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Abstract

Background: Risk scores can be useful in clinical risk stratification and accurate allocations of medical resources, helping
health providers improve patient care. Point-based scores are more understandable and explainable than other complex models
and are now widely used in clinical decision making. However, the development of the risk scoring model is nontrivial and has
not yet been systematically presented, with few studies investigating methods of clinical score generation using electronic health
records.

Objective: This study aims to propose AutoScore, a machine learning–based automatic clinical score generator consisting of
6 modules for developing interpretable point-based scores. Future users can employ the AutoScore framework to create clinical
scores effortlessly in various clinical applications.

Methods: We proposed the AutoScore framework comprising 6 modules that included variable ranking, variable transformation,
score derivation, model selection, score fine-tuning, and model evaluation. To demonstrate the performance of AutoScore, we
used data from the Beth Israel Deaconess Medical Center to build a scoring model for mortality prediction and then compared
the data with other baseline models using the receiver operating characteristic analysis. A software package in R 3.5.3 (R
Foundation) was also developed to demonstrate the implementation of AutoScore.

Results: Implemented on the data set with 44,918 individual admission episodes of intensive care, the AutoScore-created scoring
models performed comparably well as other standard methods (ie, logistic regression, stepwise regression, least absolute shrinkage
and selection operator, and random forest) in terms of predictive accuracy and model calibration but required fewer predictors
and presented high interpretability and accessibility. The nine-variable, AutoScore-created, point-based scoring model achieved
an area under the curve (AUC) of 0.780 (95% CI 0.764-0.798), whereas the model of logistic regression with 24 variables had
an AUC of 0.778 (95% CI 0.760-0.795). Moreover, the AutoScore framework also drives the clinical research continuum and
automation with its integration of all necessary modules.

Conclusions: We developed an easy-to-use, machine learning–based automatic clinical score generator, AutoScore; systematically
presented its structure; and demonstrated its superiority (predictive performance and interpretability) over other conventional
methods using a benchmark database. AutoScore will emerge as a potential scoring tool in various medical applications.
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Introduction

Risk-scoring models are sparse models with integer point scores,
which are used pervasively throughout medicine for risk
stratification [1]. Risk-scoring models have been developed to
determine which patients are at most risk of adverse events or
worsening health conditions. Accurate identification of patients
at risk can be useful for appropriate allocations of medical
resources [2-4]. Risk-scoring models have been traditionally
developed in 1 of 2 ways: through expert opinions or consensus,
such as the Sepsis-related Organ Failure Assessment [5] score
and the National Early Warning Score [6], and through the
analysis of conventional cohort studies, such as the History,
Electrocardiogram, Age, Risk factors, and Troponin score [7]
and the Charlson Comorbidity Index [8]. Both approaches are
labor-intensive and are not easy to update over time, which
reveals the need for a flexible and fast approach to deriving
risk-scoring models.

At present, the increasing popularity of electronic health records
(EHRs) [9] creates an opportunity to take advantage of its
growing quantity and diversity of data for creating novel risk
models with both domain expert–curated approaches and
advanced machine learning solutions. Although EHRs are rich
data sources, numerous data items are collected in a
nonsystematic way related to clinical use, leading to a bevy of
irrelevant and redundant information. Therefore, variable
selection, the process of determining a subset of relevant and
discriminative variables for model development [10], plays an
essential role in the development of a risk model. In risk models,
more variables do not necessarily lead to better performance
[11]. Moreover, irrelevant and redundant information can
adversely affect model interpretability and accessibility,
especially in the clinical context. A typical but time-intensive
approach for variable selection uses domain knowledge obtained
from literature reviews and consultation with experts; however,
the literature may not always be available, and the expert’s
interpretation could be biased. Analytic approaches exist, such
as stepwise methods (eg, forward and backward) and
regularization (eg, the least absolute shrinkage and selection
operator [LASSO]). However, when data sets are large enough,
these methods do not often achieve a sparse solution. Thus,
there is an unmet need to develop a parsimonious model with
easy access to validation in the context of EHRs.

Model complexity not only affects model efficiency but also
impacts transparency and interpretability [12] in clinical
practice. Although machine learning often has greater predictive
accuracy than simpler models, it has 2 key shortcomings. First,
machine learning is harder to implement in real-world settings
where many EHR systems can only accept regression or

point-based approaches [13,14]. Second, it has lower
explainability due to its black box nature. Clinicians may not
accept black box models due to various reasons such as lack of
external validation and the involvement of complex
mathematical computation. Sullivan et al [15] suggested that
the multivariable mathematical models are relatively complex,
and the calculation should be simplified to allow application of
models even without a computer, making these complex
statistical models useful to clinical practitioners. Churpek et al
[4] also suggested that a simple and parsimonious model can
be applied at the bedside and easily validated across different
hospitals. Thus, point-based scoring models are more favored
in the medical context and are still widely used in clinical
decision making. However, as developing a scoring model is
nontrivial, there is a need to automate the process of score
generation to cater to the increasingly diversified patient
population and large-scale EHRs.

To tackle these problems and systematically present a robust
and generic method for developing risk-scoring models, we
proposed AutoScore, an automatic clinical score generator, by
combining machine learning and regression modeling. The
proposed AutoScore framework can automatically generate
parsimonious sparse-score risk models (ie, risk scores), which
can be easily implemented and validated in clinical practice. In
this study, we implemented our proposed AutoScore framework
to build an actual risk-scoring model for inpatient mortality
prediction.

