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Abstract

Background: Hyperbilirubinemia affects many newborn infants and, if not treated appropriately, can lead to irreversible brain
injury.

Objective: This study aims to develop predictive models of follow-up total serum bilirubin measurement and to compare their
accuracy with that of clinician predictions.

Methods: Subjects were patients born between June 2015 and June 2019 at 4 hospitals in Massachusetts. The prediction target
was a follow-up total serum bilirubin measurement obtained <72 hours after a previous measurement. Birth before versus after
February 2019 was used to generate a training set (27,428 target measurements) and a held-out test set (3320 measurements),
respectively. Multiple supervised learning models were trained. To further assess model performance, predictions on the held-out
test set were also compared with corresponding predictions from clinicians.

Results: The best predictive accuracy on the held-out test set was obtained with the multilayer perceptron (ie, neural network,
mean absolute error [MAE] 1.05 mg/dL) and Xgboost (MAE 1.04 mg/dL) models. A limited number of predictors were sufficient
for constructing models with the best performance and avoiding overfitting: current bilirubin measurement, last rate of rise,
proportion of time under phototherapy, time to next measurement, gestational age at birth, current age, and fractional weight
change from birth. Clinicians made a total of 210 prospective predictions. The neural network model accuracy on this subset of
predictions had an MAE of 1.06 mg/dL compared with clinician predictions with an MAE of 1.38 mg/dL (P<.0001). In babies
born at 35 weeks of gestation or later, this approach was also applied to predict the binary outcome of subsequently exceeding
consensus guidelines for phototherapy initiation and achieved an area under the receiver operator characteristic curve of 0.94
(95% CI 0.91 to 0.97).

Conclusions: This study developed predictive models for neonatal follow-up total serum bilirubin measurements that outperform
clinicians. This may be the first report of models that predict specific bilirubin values, are not limited to near-term patients without
risk factors, and take into account the effect of phototherapy.

(JMIR Med Inform 2020;8(10):e21222) doi: 10.2196/21222
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Introduction

Neonatal Jaundice: Bilirubin Production and
Clearance
Management of jaundice is one of the most common, yet vexing,
problems in newborn medicine and requires consideration of

the myriad contributors to the production and clearance of
bilirubin [1]. If not recognized and managed appropriately,
hyperbilirubinemia can result in permanent harm. A large
proportion of neonatal readmissions is related to jaundice [2].
Bilirubin arises from the catabolism of iron protoporphyrin
(heme) from hemoglobin in red blood cells. Unconjugated
bilirubin is poorly water soluble and largely bound to albumin
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but is conjugated in the liver into a more water-soluble form
more readily excreted in the bile and urine.

A number of physiological mechanisms put newborn infants at
particular risk of developing jaundice in the first few days after
birth, including increased red blood cell volume, higher red
blood cell turnover, decreased hepatic uptake and conjugation
of bilirubin, and increased enterohepatic circulation (intestinal
hydrolysis of conjugated bilirubin resulting in reabsorption of
unconjugated bilirubin). This initial imbalance of increased
bilirubin production and decreased conjugation and clearance
results in >80% of newborn infants born near or at term
developing visible jaundice in the first week after birth. Preterm
neonates may have further decreased ability to conjugate and
clear bilirubin [3]. The imbalance between production and
clearance typically stabilizes by around 4 days after birth [4].
However, other factors manifesting in the newborn period can
further affect bilirubin production and clearance, for example,
isoimmune hemolytic jaundice from maternal blood type
mismatch and transplacental transmission of maternal
immunoglobulins or inadequate enteral intake resulting in
dehydration, decreased bile clearance, and increased
enterohepatic circulation.

