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Abstract

Background: Patients with end-stage liver disease (ESLD) have limited treatment options and have a deteriorated quality of
life with an uncertain prognosis. Early identification of ESLD patients with a poor prognosis is valuable, especially for palliative
care. However, it is difficult to predict ESLD patients that require either acute care or palliative care.

Objective: We sought to create a machine-learning monitoring system that can predict mortality or classify ESLD patients.
Several machine-learning models with visualized graphs, decision trees, ensemble learning, and clustering were assessed.

Methods: A retrospective cohort study was conducted using electronic medical records of patients from Wan Fang Hospital
and Taipei Medical University Hospital. A total of 1214 patients from Wan Fang Hospital were used to establish a dataset for
training and 689 patients from Taipei Medical University Hospital were used as a validation set.

Results: The overall mortality rate of patients in the training set and validation set was 28.3% (257/907) and 22.6% (145/643),
respectively. In traditional clinical scoring models, prothrombin time-international normalized ratio, which was significant in the
Cox regression (P<.001, hazard ratio 1.288), had a prominent influence on predicting mortality, and the area under the receiver
operating characteristic (ROC) curve reached approximately 0.75. In supervised machine-learning models, the concordance
statistic of ROC curves reached 0.852 for the random forest model and reached 0.833 for the adaptive boosting model. Blood
urea nitrogen, bilirubin, and sodium were regarded as critical factors for predicting mortality. Creatinine, hemoglobin, and albumin
were also significant mortality predictors. In unsupervised learning models, hierarchical clustering analysis could accurately
group acute death patients and palliative care patients into different clusters from patients in the survival group.

Conclusions: Medical artificial intelligence has become a cutting-edge tool in clinical medicine, as it has been found to have
predictive ability in several diseases. The machine-learning monitoring system developed in this study involves multifaceted
analyses, which include various aspects for evaluation and diagnosis. This strength makes the clinical results more objective and
reliable. Moreover, the visualized interface in this system offers more intelligible outcomes. Therefore, this machine-learning
monitoring system provides a comprehensive approach for assessing patient condition, and may help to classify acute death
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patients and palliative care patients. Upon further validation and improvement, the system may be used to help physicians in the
management of ESLD patients.

(JMIR Med Inform 2020;8(10):e24305) doi: 10.2196/24305
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visualized clustering heatmap; machine learning; ensemble learning; noncancer-related end-stage liver disease; data analysis;
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Introduction

End-stage liver disease (ESLD) is a major public health problem.
It is estimated that 1 million patients died from ESLD globally
in 2010, accounting for approximately 2% of all deaths [1-6].
Despite improvements in health care, mortality due to ESLD
increased by 65% from 1999 to 2016 [7]. Patients with ESLD
have limited treatment options and have a deteriorated quality
of life with an uncertain prognosis [8]. Early identification of
patients with ESLD who have a poor prognosis is fundamental
for palliative care.

Several ESLD risk prediction models have been developed
using traditional statistical modeling, including the Child-Pugh
score [9], model for end-stage liver disease (MELD) [9,10],
adjusted MELD scores (eg, MELD-Na score and integrated
MELD score) [11-13], albumin-bilirubin score [14], Chronic
Liver Failure Consortium (CLIF) Acute Decompensation Score
[15], CLIF Sequential Organ Failure Score [16], CLIF
Consortium Acute-on-Chronic Liver Failure Score [17], and a
novel score recently developed by our group [18]. Unfortunately,
these prediction scores were all found to have poor
discrimination between survival and death [19-22]. In addition,
these traditional risk scores cannot differentiate patients that
need acute care or palliative care.

