,
and (3) reduction of the number of input variables by using only
the first three digits of the diagnosis code (ie, ICD-10-CM) and
the first five digits of the drug code (ie, ATC). The patient’s
age, the patient’s gender, the diagnosis code (ie, ICD-10-CM),
the drug code (ie, ATC), the physician ID, and the department
ID were considered as input variables. We then created a matrix
for the diagnosis code (ie, ICD-10-CM), the drug code (ie, ATC
code), the physician ID, and the department ID. A total of 6453
input variables were used to develop a machine learning model
with binary outcomes.

Table 1. List of input variables.

Input column numberInput column contentsVariable

1Male or femalePatient’s gender

822First 3 digits of the ICD-10-CMa codeDiagnosis code

262First 5 digits of the ATCb classification system codeDrug code

227Physician IDPhysician ID

29Department IDDepartment ID

aICD-10-CM International Classification of Diseases, 10th Revision, Clinical Modification.
bATC: Anatomical Therapeutic Chemical.

Model Development

Overview
The objective of the model was to reliably predict what would
be physicians’ responses to an alert. We divided the entire
dataset into two parts: (1) the training dataset (80% of the
dataset) and (2) the testing dataset (20% of the dataset).

However, the model was trained using 60% of the dataset as
the training set and 20% of the dataset as an internal validation
set. The remaining 20% of the dataset was used for testing our
model’s performance (see Figure 2). Model development was
carried out using Python 3.6 software (Python Software
Foundation). Python is a free and open-source programming
language and environment for statistical computing and
graphics.
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Figure 2. Distribution of training and testing datasets for model development.

Artificial Neural Network
Artificial neural networks (ANNs) were first introduced in the
1940s; recently, they have become extremely powerful and one
of the most popular machine learning models that interconnects
with adaptive simple processing elements. They usually work
by mimicking the biological nervous systems responsible for
knowledge processing and knowledge representation [24].
ANN-based algorithms have already shown high performance
in terms of accuracy, sensitivity, and specificity for classification
problems. Therefore, the application of ANNs has increased
globally in recent years in health care research, including in
drug development, pattern recognition, disease prediction,
disease diagnosis, and disease prognosis. ANNs consist of three
layers of neurons: the input layer, the hidden layers, and the
output layer. The hidden layer can be a single or multiple layer.
Every hidden layer is comprised of an activation function. In
our study, we used three hidden layers, with the rectified linear
unit (ReLU) activation function in the first and second hidden
layers, and the sigmoid activation function in the third hidden
layer.

The ReLU is a widely used activation function in the prediction
model. It converts input values from 0 to α. In the third layer,
we used a sigmoid activation function due to a nonlinear nature.
The sigmoid function is also one of the most commonly used
activation functions for binary classification. The sigmoid

function converts output classes between 0 and 1. The ANN
was designed to be a classification model that can predict the
responses from multiple physicians while minimizing prediction
errors by using binary cross-entropy as loss function and the
stochastic gradient descent method for optimization. Moreover,
100 epochs were used in the ANN model where maximum
accuracy and minimum loss for training and validation can be
achieved.

Random Forest
Random forest (RF) is also known as ensemble learning because
it is an ensemble of a large number of individual decision trees
[25]. Each tree in the RF model spits out a class prediction, and
the class with the most votes becomes our model’s prediction.
However, RF applies to both the classification and regression
models.

Naïve Bayes
Naïve Bayes (NB) is a classification model that uses the
Bayesian probability theory during prediction [26]. It is also
known as a probabilistic classifier. In 1960, the NB model was
first introduced for text classification by the text retriever
community [27]. However, there are several types of NB
algorithms for parameter estimation and event models, such as
Gaussian naïve Bayes, multinomial naïve Bayes, and Bernoulli
naïve Bayes. Bayes theorem is expressed as equation 1 in Figure
3.
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Figure 3. Equations. FN: false negative; FP: false positive; NPV: negative predictive value; PPV: positive predictive value; TN: true negative; TP:
true positive.

The variable y is the class variable that represents whether the
alert will be accepted or rejected given the condition. Variable
X represents the features like drugs, disease, and demographic.
X is given as equation 2 in Figure 3.

Here, x1, x2 ... xn represent the features (ie, they can be mapped
to outcome: accept or reject alert). By substituting for X and
expanding using the chain, the rule is given in equation 3 in
Figure 3. In our model, the class variable y has two outcomes:
accept or reject. There could be cases where the classification
is multivariable. Therefore, the equation 4 in Figure 3 is used
to find the class variable y with maximum probability.

