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Abstract

Background: Hip fracture is the most common type of fracture in elderly individuals. Numerous deep learning (DL) algorithms
for plain pelvic radiographs (PXRs) have been applied to improve the accuracy of hip fracture diagnosis. However, their efficacy
is still undetermined.

Objective: The objective of this study is to develop and validate a human-algorithm integration (HAI) system to improve the
accuracy of hip fracture diagnosis in a real clinical environment.

Methods: The HAI system with hip fracture detection ability was developed using a deep learning algorithm trained on trauma
registry data and 3605 PXRs from August 2008 to December 2016. To compare their diagnostic performance before and after
HAI system assistance using an independent testing dataset, 34 physicians were recruited. We analyzed the physicians’ accuracy,
sensitivity, specificity, and agreement with the algorithm; we also performed subgroup analyses according to physician specialty
and experience. Furthermore, we applied the HAI system in the emergency departments of different hospitals to validate its value
in the real world.

Results: With the support of the algorithm, which achieved 91% accuracy, the diagnostic performance of physicians was
significantly improved in the independent testing dataset, as was revealed by the sensitivity (physician alone, median 95%; HAI,
median 99%; P<.001), specificity (physician alone, median 90%; HAI, median 95%; P<.001), accuracy (physician alone, median
90%; HAI, median 96%; P<.001), and human-algorithm agreement [physician alone κ, median 0.69 (IQR 0.63-0.74); HAI κ,
median 0.80 (IQR 0.76-0.82); P<.001. With the help of the HAI system, the primary physicians showed significant improvement
in their diagnostic performance to levels comparable to those of consulting physicians, and both the experienced and less-experienced
physicians benefited from the HAI system. After the HAI system had been applied in 3 departments for 5 months, 587 images
were examined. The sensitivity, specificity, and accuracy of the HAI system for detecting hip fractures were 97%, 95.7%, and
96.08%, respectively.
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Conclusions: HAI currently impacts health care, and integrating this technology into emergency departments is feasible. The
developed HAI system can enhance physicians’ hip fracture diagnostic performance.

(JMIR Med Inform 2020;8(11):e19416) doi: 10.2196/19416
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Introduction

Deep learning (DL) is a subset of machine learning that uses
an advanced form of artificial neural networks; the use of DL
has impacted health care [1,2]. Numerous applications of DL
in medicine, such as computer-aided diagnosis, have been
studied [3-9].

Several studies have shown the possibility of using algorithms
trained with a large amount of data to aid in appropriate triage,
accurately predicting outcomes, improving diagnoses and
referrals in clinical situations, and even shortening the waiting
time for reports [10-15]. An increasing amount of supporting
evidence shows that the use of computer vision with deep neural
networks—a rapidly advancing technology ideally suited to
solving image-based problems—achieves excellent performance,
comparable to that of experts [12-18].

An increasing number of studies have reported the influence of
DL in health care, from its use in pathological evaluation to
radiographic image assessment [8,9,17,18]. These reports help
us understand DL algorithm behavior and how to apply
algorithms to reduce medical costs, facilitate further preventive
practices, and increase the quality of health care [3].

Hip fractures are among the leading fracture types in elderly
individuals worldwide and are the cause of yearly increases in
medical costs [19-22]. At the first hospital evaluation, 4-14%
of patients’ diagnoses are missed [23-25]. Pelvic radiographs
(PXRs) are the first-line imaging modality; however, there is a
risk of low sensitivity and missed diagnoses when only the
image is read. The efficacy and efficiency of several algorithms
for skeletal radiology, including hip fracture recognition, have
been proven [18,26-28]. However, current state-of-the-art
applications of DL to plain film reading by first-line physicians
have not been integrated into practice.

Most medical image studies have compared a trained DL
algorithm with the performance of human specialists with the
goal of developing an algorithm that can outperform specialists
[14,26,27,29]. However, there is a lack of studies assessing the
combined performance of physician judgment and algorithm
prediction, which is a possible situation in clinical scenarios.
In this study, we developed a human-algorithm integration
(HAI) system to detect hip fractures. Furthermore, we
incorporated the HAI system into clinical workflows to improve
diagnostic efficiency and accuracy.