Machine learning, which is the use of computer algorithms that
improve automatically through experience, has recently been
utilized in disease diagnosis and prediction. In fact, several

studies found that machine-learning models have either better
or similar performances as traditional statistical modeling
approaches [23-26]. Supervised machine-learning models can
predict binary disease outcomes, but the prediction accuracy
drops when the disease outcome involves several stages.
Unsupervised machine-learning models have been successfully
utilized to classify diseases that have several stages, such as
chronic kidney diseases [27,28]. ESLD is a progressive disease
that requires either acute or palliative care. Therefore, the goal
of this study was to utilize both supervised and unsupervised
machine learning to improve the care of ESLD patients.
Specifically, we aimed to create a machine-learning monitoring
system that combines several machine-learning models with
visualized graphs, including decision trees, ensemble learning
methods, and clustering, to predict the mortality of ESLD
patients.

Methods

Study Participants and Data Collection
We conducted a retrospective cohort study using the electronic
medical records (EMRs) of patients from Wan Fang Hospital
and Taipei Medical University (TMU) Hospital (Figure 1). The
training dataset comprised patients from Wan Fang Hospital
only, whereas the validation set comprised patients from TMU
Hospital. By validating our results in different settings, we tried
to ensure that the models developed remained valid and robust
in different hospitals.
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Figure 1. Study flowchart depicting the series of procedures from enrollment to outcome for data collection from patients with noncancer-related
end-stage liver disease. WFH: Wan Fang Hospital; TMUH: Taipei Medical University Hospital; EMR: electronic medical record; ICD: International
Classification of Diseases.

The study included all adults (aged>18 years) who were
diagnosed as having chronic liver diseases with or without
related complications of spontaneous bacterial peritonitis,
hepatic coma, and esophageal varices (Table 1). In addition,
included patients needed to have laboratory EMR data available
within 24 hours of admission. Exclusion criteria included
pregnancy, cancer, or had a liver transplantation.

Wan Fang Hospital and TMU Hospital are both managed by
TMU. The clinical database of TMU includes the EMRs of the
two hospitals. The study was approved by the TMU Institutional
Review Board (approval number: N202002023) and was
conducted in accordance with the Helsinki Declaration.
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Table 1. International Classification of Diseases (ICD)-9-Clinical Modification (CM) and ICD-10-CM codes for noncancer end-stage liver disease
(ESLD).

ICD-10-CMICD-9-CM codeIncluded in noncancer ESLDDiseases

K74.xx571.xxYesCirrhosis

K70.xx070.xx; 572.xxYesHepatic coma

K65.2567.xxYesSpontaneous bacterial peritonitis

I85.xx456.xxYesEsophageal varices

C22.xx; Z51.12155.xxNoMalignant neoplasm of the liver

Z94.4;T86.4x996.82NoLiver transplant

Study Overview and Design
The aim of this study was to develop noncancerous liver disease
survival prediction models using both traditional statistical
modeling approaches and machine-learning approaches (Figure
2). Both supervised and unsupervised machine-learning models
were investigated in parallel. For supervised machine learning,
the main output was to identify the model with the best survival
prediction performance via comparison of the concordance

statistic (c-statistic). For unsupervised learning, the main output
was the dynamic visualization of ESLD patients to aid in the
palliative care of patients. Therefore, ESLD patients were
classified into acute death, palliative care, and survived. Acute
death was defined as death within 30 days and palliative care
was defined as death within 1-9 months from the date of first
admission. Mortality was defined using EMR codes related to
patient death or critical illness and discharge against medical
advice.

Figure 2. Flowchart depicting the structure of the machine learning medical system. CART: classification and regression tree; Adaboost: adaptive
boosting.

Data input was based on the literature and the physician’s
clinical judgment. For example, the following biochemical
parameters associated with chronic liver disease were recorded:
ammonia, albumin, blood urea nitrogen (BUN), complete blood
count, C-reactive protein (CRP), creatinine, glutamic-pyruvic
transaminase, prothrombin time (PT) and international
normalized ratio (INR), glutamic-oxaloacetic transaminase,
serum sodium, serum potassium, and total bilirubin.

Statistical Analysis
Continuous variables were compared by the nonparametric
Wilcoxon rank-sum test and categorical variables were
compared by the chi-square test.

