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Abstract

Background: Radiomics can improve the accuracy of traditional image diagnosis to evaluate extrahepatic cholangiocarcinoma
(ECC); however, this is limited by variations across radiologists, subjective evaluation, and restricted data. A radiomics-based
particle swarm optimization and support vector machine (PSO-SVM) model may provide a more accurate auxiliary diagnosis
for assessing differentiation degree (DD) and lymph node metastasis (LNM) of ECC.

Objective: The objective of our study is to develop a PSO-SVM radiomics model for predicting DD and LNM of ECC.

Methods: For this retrospective study, the magnetic resonance imaging (MRI) data of 110 patients with ECC who were diagnosed
from January 2011 to October 2019 were used to construct a radiomics prediction model. Radiomics features were extracted from
T1-precontrast weighted imaging (T1WI), T2-weighted imaging (T2WI), and diffusion-weighted imaging (DWI) using MaZda
software (version 4.6; Institute of Electronics, Technical University of Lodz). We performed dimension reduction to obtain 30
optimal features of each sequence, respectively. A PSO-SVM radiomics model was developed to predict DD and LNM of ECC
by incorporating radiomics features and apparent diffusion coefficient (ADC) values. We randomly divided the 110 cases into a
training group (88/110, 80%) and a testing group (22/110, 20%). The performance of the model was evaluated by analyzing the
area under the receiver operating characteristic curve (AUC).

Results: A radiomics model based on PSO-SVM was developed by using 110 patients with ECC. This model produced average
AUCs of 0.8905 and 0.8461, respectively, for DD in the training and testing groups of patients with ECC. The average AUCs of
the LNM in the training and testing groups of patients with ECC were 0.9036 and 0.8889, respectively. For the 110 patients, this
model has high predictive performance. The average accuracy values of the training group and testing group for DD of ECC were
82.6% and 80.9%, respectively; the average accuracy values of the training group and testing group for LNM of ECC were 83.6%
and 81.2%, respectively.
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Conclusions: The MRI-based PSO-SVM radiomics model might be useful for auxiliary clinical diagnosis and decision-making,
which has a good potential for clinical application for DD and LNM of ECC.

(JMIR Med Inform 2020;8(10):e23578) doi: 10.2196/23578
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Introduction

Cholangiocarcinoma is a highly aggressive neoplasm with a
poor prognosis. Cholangiocarcinomas are commonly classified
as either extrahepatic cholangiocarcinoma (ECC) or intrahepatic
cholangiocarcinoma (ICC), on the basis of their anatomic
position in regard to the second-order bile ducts. Generally,
ECCs account for approximately 80-90% of diagnosed cases
of cholangiocarcinoma [1]. Most (60%-70%) of ECCs are
perihilar or “Klatskin” tumors, including the hepatic duct
bifurcation; the rest of ECCs incorporate in the distal common
bile duct [1].

Radical surgical resection is still the uniquely definitive and
effective therapy for the long-term survival of patients with
ECC. Patients with ECC show a low survival rate, attributed to
hidden early clinical symptoms and a lack of effective
nonsurgical therapeutic agents, which lead to local lymph
vascular invasion and lymph node metastases (LNMs) [2]. In
general, surgical resection with a cure expectation is associated
with an 18%-54% 5-year survival rate for ECC [3-5]. Among
clinicopathological features, tumor differentiation, positive
lymph node, and lymphatic invasion were considered
independent predictors of the overall survival rate of ECC [6-8].
Therefore, the accurate preoperative assessment of tumor
pathological differentiation degree and lymph node status
(especially lymph node status) could provide considerable help
for the planning of treatment as soon as possible.

Ultrasonography, computerized tomography (CT),
18-fluorodeoxyglucose positron emission
tomography/computerized tomography (18F–FDG-PET/CT),
magnetic resonance imaging (MRI) and magnetic resonance
cholangiopancreatography (MRCP), direct cholangiography,
and endoscopy are traditional imaging methods for observing
and diagnosing ECC [3,9]. MRI is regarded as a noninvasive
and precise imaging modality for patients with ECC. MRI can
provide information about lymph node metastases and survival
results [10]. However, we should recognize some of the inherent
defects of MRI. Traditional techniques mainly depend on
radiologists’ subjective visual and qualitative observations.
Therefore, we still have no quantitative way of predicting
pathological differentiation degree (DD) and LNM of ECC,
including MRI [11]. More importantly, it’s quite difficult to
analyze the tremendous digital characteristics of the cells,
physiology, and genetic variation of patients in the images,
which cannot be distinguished by human eyes [12]. In current
clinical studies, preoperative morphological features of lymph
nodes, such as size, number, ratio, morphology, signal intensity,
and lymph node changes, can be used to evaluate the
preoperative lymph node status of ECC [13-15]. However, the

accurate prediction method for assessing DD and LNM of ECC
is incomprehensive.