Methods

Materials
We utilized data from the Chang Gung Trauma Registry
Programme (CGTRP) from Chang Gung Memorial Hospital
(CGMH), Linkou, Taiwan. Demographic data, medical records,
medical imaging, and associated medical information were
recorded prospectively in a computerized database. We extracted
the data and images of all trauma patients treated between
August 2008 and December 2017 at CGMH, which is a level
1 trauma center. The Internal Review Board of CGMH approved
this study. Details of the dataset and image collection process
are described in Multimedia Appendix 1.

Development of the Hip Fracture Detection Algorithm
and Algorithm Validation
The development of the hip fracture detection algorithm is based
on a previous work [18] and described in detail in Multimedia
Appendix 1. In summary, we obtained 3605 PXRs, which
included 1975 films with hip fractures and 1630 films without
hip fractures, from CGMH in Linkou, Taiwan, between August
2008 and December 2016. The diagnostic standard was based
on all the available clinical information, including clinical
diagnosis, imaging reports, advanced imaging reports, and
operative findings. We randomly separated the development
dataset into training (2163/3605, 60%), validation (721/ 3605,
20%), and testing (721/3605, 20%) sets for the initial evaluation
of the performance of each neural network in hip fracture
classification. We assessed VGG16, ResNet-152, Inception-v3,
Inception-ResNet-v2, and DenseNet-121 with binary
classification with randomly initialized weights. The
DenseNet-121 [30] model showed balanced performance
regarding the training, validation, and testing sets. Therefore,
DenseNet-121 was selected for the classification structure of
the deep convolutional neural network (DCNN). We also created
heatmaps with gradient-weighted class activation mapping
(Grad-CAM) [31] for fracture site detection. We applied the

Adam optimizer with an initial learning rate of 10-3. The batch
size was 8, and the DCNN was trained for 60 epochs without
early stopping. This algorithm was able to evaluate the PXRs
and generate a probability of hip fracture and a heatmap overlay
for the original image to highlight the possible fracture area,
generating an algorithm-assisted reference image for clinician
use (Figure 1).
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Figure 1. (A) Pelvic x-ray (PXR) with hip fracture. (B) PXR with left hip fracture with a human-algorithm integration–enhanced reference image.

An independent dataset of 100 PXRs (50 hip fracture films and
50 films without hip fractures) from 2017 was collected to
evaluate the performance of the algorithm. We set the
probability threshold to 0.5, and a cut-off value was also applied
in this study. This dataset was used to test the performance of
the HAI system.

Study Population, Physician, and the HAI System
Performance Test
We enrolled certified medical doctors with different
subspecialties and levels of experience and then assessed their
performance in an image reading task to validate the HAI

system’s performance. Subgroup analyses were also performed
according to the physicians’ experience levels and specialties.
Physicians who care for patients in the trauma bay were
considered primary physicians, and those who treat patients
after consultation (orthopedic surgeons and radiologists) were
considered consulting physicians. Based on experience,
physicians who had practiced for more than 3 years composed
the experienced group; the other physicians composed the novice
group.

Before the examination, we introduced the physicians to the
study design and provided the image collection details. Figure
2 shows the validation flow of the HAI performance test.

Figure 2. The validation flow of the human-algorithm integration (HAI) system performance test. PXR: plain pelvic radiograph.

The physicians examined the dataset of 100 PXRs at their
original resolution (50 images with fractures and 50 images
without fractures) from the validation set from 2017. The
physicians were able to zoom in on the images. Upon reviewing
the dataset, the physicians were asked to diagnose the presence
of a hip fracture. The sensitivity, specificity, and accuracy values
obtained composed the physician-alone performance values.
Then, the physicians assessed another randomly ordered set of
100 PXRs from the same dataset but with the

algorithm-produced reference images, and they were asked to
diagnose the presence of a hip fracture. We examined the
sensitivity, specificity, and accuracy values of the physicians’
HAI performance. We compared the differences in the
sensitivity, specificity, and accuracy values based on the
algorithm only, the physician’s readings only, and the HAI
combination. The agreement between the physicians and the
algorithm was also calculated on the physician alone and the
HAI data.
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Real-World Data Study
After validating the feasibility and efficacy of the HAI system,
we incorporated the HAI system for physician use in trauma
bays and emergency departments at 3 trauma centers in Taiwan:
Taipei CGMH, Linkou CGMH, and Kaohsiung CGMH. The
physicians could initiate the inference platform of the HAI

system while reviewing an image in the picture archiving and
communication system (PACS) viewer. The HAI system
captured and cropped the PXR from the PACS viewer and
transferred it to the central server; the probability of hip fracture
was calculated and presented to the clinical physicians along
with the original PXR and the reference image (Figure 3).