An initial bivariate analysis was performed to identify significant
associations between mortality and all variables available in the

study. Significant variables (P<.10) were subsequently tested
in a stepwise multivariate logistic regression and stepwise Cox
proportional hazards regression to identify independent
predictors of mortality (P<.05). The final model for the stepwise
regressions was selected as that with the lowest Akaike
information criterion.

The validation dataset was used to compare the performances
among all models. Performance was assessed according to
comparison of receiver operating characteristic (ROC) curves
for the different machine-learning models, including random
forest with the MELD score, MELD-Na score, and our novel
score [18].
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All statistical analyses were performed using R (version 3.6.1)
and SAS Enterprise Guide (version 7.1) software. For all
analyses, P<.05 represented statistical significance.

Machine-Learning Techniques
Machine learning is a statistical-based model that computer
systems use to perform a task without using explicit instructions
or inferences [29]. In general, machine-learning algorithms can
be subdivided into either supervised or unsupervised learning
algorithms. Supervised learning involves building a
mathematical model of a dataset, termed training data, that
contains the inputs and desired outputs known as a supervisory
signal. The model is then tested using a validation set.
Supervised learning algorithms involve classification and
regression. The supervised machine-learning tools utilized in
this study included linear discriminant analysis (LDA), support
vector machine (SVM), naive Bayes classifier, decision tree,
random forest, and adaptive boosting. By contrast, for
unsupervised learning, a dataset is taken that contains only
inputs and the structure is identified in the data, such as through
grouping and clustering.

LDA
LDA is commonly used in multivariate statistical analysis, as
it can find a linear combination of features that separates two
groups of objects. Hence, LDA is usually used in classification
and dimensionality reduction. In this study, LDA was applied
to predict the mortality of patients with chronic liver diseases
using the “MASS” package in R [30].

SVM
SVM constructs a hyperplane in a high-dimensional space for
classification and regression. The ideal hyperplane will have
the largest distance of margins that separates the two groups of
objects. SVM is a nonprobabilistic binary classifier, as it can
divide two groups of subjects and can assign new events to one
group or the other [31].

Naive Bayes Classifiers
Naïve Bayes classifier is based on the Bayes’ theorem, with an
independence assumption among these features as probabilistic
classifiers. Naïve Bayes can be considered a conditional
probability model, which assigns a class label according to the
maximum a posteriori decision rule [32].

Decision Tree
A decision tree model is a nonparametric and effective
machine-learning model. Classification and regression tree
(CART) is a typical tree-based model that can predict either a
continuous (regression tree) or categorical (classification tree)
outcome, and visualizes the decision rule [33]. In decision tree,
the Gini index (Equation 1) is used to decide the nodes on a
decision branch where pi represents the relative frequency of
the class that is being observed in the dataset and c represents
the number of classes. The process of the CART algorithm at
each node for classification is as follows: (1) construct a split
condition, (2) select a split condition, (3) calculate the impurity
by the Gini index (Equation 1), (4) execute steps 2 to 4 until
the minimum impurity is selection, and (5) construct the
classification in the node.

The Gini index is calculated as:

where pi is the probability of an object being classified to a
particular class i.

In this study, the tree depth of CART was controlled at 4 (ie,
maxdepth=4) in the R package to avoid overfitting based on a
previous study [26].

Ensemble Learning
Ensemble learning uses multiple learning algorithms to improve
machine-learning results, and has generally been found to have
better predictive performance than a single model. This is
achieved by combining several decision classification and
regression tree models [34]. Two types of ensemble learning
(random forest and adaptive boosting) were used in this study.

Random Decision Tree
Random forest, a random decision tree model, can extract the
most relevant variables by performing classification, regression,
or other applications based on a decision tree structure. Parallel
methods were used to exploit the independence between the
base learners because the error can be minimized by averaging.
By creating multiple decision trees and combining the output
generated by each tree, the model increases predictive power
and reduces bias.