Methods

AutoScore for Automatic Score Generation
In this paper, we proposed the AutoScore, a novel framework
for automating the development of a clinical scoring model for
predefined outcomes and systematically presented its structure.
AutoScore consists of 6 modules: variable ranking with machine
learning, variable transformation, score derivation, model
selection, domain knowledge–based score fine-tuning, and
model evaluation. In our demonstration, the full data set was
randomly split into a nonoverlapping training set (70%),
validation set (10%; if downstream parameter tuning is needed),
and test set (20%). The training set was used to derive the scores.
The validation set was used for intermediate performance
evaluation and parameter selection, which were elaborated in
Module 4. The test set acted as an unseen data set and was used
to generate the metrics of final model performance in Module
6. In real-world clinical applications, users can set up training,
validation, and test sets accordingly instead of random splitting.
Figure 1 illustrates the framework of AutoScore, and details of
its 6 modules are elaborated as follows.
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Figure 1. Flowchart of the AutoScore framework. ROC: receiver operating characteristic.

Module 1: Variable Ranking With Machine Learning
The first step in the AutoScore framework is variable ranking.
We use random forest (RF) [16,17], an ensemble machine
learning algorithm, to identify the top-ranking predictors for
subsequent score generation. RF consists of multiple
tree-structured classifiers (decision trees). Each of the trees is
grown using a classification and regression tree [18] to
maximum size, without pruning, and trained on a bootstrap
sample and a random subset of all variables. Each tree sees only
a subset of variables and part of the observations by resampling,
which guarantees that the trees are decorrelated and, therefore,
less prone to overfitting [19]. For the classification task, the
Gini index is used to determine the optimal split. For each node

of a decision tree , the Gini index can be defined as
follows:

where pr refers to the fraction of training samples from the rth

class in the node and R=2 in binary classification. In addition
to outcome prediction, RF ranks variables on the basis of their
predictive importance [20]. The mean decrease impurity is the
measurement of variable importance, calculated by the total
decrease in node impurities from splitting on the variable. The
importance measurement of a variable Xm is the weighted total

of impurity decreases w( )ΔGini( ) for all nodes , averaged
over all trees [21]:

Where w( ) is the proportional weight N / N of samples

reaching node , v( ) is the variable in the split of the node

, ΔGini( ) is the total impurity decrease after the split of the

node ; and N is the number of decision trees in the RF
model. Then, Imp(Xm) will be used for variable ranking for each
Xm.

An advantage of using RF as the variable ranker over other
methods such as backward stepwise regression or LASSO is
that as a nonparametric model, RF is able to rank variables on
the basis of their nonlinear and heterogeneous effects. In the
AutoScore framework, the final list of variables is decided by
the ranking, in addition to the parameter m, which is the number
of final selected variables. Parameter m can be chosen case by
case in accordance with clinical preference, expert knowledge,
or the needs of real-world applications. Moreover, an optimized
number of variables can be determined through grid search and
performance validation, which will be elaborated in Module 4.

Module 2: Variable Transformation
After variable selection, all selected variables are preprocessed
for variable transformation, that is, continuous variables are
converted into categorical variables. Creating categorical
variables allows for the modeling of nonlinear effects. In
AutoScore, the maximum number of categories (eg, K=5) for
each variable is predefined to ensure its usability. For a
categorical variable, if the original number of categories (L)
exceeds the predefined maximum number (ie, L>K), several
excess categories need to be combined, and K' is the number of
categories of the transformed variable where K'≤L. Unlike
categorical variables, to develop a point-based score, continuous
variables will be stratified by specific quantiles into K categories
(in our study, K=5). We set the quantiles as 0%, k1%, k2%, k3%,
k4%, and 100%. The values of k1, k2, k3, and k4 can be set in
accordance with the distributions of the variables. In our study,
we set the default values as follows: k1=5, k2=20, k3=80, and
k4=95, which were appropriate for most variables (such as
common vital signs and laboratory test results), especially those
with normal or near-normal distributions.
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Module 3: Score Derivation by Weighting and
Normalization
With the selected and transformed variables, we created a risk
score to predict the outcome, in which each category of an
individual variable is weighted and given an integer point. As
the default setting, we used logistic regression for score
weighting, with which the points can be easily interpreted.

Where β0 is the intercept, β1. . . βm are the coefficients for each
category, X1. . . Xm are the predictive variables, and Y is the
binary outcome.

Multivariable logistic regression is performed to determine
regression coefficients. On the basis of the results, the category
of each variable with the lowest β coefficient is set as the
reference. Next, multivariable logistic regression is performed
again with adjusted reference categories to ensure that there are
no negative coefficients. Subsequently, all coefficients β
obtained from the second-round logistic regression are divided
by the lowest β of all variables to ensure that all of the points
are larger than one, that is,  βnew = β/βlowest. The final weighted
points for each category were rounded as  βscore = round(βnew).
With βscore, we can obtain a scoring table where each category
of a variable is given certain points. The total score is computed
by summing up all points. To satisfy the need for specific
clinical applications, we can set the ceiling value for the total
score and normalize the score breakdowns, divided by a
common denominator.