Figure 3. The flow of clinical integration of the human-algorithm integration (HAI) system into the emergency department and real-world data validation.
DCNN: deep convolutional neural network; Grad-CAM: gradient-weighted class activation mapping; PACS: picture archiving and communication
system.

All of the images received feedback from the clinical physician
to validate whether the diagnosis from the HAI system was
correct, and the data were recorded on the server. From the
physician's feedback and the clinical diagnosis, we obtained the
final report of the accuracy, sensitivity, and specificity of the
HAI system. The gold-standard hip fracture diagnosis was the
final diagnosis based on all the available clinical information.

Statistical Analysis and Software
The DCNN was built and applied on a machine equipped with
the Ubuntu 14.04 operation system (Canonical) with TensorFlow
1.5.1 (Google Brain), Keras 2.1.4, and Keras-vis 0.4.1. Statistical
analysis and plots were performed in R 3.4.4 (Microsoft) with
the ggplot2 (version 2.0.0; Hadley Wickham) and irr (version
0.84.1; Matthias Gamer et al) packages. Continuous variables
were compared using Mann-Whitney U tests and Kruskal-Wallis
tests, and categorical variables were evaluated with chi-squared
tests. We evaluated the physician-alone and the HAI
performance using the sensitivity, specificity, false-negative
rate, false-positive rate, and F1 scores; 95% confidence intervals
(CIs) were also calculated. Nonnormally distributed data are
expressed as medians and interquartile ranges (IQRs).
Agreement between the physician and the algorithm was

calculated with Cohen kappa. The physician-alone performance
and the HAI performance were compared using Wilcoxon
signed-rank tests. Receiver operating characteristic (ROC)
curves and the areas under the ROC curves (AUCs) were used
to evaluate the performance of the model.

Results

DL Algorithm Performance
After applying the hip model to the testing dataset (n=100,
normal=50, fractures=50), the sensitivity, specificity, accuracy,
and false-negative rate of the model were 98% (95% CI
89%-100%), 84% (95% CI 71%-93%), 91% (n=100; 95% CI
84%-96%), and 2% (95% CI 0.3%-17%), respectively.

Physician and HAI Performance
In total, 34 physicians with a median practice time of 4 (IQR
3.0-5.0) years, including 4 consulting physicians (2 radiologists
and 2 orthopedic surgeons) and 30 primary physicians [21
surgeons, 6 emergency physicians, and 3 postgraduate-year
(PGY) doctors], completed the examination, as shown in Table
1.
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Table 1. Demographic data of the physician participants (n=34).

ValuesPhysician characteristics

29.00 (27.00-32.00)Age in years, median (IQR)

3.00 (2.00-5.75)Years of practice, median (IQR)

Gender, n (%)

27 (79)Male

7 (21)Female

Physician subspecialties, n (%)

21 (62)General surgeon

6 (18)Emergency physician

3 (9)Postgraduate-year doctor

2 (6)Radiologist

2 (6)Orthopedic surgeon

Table 2 shows that the median sensitivity of the primary
physicians in the physician-alone testing was 95% (IQR
90%-100%), the median specificity was 90% (IQR 82%-94%),

and the median accuracy was 90% (IQR 88%-94%). The median
kappa between the physicians and the algorithm was 0.69 (95%
CI 0.63-0.74).

Table 2. The physician-alone performance and human-algorithm integration (HIA) performance of the physician participants (n=34); the Wilcoxon
signed-rank test was used to compare the physician-alone and the HAI performance.

P valueaHAI performancePhysician-alone performanceMeasures

<.0010.99 (0.96-1.00)0.95 (0.90-1.00)Sensitivity, median (IQR)

<.0010.95 (0.90-0.98)0.90 (0.82-0.94)Specificity, median (IQR)

<.0010.96 (0.93-0.98)0.90 (0.88-0.94)Accuracy, median (IQR)

<.0010.80 (0.76-0.82)0.69 (0.63-0.74)Human-algorithm agreement, κ, median (IQR)

aAll P values are statistically significant.

After the HAI system was applied, the median sensitivity of the
HAI system was 99% (IQR 96%-100%), the median specificity
was 95% (IQR 90%-98%), and the median accuracy was 96%
(IQR 93%-98%). The median kappa between the physicians
and the algorithm was 0.80 (IQR 0.76-0.82). All of the above

factors were significantly improved after HAI system
implementation (Table 2). Most of the physicians’performances
improved after the algorithm-assisted test, as shown in Figure
4.
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Figure 4. The receiver operating characteristic curve of the algorithm performance on test images. Green spots: participants’ performance; red spots:
participants’ performance with human-algorithm integration (HAI) assistance; cross mark: the cut-off performance of the algorithm presented to the
physician.