The basic single tree model in random forest is a CART using
the Gini index as the selection criterion, and the random forest
algorithm applies the bagging technique to implement the
teamwork of numerous decision tree models, thereby improving
the performance of a single model. The bagging procedure is
as follows:

(1) Given a training set X = x1, x2, …, xn, with response Y = y1,
y2, …, yn;

(2) For b = 1, 2, …, B, as the repeated bagging time;

(3) Bagging select a random sample Xb, Yb with replacement
of the training set;

(4) Generate a classification tree from Xb, Yb;

(5) Prediction for unseen or testing samples z by taking the
majority vote from all of the individual classification trees.

The variable importance is determined by the decrease in node
impurity, which is weighted by the probability of reaching the
node. We determined the node probability by the number of
samples that reached the node divided by the total number of
samples. Thus, the variable becomes more significant as the
value gets higher. The feature importance was implemented by
Scikit-learn according to Equations (2) and (3). Assuming a
binary tree, Scikit-learn calculates a node’s importance using
the Gini index.

importance (ni)= wiGi – wleft(i)Gleft(i) – wright(i)Gright (i)

(2)
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Where importance (ni) is the importance of node i, wi is the
weighted number of samples reaching node i, Gi is the impurity
value of node j, left(i) is the left child node from node i, right(i)
is the right child node from node i, and fij is the importance of
feature j.

The final feature importance at the random forest is the average
over all CART tree models after normalization. That is, the sum
of the feature’s importance values on each tree is divided by
the total number of trees [35]. We used the R package
randomForest in this study [36].

Adaptive Boosting
Adaptive boosting is an ensemble learning method in which
base learners are generated sequentially. It is also used in
conjunction with many weak learners (ie, those with
poor-performance classifiers) to improve performance.
Improving weak learners and creating an aggregated model to
improve model accuracy is crucial for boosting algorithm
performance. The output of weak learners is combined into a
weighted sum that represents the final output of the boosted
classifier. Adaptive boosting is adaptive because the motivation
for using sequential methods is exploiting the dependence
between the base learners. In addition, the predictive ability can
be boosted by weighing previously mislabeled examples with
a higher weight. In addition, bagging, a method that combines
bootstrapping and aggregating, was used. Because the bootstrap
estimate of the data distribution parameters is more accurate
and robust, after combining them, a similar method can be used
to obtain a classifier with superior properties [37,38]. This study
used the “adabag” package for implementing adaptive boosting
in R.

ROC
We used ROC curves to compare the mortality predictive
performances based on the c-statistic, which is equivalent to
the area under the curve (AUC) value. The false positive rate
(related to specificity) and the true positive rate (also called
sensitivity or recall) were calculated for comparison.

Heatmap and Clustering
A heatmap was used to visualize the pattern of the clinical
variables. The clinical and laboratory data of patients are
represented as grids of colors with hierarchical clustering
analysis applied for both rows and columns [39]. Patients were
separated by Euclidean distance (Equation 4) and clustered
using the Ward hierarchical clustering algorithm (Equation 5).
Clustering can be upgraded using different similarity measures

and clustering algorithms [40]. The heatmap was constructed
using the “ggplot” package in R. The Euclidean distance
between points p and q is the length in multidimensional n-space
calculated as:

We followed the general agglomerative hierarchical clustering
procedure suggested by the Ward method. The criterion for
choosing a pair of clusters to merge at each step is based on the
Ward minimum variance method, which can be defined and
implemented recursively by a Lance–Williams algorithm [41].
The recursive formula gives the updated cluster distances
following the pending merge of clusters. We used the following
formula to compute the updated cluster distance:

d(Ci ∪ Cj, Ck) = aid(Ci, Ck) + ajd(Cj, Ck) + βd(Ci, Cj)
+ γ∣d(Ci, Ck) – d(Cj, Ck)∣ (5)

where d(Ci, Cj) is the distance defined between cluster i and
cluster j; thus, for each of the metrics we can compute the
parameters αi, αj, β, and γ.