Gradient Boosting
Gradient boosting (GB) is one of the promising machine learning
algorithms that has already shown better prediction for
classification [28]. It can be used both in classification and
regression models. Like RF, GB is a set of decision trees, but
the main differences are how the trees are built and how the
results are combined. In the RF model, each tree is built
independently, while in the GB model they are built one tree at
a time. The GB model works in a forward stage-wise manner
and converts weak learners to strong learners [29]. The most
interesting part of the GB algorithm is that it can easily fit into
the new model. Moreover, the RF model combines results at
the end of the process, by averaging or majority rules, while
the GB model combines results along the way [30].

In the training set, input variables such as drugs and diseases,
make a set {(x1y1), ... ,(xnyn)} of known values of x and
corresponding values of y. The goal is always to find an
approximation Â (x) to find a function A (x) that minimizes the
expected value of the specified loss function L(y, A(x)), as shown
in equation 5 in Figure 3.

The GB model assumes a real-valued y and calculates an
approximation Â (x) in the form of a weighted sum of functions
hi(x) from H classes, which are called base or weak learners, as
shown in equation 6 in Figure 3.

Support Vector Machine
Support vector machine (SVM) is a supervised machine learning
algorithm. SVM is used both in classification and regression
problems [31]. It is also used to solve linear and nonlinear
problems and works well for many complex problems. The idea
of SVM is simple: it creates a line or a hyperplane that separates
the data into classes. The hypothesis function h is defined as
shown in equation 7 in Figure 3.

The point above or on the hyperplane is classified as a class +1,
and the point below the hyperplane is classified as a class –1.
The SVM classifier works in the form shown in equation 8 in
Figure 3.
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Model Performances

Overview
To evaluate the performance of five machine learning
algorithms, we calculated accuracy, sensitivity, specificity,
positive predictive value (PPV), negative predictive value
(NPV), and the area under the receiver operating characteristic
curve (AUROC). For calculating those measures, we measured
true positive, true negative, false positive, and false negative.
The definitions of the six parameters are given below.

Accuracy
Accuracy is the test by which we can see how accurate our
model is. The equation to calculate accuracy is shown in
equation 9 in Figure 3.

Sensitivity
Sensitivity is the test by which we can determine a positively
identified case. The equation to calculate sensitivity is shown
in equation 10 in Figure 3.

Specificity
Specificity is the measure by which we can measure correctly
identified cases from negative cases. The mathematical equation
is given in equation 10 in Figure 3.

PPV and NPV
PPV and NPV are two basic measures in biomedical studies.
PPV is the probability that the positively identified case is
positive. The mathematical equation for PPV is given in
equation 12 in Figure 3. Similarly, the NPV is the probability
that the negatively identified case is negative. The mathematical
equation is given in equation 13 in Figure 3.

AUROC
AUROC is a performance measure by which we can evaluate
the performance of the model. AUROC is a performance matrix

for discrimination; it shows the predictive model’s ability to
discriminate between positive and negative cases.

Results

Dataset Characteristics
A total of 9214 prescriptions with an alert were collected during
the 10-month study period. After preprocessing and removing
duplicate prescriptions with the same registration numbers, 6453
prescriptions were used to develop our models. The neurology
department got the highest number of alerts (1039/6453,
16.10%). Of those alerts, 546 (52.55%) were accepted and 493
(47.45%) were rejected by physicians (see Multimedia Appendix
1, Figure S1). The urology, dermatology, chest medicine, family
medicine, metabolism, and otolaryngology departments observed
higher alert rates of 10.61% (685/6453), 9.80% (633/6453),
6.91% (446/6453), 6.61% (427/6453), 6.52% (421/6453), and
6.50% (420/6453), respectively. Moreover, eight departments,
including rehabilitation medicine, infectious disease, and
ophthalmology, had alert rates of more than 1%. Gender,
diagnosis codes, disease codes, physician IDs, and department
IDs were used to develop and validate our prediction model
(see Table 1).

Prediction Performance of Machine Learning
Algorithms
We developed five types of machine learning models to predict
physician response. To determine the overall performance of
predictive models, six evaluation metrics were applied. Among
all the machine learning models, ANN showed the best
performance (AUROC 0.94) (see Figure 4 and Multimedia
Appendix 1, Figure S2).

The accuracy of the ANN, RF, NB, GB, and SVM models were
0.88, 0.85, 0.83, 0.82, and 0.57. The sensitivity and specificity
of the ANN, RF, NB, GB, and SVM models were 0.87, 0.88,
0.87, 0.79, and 0.57 and 0.83, 0.82, 0.78, 0.90, and 1.0,
respectively (see Table 2).
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Figure 4. Performance of machine learning prediction models. ANN: artificial neural network; GB: gradient boosting; RF: random forest; NB: naïve
Bayes; ROC: receiver operating characteristic; SVM: support vector machine.

Table 2. Performance of the prediction models.