Module 4: Model Selection and Parameter Determination
The number of variables (m) is a critical parameter for
controlling model complexity in the scoring model. A model is
considered parsimonious when it is both sparse (using the least
number of variables possible) and possesses a good prediction
accuracy. To cope with the trade-off between accuracy and
complexity, different parameter m will be examined on the
validation set and a parsimony plot (ie, model performance vs
complexity) will be plotted, to which the user can refer for
deciding the trade-off in deriving the risk scores. The best
parameter m is determined when m continues to increment and
the prediction performance is no longer improving significantly,
as shown in the parsimony plot. After confirming the parameter
m, the final list of variables will be determined on the basis of
the ranking obtained from Module 1. Modules 2 and 3 will be
reimplemented to generate the initial scoring model.

Module 5: Fine-Tuning Cutoff Points in the Variable
Transformation
Domain knowledge is essential in guiding risk model
development. For continuous variables, the variable
transformation (Module 2) is a data-driven process, in which
domain knowledge is not integrated. In this module, the
automatically generated cutoff values for each continuous
variable can be fine-tuned by combining, rounding, and
adjusting according to the standard clinical norm. The

fine-tuning process endows the final risk scores with orderliness,
professionality, and acceptability. After adjusting the cutoffs
to convert continuous variables into categorical variables,
Modules 2 and 3 will be implemented again to create an updated
score table.

Module 6: Predictive Performance Evaluation
The performance of the score is evaluated on the basis of the
receiver operating characteristic (ROC) analysis. The
intermediate evaluation based on the validation set provides
information for model optimization (eg, Modules 4 and 5). For
the final model evaluation based on the unseen test set, the area
under the ROC curve (AUC) acts as the primary metric. In
addition, sensitivity, specificity, positive predictive value (PPV),
and negative predictive value (NPV) are calculated under the
optimal cutoffs, defined as the points nearest to the upper-left
corner of the ROC curves. Performance metrics under different
cutoffs are also compared to evaluate the predictive
performance. In the demonstration, we included cutoffs, by
which the sensitivity or specificity could reach about 95% to
satisfy certain needs in clinical settings.

Software Package
We have introduced all the 6 major modules of the AutoScore
framework, with which clinical risk scores can be developed
using specific patient cohorts and outcomes. We further created
the AutoScore software suite [22] (Multimedia Appendices 1
and 2) under the R 3.5.3 (R Foundation) programming
environment to demonstrate its capability and to facilitate its
implementation and validation in other applications. Given a
new data set, the AutoScore tool can be conveniently
implemented to generate a point-based clinical scoring model
to predict the outcome, with the minimum manual processes
for data processing, parameter tuning, and model fine-tuning.

Clinical Study Design
We conducted a retrospective analysis of data from the Beth
Israel Deaconess Medical Center (BIDMC) to demonstrate the
usability of our proposed AutoScore framework. BIDMC is a
teaching hospital at the Harvard Medical School in Boston. It
has 673 inpatient beds and receives about 55,000 emergency
department visits annually. We aimed to implement AutoScore
to automatically generate point-based scores for risk prediction
of inpatient mortality and compared AutoScore-created scoring
models with several baseline models.

Data Collection and Cohort
The BIDMC data set was obtained from the Medical Information
Mart for Intensive Care III [23] database compiled by the
Massachusetts Institute of Technology Laboratory for
Computational Physiology. A total of 58,976 BIDMC admission
encounters from 2001 to 2012 were recorded in this database.
All inpatient encounters for which the patient aged 18 to 90
years were included in our study cohort. The admission episodes
during which patients died within 24 hours after the intensive
care unit (ICU) admission or missed more than 50% of the
features were excluded. A flowchart of cohort formation is
shown in Figure 2.
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Figure 2. Flowchart of the study cohort formation. BIDMC: Beth Israel Deaconess Medical Center.

Variables and Clinical Outcome
The primary outcome in this study was inpatient mortality,
defined as deaths that occurred during the hospital stay. In the
BIDMC data set, we extracted patients’ first-day variables
during their ICU stay. We previously demonstrated that
demographic features, vital signs, and laboratory tests were
highly related to inpatient mortality [24]. Similar results were
also reported in other studies [25]. Thus, the predictor variables
included age, sex, race, type of insurance, heart rate (beats/min),
respiration rate (breaths/min), peripheral capillary oxygen
saturation (SpO2; %), diastolic blood pressure (mm Hg), systolic
blood pressure (mm Hg), mean arterial pressure (MAP; mm
Hg), temperature (°C), bicarbonate (mmol/L), creatinine
(μmol/L), potassium (mmol/L), sodium (mmol/L), hemoglobin
(g/dL), glucose (mg/dL), blood urea nitrogen (BUN; mg/dL),
platelet (thousand per microliter), lactate (mmol/L), anion gap
(mEq/L), hematocrit (%), chloride (mEq/L), and white blood
cells (thousand per microliter). As there were multiple sets of
vital signs or laboratory data collected in the ICU, the mean
values were used in this study.