The Ward minimum variance method can be implemented by
the Lance–Williams formula as follows:

d(Ci ∪ Cj, Ck)= ni+nk/ni+nj+nkd(Ci, Ck) +
nj+nk/ni+nj+nk d(Cj, Ck) – nk/ni+nj+nk d(Ci, Cj) (6),

where ni, nj, and nk is the size of each cluster, ai is ni+nk/ni+nj+nk,
aj is nj+nk/ni+nj+nk, β is – nk/ni+nj+nk, and γ is 0.

The “ggplot” package provides the function to apply heatmap
and hierarchical clustering in R. In the function, “scale” was
subject to normalization, and “RowSideColors” were set
according to the death outcomes.

Results

Figure 1 shows an overview of the study participants and Figure
2 gives an overview of the study. Initially, a total of 1214
patients from Wan Fang Hospital were used to establish a dataset
for training and 689 patients from TMU Hospital were used for
validation. After data preprocessing (ie, excluding cases with
abnormal records and liver cancer cases), the overall mortality
rate of patients in the training set at Wan Fang Hospital was
28.3% (257/907) and that at TMU Hospital was 22.6%
(145/643). Table 2 and Table 3 summarize the baseline
characteristics of all patients according to survival status and
separated by the training and validation datasets, respectively.
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Table 2. Demographic and laboratory characteristics of patients with noncancerous liver diseases according to survival status.

P valueSurvived (n=650)Died (n=257)Demographic variablesa

.25Sex, n (%)

419 (64.5)155 (60.3)Male

231 (35.5)102 (39.7)Female

<.00160 (50-72)69 (56-82)Age (years)

<.0013.1 (2.8-3.6)2.8 (2.5-3.1)Albumin (g/dL)

.00343 (31-68)55 (34-82)Ammonia (μg/dL)

<.00116 (12-26)29 (18-52)Blood urea nitrogen (mg/dL)

<.0011.3 (0.7-2.5)1.7 (0.9-4.3)Total bilirubin (mg/dL)

<.0010.5 (0.2-1.2)1 (0.4-2.9)Direct bilirubin (mg/dL)

<.0010.9 (0.7-1.3)1.2 (0.8-2.2)Creatinine (mg/dL)

<.0014.1 (1.2-6.3)5.2 (2.8-8.9)C-reactive protein (mg/dL)

<.00162 (57-80)54.6 (33.4-60.5)eGFRb (mL/min/1.73 m2)

.31107 (94-139)111 (96-139)Glucose ante cibum (mg/dL)

<.00140 (26-72)54 (32-94)Serum GOTc (U/L)

.4233 (21-58)35 (22-59)Serum GPTd (U/L)

<.00112 (10-13)10 (9-11)Hemoglobin (g/dL)

.0013.9 (3.7-4.2)4 (3.7-4.4)Potassium (mEq/L)

.43138 (136-139)138 (134-141)Sodium (mEq/L)

<.001162 (110-217)130 (86-177)Platelets (103/μL)

<.00111.8 (11.8-12.6)10.8 (10.8-12.5)PTe Control (seconds)

<.00113.5 (12.2-15.1)14.8 (12.7-17.1)PT fibrinogen (seconds)

<.0011.15 (1.04-1.29)1.3 (1.13-1.54)PT international normalized ratio

<.0017.02 (5.43-9.28)8.10 (5.99-10.82)Leukocyte count (103/μL)

aContinuous variables are presented as median (IQR).
beGFR: estimated glomerular filtration rate.
cGOT: glutamic-oxaloacetic transaminase.
dGPT: glutamic-pyruvic transaminase.
ePT: prothrombin time.
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Table 3. Demographic and laboratory characteristics of patients with noncancerous liver diseases in the training and validation datasets.