By extracting traditional MRI, a large number of radiologic
features can be obtained. Radiomics can be intuitively regarded
as an approach that can quantify the conversion of visual image
information into deep features [16,17]. This radiomics model
is based on a machine-learning approach that can help doctors
make the most accurate diagnosis by mining and analyzing
radiological features. So far, radiomics have been successfully
used to assist in decision making on the diagnosis and risk
stratification of several types of cancer, such as hepatocellular
carcinoma [18], glioma [19], rectal cancer [20], lung cancer
[21], breast cancers [22], and thymic epithelial tumors [23].
Nonetheless, the diagnostic significance of radiomics in patients
with ECC has not be evaluated.

In this paper, a radiomics model based on particle swarm
optimization and a support vector machine (PSO-SVM) was
developed for predicting DD and LNM of patients with ECC.

Methods

Patient Selection
We retrospectively collected a total of 110 consecutive patients’
data (which included 60 men and 50 women) with ECC who
underwent radical surgical resection between January 2011 and
October 2019 at our hospital (The Affiliated Hospital of
Southwest Medical University). Every inpatient underwent an
abdominal MRI examination within 2 weeks before surgical
resection, chemotherapy, or radiotherapy. With approval from
the local Institutional Review Board and Ethics Committee, all
features for patients with ECC were retrospectively investigated.
Retrieved data included clinical symptoms, laboratory
examination, surgery notes, MRI features, and pathological
outcomes (including pathological DD and lymph node status).
All identifying information in the records was deleted to protect
patients’ privacy.

The inclusion criteria were as follows: (1) All patients had
pathologically confirmed ECC; (b) the regional LNMs dissection
was performed during the operation; (3) abdominal MRI scans
were obtained within 2 weeks before surgical resection,
chemotherapy, or radiotherapy; and (4) the clinical and
follow-up data were available. The final diagnosis of ECC was
based on a combination of pathological examination results and
MRI examination. Exclusion criteria were as follows: (1) the
absence of preoperational MRI images; (2) obscure MRI images;
(3) the presence of unidentified, inconspicuous lesions; (d) a
lack of pathological DD or lymphatic status of ECC.
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Of the initial 172 patients with a pathological diagnosis of ECC
from January 2011 to February 2019, we excluded 62 patients
because of insufficient medical examination information, such
as the absence of preoperational MRI images (n=15), obscure
MRI images (n=24), the existence of unidentified, inconspicuous
lesions (n=5), and a lack of pathological DD or lymphatic status
of ECC (n=18). Consequently, 110 patients were used for DD

and LNM of ECC. A flow diagram summarizing the study
selection and inclusion is reported in Figure 1. The DD of ECC
was divided into a high-risk differentiation group (n=44) and a
low-medium risk differentiation group (n=66). The LNM of
ECC was divided into a positive lymph node metastases group
[LNM (+); n=79] and a negative lymph node metastases group
[LNM (-); n=31].

Figure 1. Flow diagram of patient cohort selection (n=110). DD: differentiation degree; ECC: extrahepatic cholangiocarcinoma; LNM: lymph node
metastases; MRI: magnetic resonance imaging.

Histopathologic Analysis of the Study Population
All study patients underwent surgical resection, lesions were
made into paraffin-embedded specimens, and the patients were
histologically diagnosed with ECC. The samples were colored
with a hematoxylin-eosin stain for regular histopathologic
assessment. All specimens were identified by a seasoned
histopathologist, who had over five years of work experience
and was trained not to disclose individual participants’ relevant
information.