Baseline Models Versus AutoScore
To evaluate the performance of AutoScore, we compared it with
several standard predictive models. The first model was built
with logistic regression by using all available variables from
the training data set without variable selection. The second
model was built using stepwise multivariable logistic regression
[26]. It built a regression model with variable selection using
the Akaike information criterion (AIC). Backward selection
began with all the variables and removed the least significant
one at each step following the declined AIC until none met the
criterion. It penalized models with a large number of variables
for a simple and parsimonious model. The third baseline model
was built with LASSO [27], which is another popular method
used in clinical modeling. It is a regression-based method that
performs regularization for variable selection to improve both
the predictive accuracy and interpretability of the statistical
model. Its regularization rate was optimized through 10-fold
cross-validation in our study. The last two baseline models were
built using RF. We created both a full RF model using all
available variables and an RF model using the
AutoScore-selected variables. The parameters were selected
according to the suggestions in previous literature [28,29], where

ntree=100 and mtry=m1/2 (ntree: the number of trees grown;
mtry: the number of variables randomly sampled as candidates
at each split).

Statistical Analysis and Model Evaluation
Data were analyzed using R 3.5.3 (R Foundation). The baseline
characteristics of the data set are described. In the descriptive
summaries, frequencies and percentages were reported for
categorical variables, whereas means and SDs were reported
for continuous variables. We compared patients with and without
inpatient mortality using a two-tailed Student t test for

continuous variables and the χ2 test for categorical variables.
During the analysis, values of vital signs or laboratory tests
were considered as outliers if they were beyond the normal
range on the basis of domain knowledge. All detected outliers
were set as missing values, which were subsequently imputed
with the median values that were computed from the training
set.

We compared the AutoScore-created scoring model with several
baseline models to evaluate their predictive accuracy and
interpretability. The test set was used to generate the metrics of
model performance, and its bootstrapped samples were applied
to calculate 95% CIs. Predictive accuracy was compared on the
basis of ROC analysis and AUC values. Model interpretability
was assessed by its complexity (eg, the number of variables
included and the level of model nonlinearity) and its inherent
explainability of the internal interaction. Model calibration was
evaluated using the calibration belt plot test [30]. In addition,
the distribution and observed mortality rate for each aggregated
score were plotted for displaying its discriminative power.

Results

Baseline Characteristics of the Study Cohort
In this study, a total of 44,918 individual ICU admission
episodes from the BIDMC data set were selected (Figure 2). Of
all eligible episodes, 8.8% (3958/44,918) of the episodes had
an outcome, that is, inpatient mortality. Summary baseline
characteristics are shown in Table 1, and the distributions of
other clinical continuous variables are shown in Table 2. In this
cohort, the mean age was 62.5 (SD 16.5) years, 57.4%
(25,788/44,918) were male, 84.9% (38,138/44,918) admissions
were emergent, and the ethnic compositions were complex
(31,889/44,918, 71.0% White; 4399/44,918, 9.8% African;
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1625/44,918, 3.6% Hispanic; 1034/44,918, 2.3% Asian; and
5971/44,918, 13.3% others or unknown). We noticed that
patients were admitted into different ICUs, which included
Coronary Care Unit (CCU), Cardiac Surgery Recovery Unit
(CSRU), Medical Intensive Care Unit (MICU), Surgical
Intensive Care Unit (SICU), and Trauma Surgical Intensive

Care Unit (TSICU). The average length of stay for all admission
episodes was 4.19 (SD 6.11) days. Compared with the patients
who survived to discharge, patients who died in hospitals were
older, had a higher chance of emergency admission, had a longer
length of stay, and a higher probability of being admitted to the
MICU and paying by Medicare.

Table 1. Description of the study cohort (N=44,918).

P valueInpatient mortality (n=3958)Live discharged (n=40,960)All episodes (N=44,918)Variables

<.00168.5 (14.7)62.0 (16.6)62.5 (16.5)Age (years), mean (SD)

.04Gender, n ( %)

2210 (55.8)23,578 (57.6)25,788 (57.4)Male

1748 (44.2)17,382 (42.4)19,130 (42.6)Female

<.001Admission type, n (%)

3799 (96.0)34,339 (83.8)38,138 (84.9)Emergency

159 (4.0)6621 (16.2)6780 (15.1)Elective

<.001Ethnicity, n (%)

2741 (69.3)29,148 (71.2)31,889 (71.0)White

86 (2.2)1539 (3.8)1625 (3.6)Hispanic

101 (2.6)933 (2.3)1034 (2.3)Asian

289 (7.3)4110 (10.0)4399 (9.8)African

741 (18.7)5230 (12.8)5971 (13.3)Others or unknown

<.001Insurance, n (%)

68 (1.7)1258 (3.1)1326 (3.0)Government

280 (7.1)3896 (9.5)4176 (9.3)Medicaid

2595 (65.6)21,283 (52.0)23,878 (53.2)Medicare

968 (24.5)14,063 (34.3)15,031 (33.5)Private

47 (1.2)460 (1.1)507 (1.1)Self-pay

<.001ICUa type, n (%)

538 (13.6)5907 (14.4)6445 (14.3)CCUb

253 (6.4)8031 (19.6)8284 (18.4)CSRUc

2070 (52.3)15,420 (37.6)17,490 (38.9)MICUd

671 (17.0)6649 (16.2)7320 (16.3)SICUe

426 (10.8)4953 (12.1)5379 (12.0)TSICUf

<.0017.57 (8.36)3.87 (5.75)4.19 (6.11)Length of stay (days), mean (SD)

aICU: intensive care unit.
bCCU: coronary care unit.
cCSRU: cardiac surgery recovery unit.
dMICU: medical intensive care unit.
eSICU: surgical intensive care unit.
fTSICU: trauma surgical intensive care unit.
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Table 2. Distribution of clinical variables in the study cohort.