Bilirubin-Induced Morbidity
Although lower levels of hyperbilirubinemia are generally well
tolerated by newborn infants, at sufficiently high concentrations,
unconjugated bilirubin, presumably unbound to albumin, can
cross the blood-brain barrier with potentially devastating
consequences [5]. The manifestations of bilirubin-induced
neurological dysfunction range from sleepiness, lethargy,
discoordinated suck reflex, and high-pitched cry to abnormal
muscle tone, athetosis, oculomotor paralysis, and opisthotonos,
with associated sensorineural hearing loss and intellectual
deficits. Extremely severe cases may result in seizures, coma,
and death. Kernicterus originally referred to the pathologic
finding of yellow bilirubin staining of the deep nuclei of the
brain but is now also used to describe the syndrome of severe
bilirubin encephalopathy.

Phototherapy
Phototherapy is an effective treatment to prevent
bilirubin-associated morbidity [6]. Absorption of light through
the dermis and subcutaneous tissue induces photochemical
changes in bilirubin to produce more hydrophilic isomers and
derivatives that can be excreted in bile and urine without the
need for conjugation. A visible spectrum of blue light from 460
nm to 490 nm in wavelength appears to have maximal efficacy
in both penetrating tissue and formation of bilirubin
photoproducts. Although phototherapy is not known to affect
the rates of bilirubin production, effective administration is
often able to increase bilirubin clearance to a rate greater than
the rate of ongoing production, thereby lowering the total serum
bilirubin concentration.

Consensus Clinical Guidelines
Clinical guidelines have been developed to assist in the
management of neonatal hyperbilirubinemia, including
specifying thresholds at which phototherapy or other therapies
should be provided [1]. The availability of effective treatments

and the potentially devastating consequences of not initiating
therapy have made it difficult to develop evidence-based
guidelines, for example, via randomized controlled clinical trials
or systematic observational studies. Therefore, currently
available guidelines are largely consensus based.

There is not a single universally accepted guideline. An informal
international survey conducted during the development of the
Norwegian guidelines [7] for the treatment of neonatal jaundice
reported that 18 of the 28 countries surveyed had national
consensus treatment guidelines, including the United States [8],
South Africa [9], Canada [10], Israel [11], the United Kingdom
[12,13], and Norway [7]. They found that these guidelines
differed considerably in the recommended total serum bilirubin
level at which phototherapy should be initiated, indications for
exchange transfusion, addressing the preterm population, use
of transcutaneous bilirubinometry, when phototherapy should
be discontinued, and recommended follow-up at or after
discharge.

Of the identified national guidelines for the management of
neonatal hyperbilirubinemia, 14 of 16 included
recommendations for late preterm infants (typically born at 35
weeks of gestation or later) and 10 of 16 for early preterm
infants. Although less in number, guidelines have also been
developed specifically for the preterm population, again
consensus based [14-16]. There are also unpublished locally
developed treatment practices for preterm infants [17]. For
example, in several of the Boston area teaching hospitals, an
informal and unpublished rule of thumb for preterm infants is
to divide the birth weight in grams by 200 as the phototherapy
threshold in mg/dL (eg, 1500 g birth weight yielding a
phototherapy threshold of 7.5 mg/dL) and twice that value as
an exchange transfusion threshold.

Rebound Hyperbilirubinemia
With the implementation of universal bilirubin screening of
newborn infants during birth hospitalization, clinical practice
guidelines advise whether to initiate phototherapy (although
strict adherence to guidelines varies [18]), but less often provide
direction on when to discontinue phototherapy and whether
reinitiation of treatment may be required because of rebound
hyperbilirubinemia.

Rebound bilirubin, in general, refers to an increase in the
bilirubin level after discontinuation of phototherapy, likely
related to the removal of the additional bilirubin clearance
provided by phototherapy and the resultant return to net balance
of greater bilirubin production than clearance. However, the
specific definitions of rebound bilirubin vary considerably.
Some definitions include the change in bilirubin level on the
first follow-up serum bilirubin at any time up to 30 hours after
discontinuation of phototherapy [19], between 4 hours and 48
hours after discontinuation [20], within 12 hours [21], or after
approximately 6 hours [22]. Over time, the definition began to
incorporate the concept of rebound to significant
hyperbilirubinemia. The choice of significance could be an
arbitrarily chosen constant threshold [23], a measurement
between 18 hours and 30 hours after discontinuation that
prompted reinstitution of phototherapy [24], or an increase at
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any time that resulted in exceeding the age-specific threshold
of a specified clinical guideline to initiate phototherapy [25].