According to the American Joint Committee on Cancer (AJCC)
and the College of American Pathologists, the ECC can be
divided into 3 pathological grades: high-differentiation (G1),
medium-differentiation (G2), and low-differentiation (G3) [24].
For G1, more than 95% of the tumor is composed of glands,
and the perniciousness of the degree of the tumor is relatively
low; for G2, 50–95% of the tumor is composed of glands, and
the degree of the tumor is moderately malignant; for G3, less
than 50% of the tumor is composed of glands, and the
perniciousness of the degree of the tumor is relatively large.
This pathological differentiation has a certain significance for
the clinical treatment and prognosis of ECC. Generally, G1 has

a better prognosis and less metastasis than G2 and G3. G3 has
a worse prognosis and more metastasis than G2.

MRI Acquisition Protocol
A Philips Achieva 3.0T superconducting MRI scanner with a
quasar dual gradient system and a 16-channel phased-array torso
coil was used to create all magnetic resonance images. Patients
were asked to fast for 4-8 hours before the examination, with
no restriction on drinking water. They also practiced breathing
and holding their breath in the supine position. The imaging
protocol mainly described the data acquisition and MRI
sequences analysis. The MRI sequences were the following: an
axial T1-weighted high-resolution isotropic volume excitation
sequence (T1WI), an axial fat-suppressed turbo spin-echo (TSE)
T2-weighted spectral attenuated inversion recovery (T2WI), a
coronal TSE T2WI sequence, an axial dual-echo T1WI
breath-hold gradient-echo sequence for the acquisition of
in-phase and out-of-phase images, axial diffusion-weighted
imaging (DWI), and T1-weighted dynamic contrast-enhanced
MR images (including arterial, portal venous, transitional, and
delayed phase). In this study, we mainly selected T1WI, T2WI,
DWI, and ADC as the image data. The parameters of MRI
sequences (T1WI, T2WI, DWI, ADC) are shown in Table 1.
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Table 1. The acquisition parameters of the abdominal magnetic resonance imaging (MRI) protocol.

Imaging protocolAcquisition parameters

ADCdDWIcT2WIbT1WIa

N/Ae21032610300Repetition time (milliseconds)

N/A707014Echo time (milliseconds)

N/A909010Flip angle (degrees)

N/A375×305280×305365×305Field of view (mm×mm)

N/A128×256176×20 1204×154Matrix size (mm×mm)

N/A7/17/17/1Slice thickness (mm)/gap(mm)

24722424Slices (mm)

N/A421Averaged number of signals

8000 and 800N/AN/Ab values (s/mm2)

aT1WI: T1-weighted imaging high spatial resolution isotropic volume exam.
bT2WI: fat-suppressed turbo spin-echo T2-weighted imaging spectral attenuated inversion recovery.
cDWI: diffusion-weighted imaging.
dADC: apparent diffusion coefficient.
eN/A: not available.

Workflow
The workflow of this paper is shown in Figure 2. It includes
five main parts: (1) imaging and region of interest (ROI)

segmentation, (2) radiomics features extraction, (3) dimension
reduction, (4) PSO-SVM model construct, and (5) data analysis.
These 5 parts will be detailed in the following section.

Figure 2. Research workflow of the paper. ADC: apparent diffusion coefficient; DD: differentiation degree; DWI: diffusion-weighted imaging; ECC:
extrahepatic cholangiocarcinoma; GLCM: grey-level co-occurrence matrix; LMN: lymph node metastases; PSO-SVM: particle swarm optimization
and support vector machine; RLM: grey-level run-length matrix; ROI: receiver operating characteristic curve; T1WI: T1-weighted imaging high spatial
resolution isotropic volume exam; T2WI: fat-suppressed turbo spin-echo T2-weighted imaging spectral attenuated inversion recovery.
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ROI Segmentation
All patients were followed up, and whether the lesion had
recurred or metastasized was determined by radiological and
pathological diagnosis. The relevant MRI images of patients
were collected in the PACS-DICOM (picture archiving and
communication system–Digital Imaging and Communications
in Medicine) system, where the sequences of ECC were clearly
selected. Given the 1515×1114-pixel image of
cholangiocarcinoma, the average area of the lesions was 125.522

mm2. We did not exclude any images, and the radiology feature
extraction used the entire ROI image.