The agreement between the physicians and the algorithm also
increased but was still not entirely consistent. Among all the
HAI system results, the algorithm had a false-positive rate of
8% per questionnaire, compared with a false-positive rate of
only 0.91% per questionnaire for the physicians plus the

algorithm. On the other hand, 3.76% of the fractures per
questionnaire that were not identified on the physician-alone
test were correctly identified after the algorithm information
was provided, as shown in Figure 5.
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Figure 5. Examples of inconsistencies between the participants and the algorithm. (A) A pelvic x-ray (PXR) without hip fracture that was overdiagnosed
by the algorithm. No participant overdiagnosed in the physician-alone test, and only 1 (2.9%) participant overdiagnosed in the human-algorithm
integration (HAI) test. (B) A PXR with left hip fracture. In the physician-alone test, 12 (35.3%) participants missed this fracture. In the HAI test, only
1 (2.9%) participant missed this fracture. (C) A PXR with left hip fracture that was missed by the algorithm. In the physician-alone test, 4 (11.8%)
participants missed this fracture. In the HAI test, 3 (8.8%) participants missed this fracture. (D) A PXR without hip fracture. In the physician-alone test,
18 (52.9%) participants overdiagnosed this image. In the HAI test, only 5 (14.7%) participants overdiagnosed this image.

Furthermore, the results were divided according to the
physicians’ specialties, as shown in Table 3. The consulting
physicians achieved a better performance than the primary
physicians. Regarding the HAI performance, although there

were still significant differences in the overall accuracy between
specialties, there were no significant differences in the sensitivity
and specificity.
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Table 3. The physician-alone performance and human-algorithm integration (HAI) performance of the physicians by specialty (n=34).

P valueConsulting physiciansPrimary physiciansPhysician characteristics and
performance

Orthopedic sur-
geons (n=2)

Radiologists (n=2)Postgraduate-year
physicians (n=3)

Emergency-depart-
ment physicians
(n=6)

General sur-
geons (n=21)

.006a33.50 (32.75-
34.25)

39.00 (36.00-42.00)26.00 (25.50- 26.50)33.50 (29.75-37.25)28.00 (27.00-
30.00)

Age in years, median (IQR)

.003a12.50 (10.75-
14.25)

6.50 (6.25- 6.75)1.00 (1.00- 1.00)5.50 (2.75-9.00)3.00 (2.00-
4.00)

Years of experience, median
(IQR)

Physician-alone performance

.027a0.72 (0.71- 0.74)0.79 (0.78- 0.79)0.44 (0.32- 0.53)0.75 (0.67- 0.80)0.69 (0.63-
0.72)

Human-algorithm agree-
ment, κ, median (IQR)

.013a0.94 (0.93- 0.94)0.96 (0.96- 0.97)0.70 (0.66- 0.76)0.95 (0.91- 0.97)0.90 (0.88-
0.92)

Accuracy, median (IQR)

.003a1.00 (1.00- 1.00)0.99 (0.98- 0.99)0.58 (0.42- 0.74)1.00 (0.98- 1.00)0.94 (0.90-
0.98)

Sensitivity, median (IQR)

.8550.87 (0.85- 0.88)0.94 (0.94- 0.94)0.82 (0.77- 0.91)0.91 (0.83- 0.94)0.90 (0.82-
0.96)

Specificity, median (IQR)

HAI performance

.4960.82 (0.82- 0.82)0.78 (0.76- 0.80)0.76 (0.74- 0.78)0.81 (0.78- 0.83)0.80 (0.76-
0.82)

Human-algorithm agree-
ment, κ, median (IQR)

.011a1.00 (1.00- 1.00)0.97 (0.96- 0.97)0.91 (0.89- 0.91)0.98 (0.97- 0.99)0.95 (0.94-
0.97)

Accuracy, median (IQR)

.1211.00 (1.00- 1.00)0.97 (0.95- 0.98)0.90 (0.89- 0.95)1.00 (1.00- 1.00)0.98 [0.96,
1.00]

Sensitivity, median (IQR)

.0711.00 (1.00- 1.00)0.97 (0.96- 0.97)0.84 (0.83- 0.89)0.97 (0.94- 0.98)0.94 (0.90-
0.98)

Specificity, median (IQR)

aP value is statistically significant.