P valueValidation (n=643)Training (n=907)Demographic variablesa

.51Sex, n (%)

420 (65.3)574 (63.3)Male

223 (34.7)333 (36.7)Female

.1161 (51-73)62 (52-75)Age (years)

<.0013.3 (3.1-3.7)3 (2.7-3.5)Albumin (g/dL)

<.00183 (49-116)48 (31-75)Ammonia (μg/dL)

.00316 (12-27)18 (13-33)Blood urea nitrogen (mg/dL)

.771.5 (0.7-3.1)1.4 (0.8-2.8)Total bilirubin (mg/dL)

<.0011.1 (0.5-2.7)0.6 (0.2-1.7)Direct bilirubin (mg/dL)

<.0010.9 (0.7-1.2)0.9 (0.7-1.5)Creatinine (mg/dL)

<.0013.3 (1.3-4.9)4.4 (1.6-7)C-reactive protein (mg/dL)

<.00194.1 (65.1-123.6)60.5 (47.6-73.5)eGFRb (mL/min/1.73 m2)

<.001121(104-151)108 (94-139)Glucose ante cibum (mg/dL)

<.00153 (34-91)43 (27-80)Serum GOTc (U/L)

.00139 (25-64)34 (21-59)Serum GPTd (U/L)

.5011 (10-13)11 (10-13)Hemoglobin (g/dL)

.0033.9 (3.6-4.2)4 (3.7-4.2)Potassium (mEq/L)

.049137 (135-139)138 (135-140)Sodium (mEq/L)

<.001138 (87-197)154 (102-209)Platelets (103/μL)

<.00113.3 (13.2-13.4)11.7 (10.8-12.6)PTe control (seconds)

<0.00115 (13.7-17.4)13.8 (12.3-15.6)PT fibrinogen (seconds)

<.0011.23 (1.08-1.48)1.19 (1.05-1.37)PT international normalized ratio

<.0016.8 (5.28-8.82)7.38 (5.56-9.71)Leukocyte count (103/μL)

aContinuous variables are presented as median (IQR).
beGFR: estimated glomerular filtration rate.
cGOT: glutamic-oxaloacetic transaminase.
dGPT: glutamic-pyruvic transaminase.
ePT: prothrombin time.

Table 4 shows the risk factors of mortality-based stepwise
multivariate logistic and Cox regression analyses for the training
dataset. PT-INR, which was significant in the Cox regression,

had a prominent influence on predicting mortality. Moreover,
BUN and CRP had significant effects on mortality.
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Table 4. Significant factors in stepwise multivariate logistic and Cox regression analyses.

Odds ratio/hazard ratioa (95% CI)P valueFactors

Stepwise multivariate logistic regression

1.029 (1.017-1.042)<.001Age

0.590 (0.421-0.827).002Albumin

1.009 (1.000-1.018).04Blood urea nitrogen

1.101 (1.056-1.147)<.001C-reactive protein

0.795 (0.717-0.882)<.001Hemoglobin

1.053 (1.007-1.101).02Sodium

0.995 (0.992-0.997)<.001Platelets

1.149 (1.087-1.216)<.001Total bilirubin

1.075 (1.016-1.137).01Leukocyte count

Stepwise Cox regression

1.005 (1.001-1.010).03Age

1.013 (1.009-1.018)<.001Blood urea nitrogen

0.920 (0.873-0.969).002Creatinine

1.027 (1.013-1.042)<.001C-reactive protein

1.288 (1.131-1.468)<.001PTb international normalized ratio

1.036 (1.018-1.053)<.001Total bilirubin

aOdds ratios are reported for logistic regression and hazard ratios are reported for Cox regression.
bPT: prothrombin time.

Similar results were obtained using machine-learning methods.
Figure 3 shows the variable of importance for random forest
and adaptive boosting, which had better performances among
all of the supervised machine-learning methods tested (Table

5, Figure 4). BUN was regarded as the primary factor for
predicting mortality by both random forest and adaptive boosting
models. Creatinine, PT-INR, and bilirubin also emerged as
remarkable factors in prediction.