Radiomics Feature Extraction
The MRI radiomics features of ECC were extracted using
MaZda software (version 4.6; Institute of Electronics, Technical
University of Lodz). The MRI analysis started with the
definition of the ROIs. Under the guidance of an experienced
radiologist, the ROI of the lesion was outlined to avoid adjacent
vessels and bile ducts, and to locate the inside of the parenchyma
of the tissue as much as possible. To outline lesions in MRI
images, it is necessary to maintain about 1-2 mm from the edge
of the tumor and to minimize the average volume of the
surrounding structures when extracting image features. In the
feature extraction process, the image intensity within the range
of μ (SD 3) was normalized to minimize the influence of contrast
and brightness variation. We finally extracted 300 radiomics
features from the ROI of each sequence based on the following
algorithms: first-order histogram, grey-level co-occurrence
matrix (GLCM), grey-level run-length matrix (RLM),
autoregressive model, and wavelet transform.

Data Dimensionality Reduction
All ROI features are high-dimensional data, and it may be
difficult to select the required features if data dimensionality
reduction (DDR) is not performed before the feature data is
inputted into the classifier.

The purpose of DDR was to reduce the number of attributes
under consideration so as to obtain the optimal features from
the original features. Therefore, before we performed image
classification and recognition, the significant features were
selected to reduce the bias in features modeling. Based on
MaZda software, we provided 3 methods for performing DDR
and obtaining the optimal features: (1) the Fisher algorithm (F),
(2) minimization of both classification error probability and the
average correlation coefficients algorithm (POE+ACC, PA),
and (3) mutual information (MI). These methods were used to
deal with each feature separately and to remove almost
indistinguishable features. Finally, 30 optimal features were
selected from 300 radiomics features of each sequence (T1WI,
T2WI, DWI, and ADC, respectively).

PSO-SVM Model Construction
After implementing DDR of the ROI features, the optimal
features were adopted to build the prediction model. In the
modeling process, all feature data had been normalized in the
interval (0,1) to eliminate the dimensional difference of
radiomics features. The min-max normalization algorithm was
used to normalize the radiomics features value cohort. In order

to calculate uniformly, the main purpose was to convert the
different magnitudes data into the same magnitude order. The
min-max normalization algorithm can be described from the
following equation:

X=(x-xmin)/(xmax-xmin) (1)

X is the normalized value of the optimal features, x is the value
of the optimal features, xmax is the maximum value of the optimal
features, and xmin is the minimum value of the optimal features.

Because cholangiocarcinoma is a rare disease and the number
of cases is relatively small, we faced a typical prediction
modeling problem of small sample sizes. The basic principle
of the PSO-SVM algorithm is to construct a hyperplane and
distinguish high-dimensional mappings of feature data
classification. The space of the feature data was taken as an
input variable, and then the penalty parameters (c and g) of the
support vector machine (SVM) were optimized by using the
PSO algorithm. Then, the SVM algorithm was used to construct
the prediction model for DD and LNM of ECC. To improve the
performance of the prediction model, cross-validation and
iterative training was used to verify data in this study.

Data Analysis

Development, Performance, and Validation of a Radiomics
Model

In this paper, a radiomics model based on the PSO-SVM
algorithm was established to predict DD and LNM of ECC by
combining the optimal features of the tumor ROI and clinical
outcomes. All patients were divided into high-risk and
low-medium risk differentiated groups according to the
pathological examination results. The min-max algorithm was
used to normalize 120 features, including 90 radiomics features
from 3 sequences (T1WI, T2WI, and DWI) and 30 ADC values
of the tumors, which can eliminate the negative effects caused
by different sample dimensions. The distribution of DD and
LNM cases of ECC was imbalanced. Statistically, there were
mainly 2 methods to solve the problem: one was the
under-sampling algorithm, and the other was the synthetic
minority oversampling algorithm (SMOTE) [25]. The
under-sampling algorithm could mainly achieve the sample
balance by reducing the data set. This method was suitable for
statistical problems with sufficient samples. Because there were
fewer cases of ECC in this study, the under-sampling algorithm
is not suitable for statistical problems with fewer samples. On
the contrary, the oversampling algorithm was artificial to
synthesize minority samples and add new samples to achieve
sample balance. For the DD of ECC, the number of low-medium
risk differentiated groups (n=68) was significantly larger than
that of high-risk differentiated groups (n=42) for the DD of
ECC, and the cases were extremely class-imbalanced. The
number of low-medium-risk and high-risk differentiation groups
were adjusted to be the same (n=1428) by using the SMOTE
algorithm, respectively. For the LNM of ECC, the number of
metastasis cases (n=33) was significantly less than nonmetastasis
cases (n=77). Similarly, the numbers of metastasis and
nonmetastatic groups were adjusted to be the same (n=231) by
using the SMOTE algorithm, respectively. In this way, the
number of ECC cases was balanced.
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During the modeling process, we randomly selected 88 cases
as the training group and the remaining 22 as the test group for
DD and LNM of ECC. The PSO algorithm was used to obtain
the optimal penalty parameters c of 7.3607 and g of 0.2132 so
as to improve the classification accuracy and the robustness of
this prediction model.