Predictive Models
Defining rebound hyperbilirubinemia as exceeding the
phototherapy initiation threshold of a practice guideline raises
the possibility of developing predictive models to provide
clinical decision support.

Predictive models can be generated by a class of statistical
approaches referred to as supervised machine learning [26].
With supervised learning, a model is trained using a data set
containing predictive features and their known target outcomes,
with the aim that the trained model can later be used on a new
set of the same predictive features to predict unknown outcomes.
The goal might be a classification task—for example, predicting
the likelihood of survival, readmission, or need to initiate
phototherapy—or a regression task to calculate a continuous
numeric outcome, such as a laboratory value. Some examples
of machine learning models are as familiar as linear regression
(ordinary least squares), which performs a regression prediction,
and logistic regression, which performs a classification task
despite its historic name. Different machine learning models
differ in their approach and the flexibility with which they can
predict outcomes. For example, both linear and logistic
regression are in the family of generalized linear models and
are relatively inflexible as a unit change in the value of each
predictor produces a constant linear change in the output. More
flexible models may be able to better fit the training data and
perform better with new predictions but risk overfitting the
training data, resulting in poorer performance on new, previously
unseen data, that is, poor model generalization. Examples of
strategies to limit overfitting include choosing less-flexible
models or applying an approach called regularization that applies
a penalty for larger model coefficients. Inappropriate use of too
many predictors can also contribute to overfitting as high model
flexibility can allow learning what is effectively noise and not
signal in the predictive features of the training set. Owing to
these risks, in general, it is best to evaluate a predictive model’s
performance on data that was not previously used for training.
Approaches to achieve this include using a completely separate
training set and held-out test set or using K-fold cross-validation
to partition the data and then training and evaluating models on
each partition.

Chang et al [27,28] developed and subsequently simplified a
logistic regression model to predict the need to resume
phototherapy after an initial treatment episode with decision
thresholds defined by the American Academy of Pediatrics
(AAP) consensus treatment guidelines [8]. The choice of this
specific guideline restricts its applicability to newborn infants
born at ≥35 weeks of gestation. As clinical guidelines can vary
significantly, the ability to generalize the published model to
different guidelines may be limited. Another potential issue is
assuming the validity of applying an age-specific treatment
guideline, which was developed from a nomogram derived from
a cohort of normal newborn infants without any previous
phototherapy treatment, on infants who may have received
varying duration and intensity of phototherapy. In these
published models, there is no prediction distinction between a

newborn infant who had phototherapy initiated very early
because of the rapid development of jaundice (perhaps related
to hemolysis) and another infant who had phototherapy initiated
several days after birth as long as their bilirubin levels for a
given age were subsequently the same after phototherapy.
Moreover, the model can only be applied after an initial episode
of phototherapy; it cannot be used to predict the need to initiate
a first episode of phototherapy or account for multiple previous
episodes of phototherapy.

Aims of This Study
A more general approach that predicts actual bilirubin values,
rather than exceeding thresholds defined within a particular
treatment guideline, and not limited by gestational age or by
restrictions on phototherapy utilization, might be helpful. By
predicting actual bilirubin values, the approach could provide
clinical decision support related to any given clinical guideline,
including those developed for preterm infants. Training more
flexible models than generalized linear models might improve
prediction performance. This study aims to (1) develop and
compare multiple predictive models of follow-up total serum
bilirubin measurements that could be utilized regardless of
gestational age or previous treatment with phototherapy; (2) to
compare accuracy with clinician predictions; and (3) to
demonstrate an example application to one specific clinical
guideline.