Values, median (IQR)Variables

64.4 (51.9-75.9)Age (years)

84.4 (74.5- 95.2)Heart rate (beats/min)

116.7 (107.1-129.5)Systolic blood pressure (mm Hg)

60 (53.7-67.4)Diastolic blood pressure (mm Hg)

76.9 (70.7-84.9)Mean arterial pressure (mm Hg)

18.0 (15.9-20.6)Respiration rate (breaths/min)

36.8 (36.5-37.2)Temperature (°C)

97.6 (96.2-98.7)Peripheral capillary oxygen saturation (SpO2; %)

129.0 (111.3-154.3)Glucose (mg/dL)

13.5 (12-16)Anion gap (mEq/L)

24.0 (21.5-26.5)Bicarbonate (mmol/L)

0.95 (0.7-1.4)Creatinine (μmol/L)

105 (101.5-108)Chloride (mEq/L)

1.8 (1.7-2.0)Lactate (mmol/L)

10.9 (9.6-12.3)Hemoglobin (g/dL)

32.3 (28.8-36.4)Hematocrit (%)

208.5 (153.5-276.5)Platelet (thousand per microliter)

4.2 (3.8-4.5)Potassium (mmol/L)

18.0 (12.5-29.5)Blood urea nitrogen (mg/dL)

138.5 (136-140.5)Sodium (mmol/L)

10.7 (8.0-14.3)White blood cells (thousand per microliter)

Comparison of Selected Variables
Table 3 depicts the comparison of selected variables in the final
model with different methods. The stepwise regression selected
22 variables, whereas the LASSO algorithm selected 17
variables after parameter tuning by 10-fold cross-validation.
AutoScore selected a predefined number (m) of variables, and
parameter m was optimized by a parsimony plot (ie, model
performance vs complexity) on the validation set. As shown in
part (a) of Figure 3, we chose 9 variables as the parsimonious
choice as it achieved a good balance in the parsimony plot.

When more variables were added to the scoring model, the
performance was not markedly improved. Nine and 12 were
selected as the number of variables in the demonstration. Users
can also choose another parameter m if other restrictions or
clinical preferences exist in real-life application scenarios. As
seen from Table 3, the selected variables of AutoScore mostly
coincided with those of the stepwise regression and LASSO.
Notably, AutoScore generated a more parsimonious selection
and sparse solution, catering to user preference and practical
need.
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Table 3. Selected variables by AutoScore and other baseline models.

AutoScore (m=9)aAutoScore

(m=12)a
LASSOStepwiseVariables

✔✔✔✔bAge (years)

——c✔✔Ethnicity

——✔✔Insurance

————Gender

✔✔✔✔Heart rate

✔✔✔✔Systolic blood pressure

———✔Diastolic blood pressure

——✔✔Mean arterial pressure

✔✔✔✔Respiration rate

✔✔✔✔Temperature

✔✔✔✔SpO2
d

—✔✔✔Glucose

———✔Anion gap

—✔✔✔Bicarbonate

———✔Creatinine

——✔✔Chloride

——✔✔Hematocrit

———✔Hemoglobin

✔✔✔✔Lactate

✔✔✔✔Platelet

——✔✔Potassium

✔✔—✔BUNe

——✔—Sodium

—✔—✔White blood cells

aParameter m is the number of variables included in the AutoScore model.
bTick mark represents that this variable is included by the corresponding method.
cThis variable is not included by the corresponding method.
dSpO2: peripheral capillary oxygen saturation.
eBUN: blood urea nitrogen.
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Figure 3. Model performance versus complexity for the implementation of the AutoScore on (a) the validation set and (b) the test set. The area under
the curve reflects the discrimination performance, whereas the number of variables represents the complexity of the model.

Scoring Models by AutoScore
The nine-variable AutoScore-created scoring model of inpatient
mortality for the BIDMC data set is tabulated in Table 4. Age,
heart rate, respiration rate, systolic blood pressure, SpO2,
temperature, BUN, platelet, and lactate levels were selected into
the final models. The final score summed up from 9 breakdowns
ranged from 0 to 162. We used the test set to evaluate the
property of this nine-variable point-based score. Part (a) of
Figure 4 depicts the distribution of episodes at different score
intervals, which is a near-normal distribution. Most patients had
a risk score from 21 to 50, and very few patients had scores

under 10 or above 80. As seen in part (b) of Figure 4, the
observed mortality rate increased as our risk scores grew on the
test set. The observed mortality rate was about 10% for a score
of 50, whereas the mortality rate was over 50% for scores above
90. In terms of different breakdowns of the score, when age was
lower than 30 years, its corresponding risk was the lowest; when
it was higher than 85 years, the risk was the highest. Similarly,
when the reported temperature was between 36.5°C and 37.5°C,
the corresponding risk was the lowest, and when it was lower
than 36°C, the risk was the highest. In addition, some variables,
such as age, SpO2, and BUN, have larger score values, indicating
more significant contributions to the risk.
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Table 4. A nine-variable AutoScore-created scoring model for inpatient mortality.