We determined the receiver operating characteristic curve (ROC)
and the area under the curve (AUC) to evaluate the predictive
performance of the PSO-SVM radiomics model. Furthermore,
the sensitivity, specificity, positive predictive value (PPV),
negative predictive value (NPV), and accuracy of the proposed
model were calculated. Then, this model was evaluated by all
of the above indicators for the validation cohort.

Statistics, Comparison, and Analysis

All continuous data (age and lesion area) were respectively
given as means and medians (with interquartile ranges). ROC
analysis was adopted to test the PSO-SVM model. We used the
MATLAB statistics package (version 9.1; MathWorks) to
conduct statistical analysis. We compared the result from the
same case with independent t tests and Wilcoxon rank sum tests,
whereas the categorical variables, including gender and tumor
location, were compared using a chi-square test. The evaluation
indicators of the proposed model were also designed by

MATLAB, which included AUC, classification accuracy, PPV,
NPV, sensitivity, and specificity. A 2-tailed P value of less than
.05 was considered statistically significant.

Results

Clinical Features of the Studied Patients
A total of 110 patients were selected from The Affiliated
Hospital of Southwest Medical University. The mean age of
patients was 57.0 (SD 10.0, range 28-83) years and the group
included 60 (54.5%) men and 50 (45.5%) women. The clinical
and baseline characteristics are summarized in Table 2.
According to the pathological results of ECC, all patient cases
were divided into high-risk differentiation groups (n=42) and
low-medium risk differentiation groups (n=68). Simultaneously,
there were no significant heterogeneity differences between the
2 groups of data features for DD of ECC.

According to the pathological examination report, of the 110
patients, a total of 33 cases (30%) were diagnosed with lymph
node metastasis, and the other 77 cases (70%) were diagnosed
as being without lymph node metastasis. By analyzing the 5
characteristics in Table 2, there were no significant heterogeneity
differences between the 2 groups of data features for non-LNM
and LNM of ECC.

Table 2. Clinical and pathological characteristics of patients with extrahepatic cholangiocarcinoma (ECC; n=110).

LNMa of ECCDifferentiation degree of ECCCharacteristics

P valueLNMNon-LNMP valueLow-medium risk
group

High-risk group

.27254.4 (10.6)58.0 (9.6).95757.5 (9.8)56.4 (10.3)Age in years, mean (SD)

.969.434Gender, n (%)

17(54.8)43(54.4)38(57.6)22(50)Male

14(45.2)36(45.6)28(42.4)22(50)Female

.174.876Lesion location, n (%)

17(54.8)32(40.5)29(43.9)20(45.5)Porta

14(45.2)47(59.5)37(56.1)24(54.5)Distal bile duct

.816103.515 (SD
70.998)

133.199 (SD
86.93)

.495131.8649 (SD
73.069)

115.144 (SD
78.425)

Lesion areab (mm2), mean (SD)

aLymph node metastases.
bLesion size was defined as the maximum diameter on transverse images.

Reliability of Radiomics Feature Selection
In order to construct a high-performance prediction model of
PSO-SVM, we needed to obtain reliable ROI features. First,
we randomly selected feature data of 30 patients from the 3
MRI sequences of T1WI, T2WI, and DWI, which had outlined
ROI segmentation and extracted radiomics features. To evaluate
the repeatability between intra-observer and inter-observer, we
provided 2 radiologists (JS and XH), each of whom have over
5 years of experience in abdominal oncologic imaging diagnosis.
They performed ROI segmentation and feature extraction of
the MRI images in a blinded fashion.