Methods

Patient Cohort
The subjects of this retrospective study were newborn infants
born at any gestation between June 2015 and June 2019 at 4
birthing hospitals in Massachusetts within the Partners
HealthCare system. The hospitals provided a range of levels of
neonatal care [29], with 2 hospitals providing up to level 2 care,
1 hospital providing up to level 3, and 1 hospital providing up
to level 4. As the prediction target was a follow-up total serum
bilirubin measurement obtained <72 hours after a previous
measurement, the inclusion criteria were 2 bilirubin
measurements <72 hours apart within the first 10 days after
birth. There were no other exclusion criteria.

Features of the Predictive Model
Data from inpatient encounters were abstracted from the
electronic health record (EHR) by database query and included
gestational age at birth, birth weight, gender, maternal age,
gravida, para, race and ethnicity, route of delivery and whether
the delivery was vacuum assisted or forceps assisted, 1-min and
5-min Apgar scores, maternal and baby blood type and Rh, baby
direct Coombs, and initial baby hematocrit. Data from the first
10 days after birth included total serum bilirubin measurements,
inpatient phototherapy start and stop times based on physician
orders, weights, enteral feeds, urine output, and stools. Feature
engineering included encoding nonnumeric (categorical)
predictors to binary features of whether known to be present
and included maternal race (White, Black, Hispanic, or Asian);
ABO incompatibility as maternal blood type O and baby blood
type A, B, or AB; Rh mismatch as maternal Rh negative and
baby Rh positive; baby direct Coombs positive; cesarean
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delivery; forceps-assisted delivery; and vacuum-assisted
delivery. If categorical data were unavailable, the feature was
set to not known to be present. Median imputation was used for
numeric features with missing data. Birth weight Z-score was
calculated as described previously [30,31].

Individuals frequently had >2 bilirubin measurements,
permitting multiple prediction targets. The goal of prediction
was to only use information available at the time of a given
bilirubin measurement (the current measurement) to predict the
subsequent measurement. Available information included age
in hours, current measurement, previous bilirubin rate of rise,
and proportion of time under phototherapy between the previous
and the current measurement. For the first bilirubin
measurement, there would be no previous measurement; in this
case, the time zero measurement was imputed as 2.0 mg/dL

based on previous reports of umbilical cord bilirubin level and
extrapolation from postnatal nomograms [4,32-35]. If 2 serum
bilirubin measurements were recorded <2 hours apart, the earlier
measurement was discarded as this generally reflected an
erroneous first measurement. Additional features generated
from the available data included fraction weight change from
birth and counts of stools, urine output, and feeds on the
previous calendar day. To make predictions, the only data
permitted from after the current measurement were factors under
clinician control, that is, number of hours until the target
measurement and the fraction of that time that would be under
phototherapy (between 0 for no phototherapy before the next
measurement and 1 for continuous phototherapy until the next
measurement). Figure 1 shows a schematic of the data inclusion
mechanism and illustrates how the predictive feature of the
fraction of time under phototherapy was calculated.

Figure 1. Schematic of a data inclusion mechanism for a hypothetical individual with 5 bilirubin measurements, A through E. The blue box represents
the time period under phototherapy. Model training used features at the time of a bilirubin measurement to predict the value of a subsequent measurement
≤72 hours later. The predictive feature of fraction of time under phototherapy was 100% between B and C, 50% between C and D, and 0% between D
and E. Data from bilirubin measurement A to predict B were not included for model training because the subsequent measurement was ≥72 hours later.

Predictive Model Training
All data for patients born on or after February 1, 2019, were set
aside as a held-out test set and not accessed before predictive
model testing. The remaining data were used for model training.

Multiple supervised learning models were trained including
linear models, linear models with interaction terms regularized
via ridge regression or least absolute shrinkage and selection
operator (LASSO), random forest, multilayer perceptron (a
simple neural network with 2 densely connected hidden layers
using the rectified linear unit nonlinear activation function),
long short-term memory (LSTM) neural network, and Xgboost.
Feature selection was explored by best subset selection for the
linear model without interaction terms and variable importance
for random forest and Xgboost. To improve neural network
convergence, numeric predictors were centered and scaled by
subtracting the mean and dividing by the SD of the predictors
in the training set; both the validation and test sets were centered
and scaled using the training set. The training set for the LSTM
neural network was generated by creating a moving window of
up to 4 time steps (zero-padded for the first 3 time points),
allowing a memory of previous predictors. Analysis was
performed using the R statistical programming language (R
Core Team, 2018) [36]. Multimedia Appendix 1 includes the
R code used for model training and references to the packages

used. For data visualizations, smoothed conditional mean curves
with 95% CIs were generated using the ggplot2 package [37].