PointVariables and intervala

Age (years)

0<30

530-48

1448-78

2278-85

24≥85

Heart rate (beats/min)

1<62

062-72

172-98

898-112

13≥112

Respiration rate (breaths/min)

3<12

012-16

416-22

12≥22

Systolic blood pressure (mm Hg)

15<90

890-100

0100-130

1130-150

3≥150

Temperature (°C)

12<36

336-36.5

036.5-37.5

537.5-38

9≥38

SpO2
b(%)

25<85

1385-90

490-95

0≥95

Platelet (thousand per microliter)

17<80

380-150

0150-300

3300-450

5≥450

Blood urea nitrogen (mg/dL)
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PointVariables and intervala

0<7.5

27.5-12

912-35

1935-70

23≥70

Lactate (mmol/L)

0<1

21-2.5

82.5-4

21≥4

aInterval (q1-q2) represents q1 ≤x<q2.
bSpO2: peripheral capillary oxygen saturation.
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Figure 4. (a) Number of cases and (b) observed mortality rate, versus different score intervals obtained by the nine-variable AutoScore model.

Comparison of Predictive Performance
The results of mortality prediction, as assessed by the ROC
analysis on the unseen test set, are reported in Table 5. The
scoring models generated by AutoScore showed promising
discriminatory capability in predicting inpatient mortality. The
12-variable AutoScore model achieved an AUC of 0.789 (95%
CI 0.773-0.802) with a sensitivity of 71.7% (95% CI
68.5%-74.7%) and a specificity of 71.7% (95% CI
70.7%-72.7%) under the optimal threshold (score=130). When
we compromised on accuracy for parsimony, the nine-variable
AutoScore model achieved a slightly lower AUC of 0.780 (95%
CI 0.764-0.798) with a sensitivity of 63.7% (95% CI

60.3%-67.1%) and a specificity of 77.2% (95% CI
76.3%-78.2%) under the optimal threshold (score=48). In
comparison, the performance of the 24-variable full logistic
regression, the 22-variable stepwise regression, the 17-variable
LASSO models, the nine-variable RF model, and the 24-variable
full RF model achieved AUC values of 0.778 (95% CI
0.760-0.795), 0.778 (95% CI 0.760-0.795), 0.772 (95% CI
0.755-0.790), 0.785 (95% CI 0.768-0.801), and 0.809 (95% CI
0.794-0.825), respectively. Table 5 presents the performance
metrics that were calculated under different score cutoffs.
Besides the optimal cutoffs, other cutoffs by which the
sensitivity or specificity could reach approximately 95% were
also evaluated.
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Table 5. Performance of the AutoScore and other baseline models.

NPVd (%), 95% CIPPVc (%), 95% CISpecificity (%), 95% CISensitivity (%), 95% CIThresholdm bMethods, AUCa (95% CI)

AutoScore (mb=9)

95.8 (95.4-96.1)20.9 (19.8-22.0)77.2 (76.3-78.2)63.7 (60.3-67.1)48e90.780 (0.764-0.798)

98.4 (97.9-98.9)10.8 (10.6-10.9)25.1 (24.2-26.0)95.7 (94.3-97.2)30gN/AN/Af

93.4 (93.2-93.7)37.6 (34.2-41.0)95.5 (95.0-95.9)28.8 (25.7-32.0)64hN/AN/A

AutoScore (mb=12)

96.4 (96.0-96.8)19.3 (18.4-20.1)71.7 (70.7-72.7)71.7 (68.5-74.7)130e120.789 (0.773-0.802)

98.3 (97.8-98.7)11.9 (11.6-12.1)34.5 (33.4-35.6)93.7 (92.0-95.3)95gN/AN/A

93.7 (93.4-94.0)36.6 (33.4-39.9)94.8 (94.3-95.2)32.0 (28.8-35.3)180hN/AN/A

Full logistic regression

96.1 (95.7-96.5)19.2 (18.3-20.1)72.8 (71.8-73.7)68.6 (65.4-71.8)0.085e240.778 (0.760-0.795)

98.3 (97.7-98.8)10.7 (10.5-10.9)25.3 (24.4-26.3)95.2 (93.5-96.6)0.028gN/AN/A

93.3 (93.0-93.6)35.0 (31.7-38.6)95.1 (94.7-95.6)27.9 (24.5-31.3)0.24hN/AN/A

Stepwise regression

95.9 (95.5-96.3)21.0 (19.9-22.0)76.9 (76.0-77.8)65.0 (61.6-68.5)0.096e220.778 (0.760-0.795)

98.2 (97.6-98.7)10.7 (10.5-10.9)25.0 (24.1-26.1)95.1 (93.5-96.5)0.028gN/AN/A

93.4 (93.1-93.7)35.7 (32.2-39.1)95.2 (94.7-95.6)28.4 (25.1-31.7)0.24hN/AN/A

LASSOi

96.4 (96.0-96.8)17.8 (17.0-18.6)68.1 (67.1-69.2)73.4 (70.2-76.4)–2.47e170.772 (0.755-0.790)

98.2 (97.7-98.7)10.7 (10.5-10.9)25.1 (24.1-26.1)95.2 (93.7-96.5)–3.34gN/AN/A

93.4 (93.1-93.7)36.0 (32.6-39.5)95.2 (94.7-95.7)28.4 (25.2-31.8)–1.27hN/AN/A 

Random forest(mb=9)j

96.6 (96.2-97.0)18.6 (17.8-19.4)69.4 (68.4-70.4)74.2 (71.1-77.0)0.085e90.785 (0.768-0.801)