To ensure the objectivity of radiomics features, the 2 radiologists
were aware of the diagnosis of ECC but were blinded to the
clinical and pathologic details. The first radiologist repeatedly
followed the same procedure to outline and determine the ROI
twice within a week, and then we compared the 2 groups of
radiomics features to evaluate intra-observer reliability. The
second radiologist also independently outlined the ROI area
and extracted radiomics features according to the same operating
procedure. Then we evaluated inter-observer reliability by
comparing the extracted results of the ROI area between the
first radiologist and the second radiologist. The intraclass
correlation coefficient (ICC) was used to evaluate the
repeatability of radiomics features extracted by intra-observer
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and inter-observer. ICC can be obtained by using SPSS software
according to the following equation:

Cov (X,Y) is covariance; σX is X standard deviation; σY is Y
standard deviation.

The radiomics features with ICC values of both the
intra-observer and inter-observer greater than 0.75 (indicating
satisfactory repeatability) were selected for subsequent modeling
research. According to the above requirement, since all 300

radiation features extracted from each sequence have satisfactory
consistency, no abnormal feature data were found and
eliminated. The average value of the ICC within the
inter-observer reached 0.97 (range 0.812-1, P<.001), and the
average ICC among the intra-observers reached 0.98 (range
0.826-1, P<.001), as shown in Table 3. According to the above
calculation results, because the radiology features extracted in
each sequence (T1WI, T2WI, DWI, ADC) have satisfactory
consistency, no abnormal feature data was found and eliminated.
Therefore, no abnormal characteristic data was found and
eliminated.

Table 3. The intraclass correlation coefficient (ICC) between the intra-observer and inter-observer.

Inter-observerIntra-observerData

3030Patients, n

T1WI, T2WI, DWIT1WI, T2WI, DWIMRI sequence

ICC

0.97490.9849Mean

10.9999Maximum

0.86410.8256Minimum

0.03330.0278SD

PSO-SVM Model Construction
We selected 90 optimal features from 3 sequences (T1WI,
T2WI, and DWI) and 30 ADC values by reducing
dimensionality as the sample set. All of the data was normalized
to be used for modeling. We randomly selected the optimal
features of 88 patients as the training cohorts and the remaining
optimal features of 22 patients as the test cohorts. The training
cohorts were used to optimize the penalty parameters (c and g)
of the SVM by using the PSO algorithm. To further improve
the performance of the SVM classifier, the test cohorts were
used to verify the performance and accuracy of the SVM
classifier. Consequently, we built a radiomics prediction model
based on PSO-SVM using the MRI images for predicting DD
and LNM of ECC.

Overall Validation of the PSO-SVM Radiomics Model
In order to verify the robustness and deliverability of the
PSO-SVM radiomics prediction model, we mainly evaluated
the classification accuracy through the ROC curve. The ROC
curve is a basic tool used for diagnostic test evaluation, which
could reflect the performance of the PSO-SVM radiomics

prediction model; it should ensure that the classification rates
of the high-risk and low–medium-risk differentiated cases are
as high as possible. However, the prediction model would make
sure that a lot of the true positive cases are detected, even at the
cost of some false positives during the screening phase.

Based on the PSO-SVM radiomics model, the performance of
this model for predicting DD and LNM of ECC is shown in
Figure 3, and the detailed data is listed in Table 4. The average
accuracy of the training group and the testing group for DD of
ECC were 82.6% and 80.9%, respectively; the average
sensitivity was 80.5% and 78.1%, respectively; the average
specificity was 83.1% and 81.5%, respectively; the positive
predictive value was 77.2% and 75.6%, respectively; and the
negative predictive value was 84.6% and 81.8%, respectively.
The average accuracy of the training group and the testing group
for LNM of ECC was 83.6% and 81.2%, respectively; the
average sensitivity was 85.8% and 83.2%, respectively; the
average specificity was 82.1% and 79.6%, respectively; the
positive predictive value was 79.1% and 76.9%, respectively;
and the negative predictive value was 89.5% and 86.5%,
respectively.
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Figure 3. Receiver operating characteristic curves (ROC) of the performance evaluation for (a) differentiation degree prediction of extrahepatic
cholangiocarcinoma in the training and testing cohorts and (b) lymphatic node metastasis of extrahepatic cholangiocarcinoma in the training and testing
cohorts. AUC: area under the curve.

Table 4. The performance of the radiomics prediction model for predicting differentiation degree (DD) and lymph node metastases (LNM) of extrahepatic
cholangiocarcinoma (ECC) by using a particle swarm optimization and support vector machine (PSO-SVM) model.