F1NPVb, %PPVa, %Specificity, %Sensitivity, %AccuracyAlgorithm

87.4282.4087.8483.4687.010.885Artificial neural network

87.4484.5786.6282.4888.290.857Random forest

85.2984.0383.2278.7487.480.835Naïve Bayes

86.3667.1594.5990.2479.460.828Gradient boosting

72.970.54100.0100.057.450.575Support vector machine

aPPV: positive predictive value.
bNPV: negative predictive value.

Discussion

Principal Findings
CDSSs directly assist physicians in making correct clinical
decisions that ultimately reduce prescription errors by generating
real-time alerts and lessen probable unwanted consequences.
Clinical workflow is often impaired by excessive numbers of
alerts; therefore, physicians pay less attention to alerts and even
ignore alerts indiscriminately. This study focused on physicians’
recent practice patterns and represented the findings of machine
learning models to predict physicians’ responses to alerts from
a disease medication–related CDSS. The key findings are as
follows: (1) an ANN model can correctly predict physicians’
responses with higher accuracy than other models and (2) we
identified potential features that could provide insight into the
system design. These findings may contribute to building a
sophisticated provider-friendly interface in which a CDSS may
offer real-time alerts if the prediction is positive for that
individual physician. If the prediction is negative, that means
physicians might not accept the alert; therefore, the CDSS will

not generate alerts during the prescribing of prescriptions or
will provide soft or passive alerts without interruption. However,
all the alerts would be recorded and the report sent to the
individual physician by email on a weekly basis to inform them
of how important the alerts were in order to reduce unwanted
consequences.

Clinical Implications
CDSSs have already shown their capability to improve patient
safety and quality of care by lowering the number preventable
medication errors [32-34]; however, an unreasonable override
rate raises questions regarding the quality of CDSSs. Patient
safety and effective care could be improved by initiating
sophisticated criteria for generating alerts in the CDSS that
prevent alert fatigue and minimize the override rate [35-37].
Identification of physicians and departments who override alerts
more often would help to reduce the override rate and help us
understand how physicians would respond to drug-disease alerts,
which would result in immense benefits. There are no previous
studies that used a machine learning prediction model to identify
physicians and departments who override alerts more often. In
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this study, machine learning algorithms were used to reduce
alert fatigue by identifying physicians and departments who
override alerts more often. Our findings are consistent with
existing research that showed physicians played a great role in
alert override [38]. Bell et al showed that alert override can be
minimized by physicians’ preferences for alert selection [39].
There are several reasons that can make physicians override
alerts. First, current medication-related CDSSs are not designed
to take the patient’s previous medication history into account.
Sometimes patients are already tolerant of the drug and
physicians need to override the alert and prescribe the drug [40].
Second, some CDSSs required an entry for the reason for alert
override and that lead to an unacceptable time burden for
physicians [41]. Third, physicians believe that they already
know the alert is inappropriate based on their experience, so
they are more likely to override the alert [13,42]. Our study also
provides a very important point: no matter how accurate the
CDSS is according to the most relevant knowledge base, the
alert acceptance was highly affected by the individual
physician’s perspective. Our model will reduce the gap between
real-world clinical practice and knowledge-based theory.

Yeh et al [43] demonstrated that dermatology,
gynecology-obstetrics, family medicine, and ophthalmology
departments had higher acceptance rates; however, pediatrics,
psychiatry, and internal medicine departments, such as
cardiology, endocrinology and metabolism, gastroenterology,
hematology, rheumatology, and general medicine, had lower

acceptance rates. In our study, we also found that physicians’
decisions vary from department to department.

Strengths and Limitations
This study has several strengths. First, this is the first study to
use machine learning algorithms to predict physicians’ intentions
to accept or reject alerts. This model may help to reduce alert
fatigue in the current CDSS. Second, this study is personalized
for each physician. Third, the performance of the model is
satisfactory, such that it would help to reduce alert fatigue.
Despite several strengths, our study also has several limitations
that need to be addressed. First, we did not include free-text
override reasons in our analysis, and free-text reasons could
add additional value to our model. However, our model provided
the AUROC with decent specificity and sensitivity. Second, we
did not include physicians' experiences, working periods, ages,
and genders in this prediction model. These data are difficult
to collect retrospectively because EHR systems do not record
this type of information. Third, we have only used one hospital
dataset; multiple hospital datasets would make our model more
reliable.

Future Works
This was the first part of our work. In the future, we will
integrate our prediction model into the CDSS in order to check
the feasibility of our model. It will help to reduce alert fatigue
and result in a sophisticated CDSS by providing soft or passive
alerts. Moreover, we will also try to get feedback from
physicians about our prediction model (see Figure 5).

Figure 5. Future direction of this study.

Conclusions
The findings of the study showed the potential for machine
learning prediction models to predict physicians’ responses with
high sensitivity and specificity. Among the five machine

learning algorithms, the ANN model showed greater
performance than the other models. This model can be a
promising tool to reduce alert fatigue from CDSSs in clinical
settings and can help to correctly identify an individual’s alert
acceptance rate.
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