98.2 (97.7-98.7)11.3 (11.1-11.5)30.1 (29.1-31.1)94.2 (92.5-95.7)0.015gN/AN/A

93.5 (93.3-93.8)35.7 (32.5-39.0)94.8 (94.4-95.3)30.5 (27.4-34.0)0.3hN/AN/A

Full random forest

96.8 (96.4-97.1)21.9 (20.9-22.9)75.4 (74.5-76.3)73.1 (69.9-76.2)0.115e240.809 (0.794-0.825)

98.6 (98.2-99.0)12.5 (12.3-12.8)37.9 (36.9-38.9)94.4 (92.8-95.9)0.025gN/AN/A

93.9 (93.6-94.2)39.4 (36.2-42.9)95.1 (94.6-95.5)34.1 (30.6-37.5)0.285hN/AN/A

aAUC: the area under the ROC curve.
bNumber of variables in the model.
cPPV: positive predictive value.
dNPV: negative predictive value.
eOptimal cutoff values, defined as the points nearest to the upper-left corner of the ROC curves.
fN/A: not applicable.
gCutoff values by which the sensitivity could reach about 95%.
hCutoff values by which the specificity could reach about 95%.
iLASSO: least absolute shrinkage and selection operator.
jAutoScore-based variable selection was implemented beforehand, where the same set of variables were selected as the AutoScore (m=9).
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As illustrated in Figure 5, our nine-variable AutoScore model
remained well calibrated, and all parts of the calibration belt
showed a good fit under both 80% and 95% CIs. In comparison,
other models displayed varying degrees of underestimation or

overestimation. Two RF models performed the worst in the
calibration test, followed by the stepwise regression and LASSO
models. On the contrary, the AutoScore and logistic regression
perform relatively well in terms of model calibration.

Figure 5. Calibration belts (at 80% and 95% confidence levels) for (a) a nine-variable AutoScore-created model, (b) a 12-variable AutoScore-created
model, (c) a full logistic regression model, (d) a stepwise regression model, (e) the LASSO model, (f) a nine-variable random forest model, and (g) a
full random forest model.

Discussion

Principal Findings
In this study, we developed AutoScore, a framework of
automatic clinical score creation, and tested it in a large clinical
data set. The scoring models generated by AutoScore were
comparable with other standard methods (ie, logistic regression,
stepwise regression, LASSO, RF model) in terms of predictive
performance and model calibration. More importantly, the
AutoScore-created scoring models showed superiority in
interpretability and accessibility, as they were point-based scores

with fewer variables used. In clinical practice, point-based scores
have the advantage of easy implementation and, thus, can be
widely utilized and validated in different circumstances and
health care settings. The novelty of our study was the
development of a generic, scalable, and robust methodology
for automatically generating a point-based scoring model, which
has been demonstrated by deriving an actual scoring model of
inpatient mortality with a large benchmark EHR data set.

The proposed AutoScore has several advantages in creating risk
prediction models. First, the machine learning–based variable
ranking or selection can efficiently filter out redundant
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information. The importance of including variable selection in
the development of predictive models has been demonstrated
in many studies. In a study by Zhao et al [31], variable selection
removed noninformative variables from the clinical predictive
model. Bagherzadeh-Khiabani et al [32] demonstrated that the
use of variable selection could improve the performance of
clinical prediction models. Sanchez-Pinto et al [11] also
provided evidence of modern tree-based methods of variable
selection with better parsimony in large data sets. Liu et al [33]
demonstrated that machine learning–based variable selection
was promising for discovering a few relevant and significant
variables in the prediction of adverse cardiac events. Second,
the module of variable transformation could improve the fit of
models. Several studies [34,35] have reported U-shaped
nonlinearity between continuous variables and health-related
outcomes. According to expert opinion, the value of vital signs
or laboratory tests is usually considered as an abnormal value
if it is beyond a healthy normal range. Besides, the
categorization of continuous variables remains to be a dominant
practice in epidemiological studies [36]. Discretizing features
requires a smaller memory footprint, simplifies model
interpretation, and can be applied directly by a human expert
in routine care [37]. In addition, categorization creates a natural
way to handle missing values, where the missing values can be
treated as an extra category. This missing-indicator method has
the appealing property that all available information can be used
in the analyses [38]. Third, we use a parsimony plot (model
performance vs complexity) to determine the appropriate number
of variables (m), balancing the trade-off between performance
and sparsity [39,40]. We value the model parsimony as the most
desirable characteristic, as there is a real-world cost associated
with mapping numerous variables, maintaining complex
algorithms, and replicating it in different settings. This
parsimony-driven parameter tuning process can be performed
in an independent validation set (ie, 10% randomly selected
samples from the entire data set in this study), as shown in
Figure 3. It also shows a similar trend on the basis of the unseen
test set, illustrating the effectiveness and consistency of
parsimony-driven tuning for determining the number of
necessary variables.

Furthermore, the scoring models created by the AutoScore
framework are interpretable and clinically practical. The output
of AutoScore is a point-based scoring model, based on addition,
subtraction, and multiplication of a few sparse numbers,
facilitating quick stratification without the need for a computing
system. Doctors can easily understand how risk models make
predictions in a transparent manner. Although numerous
machine learning models, such as neural networks [41,42] and
ensemble learning models [43,44], have been developed to
complement traditional regression models, most of them are
black boxes that do not explain their predictions in a way that
humans can understand. In our study, the nine-variable RF
model was performed as accurately as our nine-variable
AutoScore (AUC 0.785 vs 0.780). However, it is challenging
to explain the prediction made by the RF model, which consists
of 100 different decision trees together. The lack of transparency
of predictive models could lead to severe consequences in
patient care. Vellido [12] suggested that these models with low
explainability are unlikely to become part of routine clinical

and health care practice as providing care is a highly sensitive
task. Rudin [45] also suggested designing models that are
inherently interpretable rather than explaining black box models
and doubted the blind belief in the myth of the
accuracy-interpretability trade-off.