LNM of ECCDD of ECCEvaluation indicators (%)

Testing groupTraining groupTesting groupTraining group

88.990.4b84.689.1bAverage AUCa

81.283.680.982.6Average accuracy

83.285.878.180.5Average sensitivityc

79.682.181.583.1Average specificityd

76.979.175.677.2Average PPVe

86.889.581.884.6Average NPVf

aAUC: area under the curve.
bP<.001.
cSensitivity is computed at average radiologist specificity.
dSpecificity is computed at average radiologist sensitivity.
ePPV: positive predictive value; positive predictive value is computed at average radiologist sensitivity.
fNPV: negative predictive value.

Discussion

Principal Findings
We developed and validated a PSO-SVM prediction model for
DD and LNM of ECC by using a radiomics approach. We
performed this study to evaluate ECC and improved the
efficiency of clinical diagnosis by using machine learning
algorithms and a radiological approach. Our preliminary findings
indicate that the radiological model incorporating the patients’
MRI image sequence (T1WI, T2WI, DWI) and ADC values

has superior diagnostic performance. The prediction
performance of this model is shown in Figure 3. In the training
and test groups, the average AUC of patients for high, medium,
and low DD of ECC were 0.8905 and 0.8461 (the maximum
AUC was 0.97), respectively. The average AUC of patients for
LNM of ECC were 0.9036 and 0.8889 (with a maximum AUC
of 1.00), respectively. Compared with the literature [20,26], our
research results have higher prediction accuracy. The entire
prediction model has the characteristics of multi-modality and
high robustness, which comprehensively considered the
radiomics feature of multiple sequences (T1WI, T2WI, DWI,
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ADC). Therefore, the proposed PSO-SVM prediction model
can help clinicians choose an optimal treatment strategy,
improve the prognosis of patients with ECC, and reduce
complications, making it a potential postoperative evaluation
tool in clinical practice.

It is generally recognized that imaging is the most important
method for preoperative evaluation of ECC. However, traditional
imaging methods have many defects in accurately evaluating
the DD and LNM of ECC. The continuous development of
ultrasonography, CT, 18-FDG PET/CT, and MRI technology
in medical research have provided a great leap forward with
respect to the LNM status of ECC [27-30]. Ercolani et al [29-31]
reported that the sensitivity, specificity, and accuracy of CT
examination of ECC were 35.2%, 91.8%, and 46.1%,
respectively. Lewis et al [32,33] showed that CT and MRI can
evaluate the degree of pathological differentiation of ECC.
However, the traditional techniques, which mainly rely on the
subjective observation of radiologists, have many limitations.
Transabdominal ultrasonography may only detect the dilatation
of bile ducts in the majority of patients with intraductal tumors.
CT can be used for X-ray imaging, but X-ray itself may be
harmful to the health of patients. PET/CT is expensive and may
be affected by false-positive results of benign lesions, such as
biliary tract infection or sclerosing cholangitis [34,35]. Most
importantly, it is difficult to analyze the tremendous digital
characteristics of the biological features of patients in images
using traditional techniques.

In contrast, radiomics can conquer these shortcomings.
Researchers of radiomics can develop predictive models for
clinical outcomes, such as survival, distant metastasis, and
molecular feature classification [34-37], by mining potential
associations between the quantitative features and
pathophysiological characteristics of images [36-39]. According
to our literature review, there is a sparse number of studies on
DD and LNM that use a machine learning algorithm combined
with radiomics to predict ECC, and the prediction accuracy is
low. In this study, we innovatively proposed a PSO-SVM model
based on radiomics to predict the DD and LNM of ECC. In the
training and testing groups, the average prediction accuracy
values of DD and LNM of patients with ECC were 82.6% and
83.6%, respectively, and the average AUC values were 0.8680
and 0.89690, respectively. The prediction results of this model
were superior to those obtained from traditional image
evaluation, such as ultrasonography, CT, 18-FDG PET/CT, and
MRI technology. The results of our research indicate that the
PSO-SVM model based on radiomics has potential clinical
value as an auxiliary diagnostic method for the preoperative
quantitative prediction of DD and LNM of ECC.