Figure 3. Variable importance ordered by the accuracy of mean decrease in random forest, adaptive boosting (AdaBoost), and AdaBoost + bootstrap.
The order of variables is followed by the rank of leading variables in the random forest.
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Table 5. Performance of different machine-learning models on predicting mortality of patients with noncancer end-stage liver diseases using the
validation dataset.

c-statisticaSpecificitySensitivityAccuracyModel

0.8290.8390.7010.823LDAb

0.8170.9660.3100.818SVMc

0.8240.9280.2900.784Naïve Bayes

0.7440.9100.3790.790CARTd

0.8520.9560.3720.824Random Forest

0.8330.9180.4550.813Adabooste

ac-statistic: concordance statistic of the receiver operating characteristic curve.
bLDA: linear discriminant analysis.
cSVM: support vector machine.
dCART: classification and regression tree.
eAdaBoost: adaptive boosting.

Figure 4. Receiver operating characteristic (ROC) curves with area under the curve (AUC) statistics of classification and regression tree (CART),
supervised machine learning (SVM), linear discriminant analysis (LDA), random forest, naive Bayes, and adaptive boosting (Adaboost).

Figure 5 compares the ROC curves for mortality prediction
between random forest, as the top-performing machine-learning
model, with traditional risk scores. It is clear that random forest
(blue curve) had better predictability than all traditional risk
scores. However, there were overlaps among traditional risk
scores, and it is difficult to differentiate the predictive ability
of the MELD score (red, AUC=0.76), MELD-Na (orange,
AUC=0.79), and novel score (green, AUC=0.75). Figure 6
shows the calibration plots for the different machine-learning

models. The calibration plot is divided into 5 risk strata to match
the MELD score. In general, most of the points are close to the
diagonal, and the random forest model was found to be better
calibrated than other machine-learning techniques. Therefore,
the majority of machine-learning models showed better
performance (according to the c-statistic in Table 5) than the
traditional scoring models. The specificity of each
machine-learning model was also above 0.80.
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Figure 5. Receiver operator characteristic (ROC) curves with area under the curve (AUC) statistics of random forest, model for end-stage liver disease
(MELD) score, MELD-NA score, and novel score.

Figure 6. Calibration plots of classification and regression tree (CART), supervised machine learning (SVM), linear discriminant analysis (LDA),
random forest, naive Bayes (NB), and adaptive boosting (Adaboost).
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In unsupervised machine learning using the heatmap, patients
were grouped into death within 30 days (red), death within 1-9
months (yellow), and survival (green) (Figure 7). We found that

different clusters had specific color patterns related to laboratory
outcomes.

Figure 7. Heatmap showing the classification of acute care (death within 30 days), palliative care (death within 1-9 months), and survival groups in
Wan Fang Hospital (WFH) cohort (A and C) and Taipei Medical University Hospital (TMUH) cohort (B and D). BUN: blood urea nitrogen; Bilirubin_T:
total bilirubin; CRP: C-reactive protein; eGFR: estimated glomerular filtration rate; GlucoseAC: glucose ante cibum; GOT: serum glutamic-oxaloacetic
transaminase; GPT: serum glutamic-pyruvic transaminase; HGB: hemoglobin; K: potassium; Na: sodium; PLT: platelets; PT: prothrombin time; INR:
international normalized ratio; WBC: leukocyte count.

Discussion

Principal Findings
A major limitation in traditional statistical modeling is poor
predictive ability, especially in nonhomogeneous patients
representing several different disease stages. Supervised and
unsupervised machine-learning methods are data-driven
techniques that have been shown to have either better or similar

performances as traditional statistical modeling approaches. In
this study, we found that supervised ensemble learning models
have better predictive performance than traditional statistical
modeling. The AUC of traditional statistical modeling
techniques was around 0.75, whereas that of machine-learning
techniques was around 0.80. The AUC of the machine-learning
technique with the best performance (random forest) was 0.85.
In unsupervised learning analysis using hierarchical clustering,
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ESLD patients were separated into three clusters: acute death,
palliative care, and survived.