Relationship With Previous Work
Researchers have previously created several scoring models for
predicting mortality, such as the Modified Early Warning Score
[46], the VitalPAC Early Warning Score [47], and the Acute
Physiology And Chronic Health Evaluation [48], mainly
utilizing vital signs to predict mortality for hospitalized patients.
However, they were designed by hand subjectively from expert
opinions and domain knowledge, which hindered their
generalization and dynamic evolution. Considering the disparate
EHR systems among various health care settings, these scoring
models may not work well because of the diversity among
routinely collected information. As the characteristics of the
population evolve, the adjustment and updating of risk scores
are needed, which are time-consuming and inflexible [49]. In
contrast, our AutoScore framework is adaptive and flexible; it
can generate scoring models automatically, given an evolving
EHR system. A user-friendly and easy-to-use R package of
AutoScore [22] has been developed to facilitate the creation of
scoring systems in diverse contexts, satisfying the increasing
need for the development of specific predictive scores in various
health care settings.

Similar to our AutoScore framework, Zhang et al [50] presented
a tutorial on building a scoring system from several steps.
However, the tutorial did not integrate some vital components
such as variable ranking or selection and several crucial tuning
processes inherently into the process of score generation. In
comparison, our AutoScore framework includes all essential
modules, driving the clinical continuum of 6 modules and
realizing the automation. Although users may benefit from the
built-in automation of AutoScore for developing a clinical score,
domain knowledge is equally important in building the scoring
models, as suggested in many studies [10,51]. In AutoScore,
domain knowledge can be involved in 2 ways: (1) the variable
can be preselected by expert opinion before implementing the
AutoScore and (2) domain knowledge can be used to fine-tune
the risk scores and determine clinically valid cutoff values in
variable transformation.

Future Research and Limitations
Although the proposed AutoScore framework is
comprehensively and systematically presented, improvements
can still be made. Each module of the AutoScore can be
improved using advanced algorithms and enhanced
methodologies. For example, in the module of variable ranking,
various established machine learning methods can potentially
be integrated into the AutoScore framework. In variable
transformation, the means of categorization may be customized
according to its distribution, provided a handful of clinical
variables such as SpO2 that may not be subject to a near-normal
distribution. Furthermore, the application of AutoScore is not
limited to its application to large-scale EHR data [24,52].
AutoScore can be readily implemented in small-scale
observational cohort studies. Beyond health care applications,

JMIR Med Inform 2020 | vol. 8 | iss. 10 | e21798 | p. 15http://medinform.jmir.org/2020/10/e21798/
(page number not for citation purposes)

Xie et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


AutoScore is potentially applicable to other high-stakes
prediction applications such as criminal justice and finance,
where highly interpretable predictive models are needed.

This study has several limitations. First, the data set used in this
study was on the basis of EHR data with routinely collected
vital and laboratory test variables. Some relevant variables were
not available in this analysis. For example, health utilization,
such as intubation and resuscitation, has been proven to be
predictive of overall mortality. Second, given the limitation in
data availability, the clinical scores built with AutoScore in this
study are not perfect for real-world implementation. This clinical
study was primarily designed to demonstrate the effectiveness
of the AutoScore framework in building risk scores. Third, this
was a retrospective analysis. To further prove its clinical
practicability, prospective validation of the scoring model is
needed. Finally, this was the initial development of AutoScore,
where only selected methods were integrated into the
framework, leaving opportunities for further development with
more sophisticated and state-of-the-art algorithms.

Conclusions
We developed an easy-to-use, machine learning–based automatic
clinical score generator, AutoScore, to conveniently build
scoring models and demonstrated its usability with a clinical
study on mortality prediction. Using a benchmark data set, we
showed that the scoring models derived with the AutoScore
framework achieved satisfactory predictive performance and
proved its superiority over several conventional methods for
risk model development. The AutoScore framework integrates
both the advantage of machine learning in strong discriminative
power and the merit of point-based scores in its excellent
accessibility and interpretability. Our proposed AutoScore
framework can be readily used to generate clinical scores in
various medical applications, such as early warning systems
and risk predictions of mortality, hospital readmissions, and
adverse cardiac events. In the future, advanced machine learning
algorithms and methodologies could improve individual modules
of AutoScore and provide AutoScore with more robust
predictive capability or broader applicability in various types
of data.
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Abbreviations
AIC: Akaike information criterion
AUC: area under the curve
BIDMC: Beth Israel Deaconess Medical Center
BUN: blood urea nitrogen
CCU: coronary care unit
CSRU: cardiac surgery recovery unit
EHR: electronic health record
ICU: intensive care unit
LASSO: least absolute shrinkage and selection operator
MAP: mean arterial pressure
MICU: medical intensive care unit
NPV: negative predictive value
PPV: positive predictive value
RF: random forest
ROC: receiver operating characteristic
SICU: surgical intensive care unit
TSICU: trauma surgical intensive care unit
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