Furthermore, in order to use the extracted feature information
to describe the shape and internal heterogeneity of the lesion
area, the radiological features were integrated with the cellular
and molecular features of the lesion to improve the accuracy of
diagnosis prediction. So far, only a few studies have reported
the relationship between the radiological features and the
biological features of cholangiocarcinoma lesions. Researchers
discovered that certain texture parameters correlate significantly
with microvascular invasion, perineural invasion, differentiation,
Ki-67, vascular endothelial growth factor, and cytokeratin 7

based on ultrasonography medical images [40]. They proposed
radiomics signatures that have moderate efficiency in predicting
the biological behaviors of cholangiocarcinoma noninvasively
[40]. Gu-Wei Ji et al [41] regarded a radiomics model based on
arterial phase CT scans as a valuable diagnostic tool to forecast
LNM of ICC. Zhao et al [42] discovered that the combined
model, containing enhancement MRI patterns, vascular
endothelial growth factor (VEGFR), and radiomics features,
showed a preferable early recurrence predictive performance
compared to the radiomics model or clinic
radiologic-pathological model alone, with AUC, sensitivity,
and specificity values of 0.949, 0.875, and 0.774, respectively.
Liang et al [43] showed that the noninvasive radiomics
nomogram developed using the radiomics signature and clinical
stage could be used to predict early recurrence of ICC after
partial hepatectomy. Compared with ultrasound and CT
examination, MRI has become the imaging modality of choice
for bile duct disease examination, especially for diagnosis and
staging of cholangiocarcinoma. The contrast of high soft tissue
helps to better discover and identify the infiltrating lesions.
Magnetic resonance cholangiopancreatography (MRCP) is the
most noninvasive method for evaluating bile ducts, allowing
for assessments of tumor spread and the level of obstruction
[44]. Dynamic contrast-enhanced MRI can not only provide
crucial information about tumors, but it can also flag the
appearance of distant metastasis and vascular invasion. The
MRI examination can provide precise information on the biliary
system, lesion range, and local tumor invasion.

As there were many differences between ECC and other liver
lesions, such as origin, morbidity, growth pattern, imaging
features, and tumor prognosis, the single evaluation method of
ECC using radiological characteristics is prone to diagnostic
blind spots. Since the ADC value could describe the diffusion
capacity of water molecules in the lesion cells, the tissue
structure and functional location of the lesion at the cellular and
molecular level could be evaluated by combining the ADC value
and radiological characteristics. Therefore, another innovation
of this study is that we innovatively integrated 90 radiomics
features from 3 MRI sequences (T1WI, T2WI, and DWI) and
30 ADC values to improve the prediction accuracy of the
PSO-SVM model. At the same time, during the entire training
process, the algorithm was repeatedly optimized with 200
iterations to ensure the reliability of the model. Therefore, our
model can provide clinicians with auxiliary decision-making
for ECC and provide a more personalized treatment plan for
patients.

Limitations
The proposed research has certain limitations and deficiencies.
First, since ECC is a rare disease, all patients were obtained
from a single medical institution (The Affiliated Hospital of
Southwest Medical University) for our study, and the sample
number of the cases was relatively small. In order to further
improve the accuracy and robustness of the prediction model,
the next research work is mainly dedicated to collecting more
patient data from other medical institutions. Secondly, the design
of the study was retrospective in this paper; thus, there were
missing data regarding clinical factors and disease progression.
Finally, this model has certain predictive barriers in this study,
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which cannot make multi-modal prediction results for patients
with time-variance. As the radiomics diagnosis is a systematic
project, the models should take into account as many factors as
possible, and the radiomics features should be correlated with
other clinical results, such as biochemical examination,
pathology, radiology, and genomic features, and provide
quantitative clinical analysis results. With the development of
various hospital information technologies and personal wearable
devices, it has become more feasible to use real-time collected
health data for comprehensive health management [45,46] or
hospital data to support intelligent auxiliary diagnosis and
decision-making. Therefore, the multi-modal and big data
prediction model for ECC will become the focus of the next
research study.

Conclusions
In this paper, we developed a PSO-SVM radiomics model that
incorporates the qualitative and quantitative radiomics features
and pathological characteristics for predicting DD and LNM of
ECC. The techniques used include image sketching, ROI region
segmentation, feature extraction, dimension reduction,
preprocessing, and classification. This model has the advantages
of a simple principle, low computational cost, good robustness,
and less manual intervention. The prediction result of the
PSO-SVM radiomics model might be useful in the assistance
of clinical diagnosis and decision-making, and the guidance of
patients toward more individualized and accurate treatment.
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