Traditional regression analysis showed that PT-INR had the
highest odds ratio among all of the significant variables in
predicting mortality. This is likely because critically ill patients
develop hemostatic abnormalities, and PT-INR has been
associated with early death among patients with
sepsis-associated coagulation disorders [42]. Similar to previous
studies, we also found that BUN and CRP can predict mortality
in critically ill patients and for those receiving palliative care
[43,44]. A prior study also found that total bilirubin is an
excellent predictor of short-term (1-week) mortality in patients
with chronic liver failure [45]. High bilirubin levels combined
with low albumin levels may be used to predict the severity and
progression of liver injury [46,47]. Hyperkalemia (high
potassium) and hyponatremia (low sodium) have also been
found to increase the mortality risk of ESLD patients [48,49].

In the variable of importance analysis using supervised
machine-learning models, BUN was regarded as the primary
factor for predicting mortality. This result is in line with a recent
study showing that a high BUN concentration is robustly
associated with adverse outcomes in critically ill patients, and
the results remained robust after correction for renal failure
[43]. Interestingly, our variable of importance analysis suggested
that BUN might be a more crucial parameter for risk
stratification than creatinine level in critically ill patients. We
hypothesize that BUN could be an independent risk factor for
renal failure, which might indicate neurohumoral activation and
disturbed protein metabolism.

In the unsupervised learning analysis, ESLD patients were
successfully separated into three clusters. We found that
leukocyte count, PT, and bilirubin had specific and similar
patterns in the acute death cluster when compared with the
palliative care and survival clusters. This is likely related to the
fact that these parameters are excellent predictors of short-term
mortality and were therefore classified with the acute patient
group [42,45]. Acute‐on‐chronic liver failure (ACLF) is one
of the main causes of mortality of ESLD patients. One of the
marked pathophysiological features of ACLF is excessive
systemic inflammation, which is mainly manifested by a
significant increase in the levels of plasma proinflammatory
factors, leukocyte count, and CRP [50,51], as observed in our
study.

ESLD patients with hepatorenal syndrome typically have the
worst prognosis. There are two types of hepatorenal syndrome:

type 1 progresses quickly to renal failure, whereas type 2 evolves
slowly. Type 2 hepatorenal syndrome is typically associated
with refractory ascites and the 3-month survival is 70% [52].
Although BUN, creatinine, sodium, and potassium are indicators
of renal function, considering the progression of hepatorenal
syndrome, the clustering heatmap classified these parameters
in the palliative care group. Thus, visualization of the monitoring
system using machine-learning techniques may furnish health
care personnel with sufficient relevant information to manage
the treatment of patients with chronic liver diseases.

Strengths and Limitations
Medical artificial intelligence has become a cutting-edge tool
in clinical medicine, as it has been found to have predictive
ability in several diseases. The machine-learning monitoring
system developed in this study involves multifaceted analyses,
which provide various aspects for evaluation and diagnosis.
This strength makes the clinical results more objective and
reliable. Moreover, the visualized interface in this system offers
more intelligible outcomes.

However, this study has several limitations. First, although this
study enrolled thousands of ESLD patients, the numbers of
ESLD patients who received palliative care or who experienced
acute death were small relative to the number of ESLD patients
that have survived. Including data from a larger sample of ESLD
patients who received palliative care or who died from acute
disease will further improve the accuracy of the
machine-learning model in differentiating these three types of
ESLD patients. Second, this study enrolled only patients in the
Taiwanese population, and the external validity of this study
with a cohort of different ethnicity remains to be tested. Third,
this was a retrospective study, and a cohort study with
prospectively enrolled patients is required to determine the
usefulness of our system in clinical practice.

Conclusions and Implications
Our machine-learning monitoring system provides a
comprehensive approach for evaluating the condition of patients
with ESLD. We found that supervised machine-learning models
have better predictive performance than traditional statistical
modeling, and the random forest model had the best performance
of all models investigated. In addition, our unsupervised
machine-learning model may help to differentiate patients that
require either acute or palliative care, and may help physicians
in their decision in patient treatment. In the future, it will be
beneficial to apply our model to several other end-stage organ
diseases without the involvement of cancer.
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