To evaluate the influence of the physicians’ clinical experience
on the use of the HAI system, we divided the primary physicians
into novice and experienced groups, and the results are shown
in Table 4. The experienced physicians showed a significantly

higher sensitivity and slightly lower specificity than the novice
physicians. After the integration of the algorithm information,
the overall performance increased regardless of clinical
experience.
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Table 4. A comparison of the primary physician performance with the human-algorithm integration (HAI) performance, divided by physician experience
(n=30); the Wilcoxon signed-rank test was used to compare the physician-alone performance and the HAI performance.

P valueExperienced group (n=12)Novice group (n=18)Primary physician characteristics and performance

<.001a32.00 (30.75-34.25)27.00 (27.00-28.00)Age in years, median (IQR)

< .001a5.00 (4.00-6.25)2.00 (2.00-3.00)Years of experience, median (IQR)

Performance evaluation

Human-algorithm agreement, κ, median (IQR)

.3300.69 (0.64-0.77)0.66 (0.62-0.72)Physician alone

.008a0.82 (0.79-0.82)0.77 (0.71-0.80)HAI

.001a.0001aPaired test, P value

Accuracy, median (IQR)

.2790.90 (0.89-0.96)0.90 (0.82-0.92)Physician alone

.020 a0.97 (0.95-0.98)0.94 (0.91-0.97)HAI

.0032a.0023aPaired test, P value

Sensitivity, median (IQR)

.017a0.98 (0.94-1.00)0.91 (0.83-0.95)Physician alone

.043a1.00 (0.97-1.00)0.97 (0.94-1.00)HAI

.0313a.0028aPaired test P value

Specificity, median (IQR)

.7330.86 (0.81-0.94)0.89 (0.84-0.94)Physician alone

.2150.96 (0.92-0.98)0.94 (0.88-0.96)HAI

.0049a.1067Paired test, P value

aP value is statistically significant.

Real-World Validation of the HAI System
In total, 632 tests were completed between March 24, 2019,
and August 3, 2019. Images were excluded for the following
reasons: (1) poor quality, (2) incorrect image input, such as
chest plain film or computed tomography (CT), and (3) PXRs
of pediatric patients. After excluding images for the above
reasons, 587 PXRs qualified for inclusion. Among the 587
PXRs, there were 320 normal PXRs and 267 PXRs that showed
hip fractures. The algorithm’s diagnostic accuracy was 92.67%
(95% CI 90.26%-94.65%), the sensitivity was 91.01% (95% CI
86.92%-94.16%), the specificity was 94.06% (95% CI

90.88%-96.39%), and the false-negative rate was 7.33%. Of the
587 PXRs, the physicians’ diagnoses were consistent with the
algorithm for 561 images (95.57%) and were inconsistent for
26 images (4.43%). After reference image assistance, the
diagnostic accuracy of the HAI system was 97.10% (95% CI
95.40%-98.30%), the sensitivity was 99.25% (95% CI
97.32%-99.91%), and the specificity was 95.31% (95% CI
92.39%-97.35%). Of the 587 images, 2 images could not be
diagnosed by the HAI system; these 2 patients required a CT
for hip fracture diagnosis. The false-negative rate of the HAI
system was 0.65%, as presented in Table 5.

Table 5. Clinical validation of the human-algorithm integration (HAI) system in emergency departments.

Accuracy, % (95% CI)Specificity, % (95% CI)Sensitivity, % (95% CI)FractureAlgorithm-only vs. HIA diagnosis

(–)(+)

92.67 (90.26%-94.65%)94.06 (90.88%-96.39%)91.01 (86.92%-94.16%)Algorithm-only diagnosis

19243(+)

30124(–)

97.10 (95.40%-98.30%)95.31 (92.39%-97.35%)99.25 (97.32%-99.91%)HAI diagnosis

15265(+)

3052(–)
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Discussion

In this study, we demonstrated 2 findings. First, the HAI system,
which integrates an algorithm and human intelligence,
performed better than the physicians alone and the algorithm
alone. Second, we integrated the HAI system into the clinical
flow and verified its use in real-world trauma bays. For
orthopedic radiology, fracture detection with computed-aid
diagnosis is one of the first applications of AI in radiologic
imaging [32,33]. In this study, with the assistance of the HAI
system, the physicians detected hip fractures with an increased
diagnostic accuracy ranging from 2% to 22%. Several studies
demonstrate the strong performance of DL algorithms for
fracture detection from different anatomic sites, such as the
wrist, humeral, foot, and femur. In this study, our algorithm
performance was not inferior to these previous results [26-28].
Furthermore, previous studies usually compared the results of
an algorithm with those of professional personnel or other
algorithms [17,26,28,34,35].

In the current environment, the algorithm does not replace
human intelligence, especially in health care; however, a DL
algorithm can complement and augment the ability and
knowledge of physicians [1,36,37]. Until now, no real-world
data from clinical studies have shown that the integration of AI
into the clinical environment can aid physicians. Our study
provides the first evidence that HAI can assist patients and
doctors in the trauma bay, and we have demonstrated the
feasibility of an HAI system to increase diagnostic accuracy.

Some issues occur with the use of computer-assisted diagnostic
tools [38,39]. First, the algorithm makes decisions based on
features that need to be explored, and there are inevitable
caveats, even though the predictions may be correct. Another
issue is that physicians may overly rely on the algorithm and
disregard their own judgment. To resolve these issues, the HAI
system offers physicians a heatmap that highlights the probable
location of the fracture on the reference PXR, thus helping
physicians understand how the algorithm works. The physician
needs to review the image and make the final diagnosis, which
prevents him or her from over-relying on the HAI system. We
designed a method integrating human expertise and computers
that fits the clinical context [38-40], and the HAI system can
increase the diagnostic accuracy and specificity. After
implementing the validation test performed by 34 physicians,
we found that the HAI system performed better than the
physicians alone and the algorithm alone (accuracy: 90% vs.
86% vs. 90%; false-negative rate: 6% vs. 12% vs. 9%,
respectively). Moreover, we found that with the HAI system,
novice physicians can increase their diagnostic accuracy to more
closely approach that of experienced physicians, and even
consulting physicians.

Machine learning methods have a tendency to “overfit” to
idiosyncrasies in the training sample, which may yield overly

optimistic performance estimates [36,37]. When addressing the
challenges of clinical usage, another question arises: Can the
DL algorithm handle real-world data in addition to edited
information [1]? Limited studies have proven that algorithms
can be applied to real-world data [14], but the clinical effects
are still being evaluated. In this study, we have proved that HAI
helps physicians detect hip fractures. We operated the HAI
system in the trauma bays of 3 trauma centers and obtained
adequate hip fracture recognition results. In a real-world
validation study, the HAI system improved the accuracy of hip
fracture diagnosis to 97%, with a false-negative rate of 0.65%.
Several reports have shown that the algorithm might help
physicians in acute care and could save lives [10-15].

We did not develop an excellent complete AI solution that can
address all situations in health care. However, with the support
of HAI, we can reduce some preventable costs and functional
losses in fragile fracture cases, improve the allocation of
resources, reduce the need for unnecessary consultations, and
facilitate faster patient disposition [1,3]. HAI has the potential
to improve the delivery of efficient and high-quality care in
high-volume clinical practice while allowing physicians to focus
on more conceptually demanding tasks by offloading their more
mundane duties [3,41].

The clinical usage of the proposed HAI system can improve
diagnostic accuracy and reduce the unnecessary use of CT.
However, there are still some limitations. First, because we
defined our system as an HAI system, selection bias might exist,
and clinical physicians could always use this tool when they
were unsure about the presence of a fracture. Therefore, some
of the images may have been excluded. Second, PXRs provide
information on not only skeletal fractures but also soft tissue
changes. Although our HAI system can detect fracture sites on
PXRs, it still lacks information needed to detect other lesions
and cannot replace the expertise of radiologists and clinical
physicians. Third, the HAI system does not currently integrate
clinical information, which differs from the considerations of
clinical practice. The integration of clinical data into the HAI
system is another challenge [42]. Fourth, the limited number of
physicians participating in this evaluation might have resulted
in an underpowered study. Fifth, the images of the validation
dataset are only from one institute, which might induce selection
bias as well. Finally, a preliminary study of 600 testing images
was performed. However, this study tested a limited number of
cases at 3 different trauma centers, which are further limitations.
The future development of a prospective multicenter study
should be used to investigate the system’s function in the real
world.

In conclusion, the HAI system improves diagnostic accuracy,
and the integration of this technology into the clinical flow is
feasible. The HAI system can enhance the performance of
physicians, especially novice clinicians.
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