Comparison With Clinician Accuracy
From February 2019, a convenience sample of clinician
predictions of follow-up bilirubin measurements was obtained
by identifying currently admitted newborn infants at 1 hospital
who had a recent bilirubin measurement and a provider clinical
order for a follow-up bilirubin level to be obtained within the
next 72 hours. Clinicians actively providing care for that neonate
were approached and asked to provide predictions. Participation
was voluntary and no information identifying the clinician was
recorded other than the role group. Role groups included
attending board-certified neonatologists, advanced practitioners
(including neonatal nurse practitioners, neonatal-perinatal
medicine fellows, and pediatric hospitalists with primary roles
in the newborn intensive care unit [NICU]), pediatric residents
(either interns or seniors during their NICU rotation), and
bedside nurses (neonatal nurses, all in the level 2 and level 3
nurseries). Clinicians were asked to use all available
information, including data not documented in the EHR, for
example, team discussions during bedside rounds, conversations
with parents and lactation consultants, etc.
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Statistical Analysis
Comparisons were performed using the t test (either paired or
unpaired), analysis of variance, Wilcoxon rank-sum,
Kruskal-Wallis, or Pearson chi-square test, as appropriate. When
multiple pairwise comparisons of paired t tests were performed,
multiple testing adjustment was performed using the Holm
method. The absolute value of prediction errors is nonnegative,
which results in a right-skewed distribution; therefore, in
general, medians and IQRs are reported below. However, in
pairwise comparisons of models, the differences in absolute
errors were distributed more normally (data not shown). The
confidence interval for the area under the receiver operator
characteristic (AUROC) curve was obtained using the method
of Hanley [38].

Human Subjects’ Research
This study was approved by the Partners Human Research
Committee institutional review board.

Results

Patient Cohort Characteristics
A total of 52,149 babies born between June 2015 and June 2019
were identified, of whom 46,361 were born before February 1,
2019. The 5788 babies born after February 2019 were set aside
as a held-out test set and not accessed until predictive model
evaluation.

Of the patients born before February 2019, 9723 babies had at
least 2 total serum bilirubin measurements <72 hours apart
within the first 10 days after birth and were included in the
training set, whereas the remaining 36,638 babies were excluded,
as detailed in Multimedia Appendix 2. The patients included in
the training set tended to be of lower gestational age, lower birth
weight, lower birth weight Z-score, and lower 1-min and 5-min
Apgar scores; male; C-sectioned; forceps assisted; vacuum
assisted; ABO-mismatched; absence of Rh mismatch; baby
direct Coombs positive; and of maternal race Asian, Black, or
not White. Of the patients in the training set, the median number
of serum bilirubin measurements was 3 (IQR 2-5) and 34.34%
(3339/9723) received phototherapy. There were significant
missing data (>10%) in both the included and excluded patients
for maternal and baby blood type and Rh, baby direct Coombs,
and baby hematocrit. If the maternal blood type was O, the
baby’s blood type was less likely to be missing (1017/18,930,
5.37%). Similarly, if the mother was Rh negative, the baby’s
Rh status was unlikely to be missing (57/4919, 1.16%).

Predictive Model Training
Of the 9723 babies in the training set, there were a total of
37,151 total serum bilirubin measurements resulting in 27,428
training examples. After feature engineering, 34 candidate
predictors were available for model training, including 22 that
did not vary with time (gestational age at birth; birth weight;
birth weight Z-score; gender; 1-min and 5-min Apgar scores;
cesarean versus vaginal delivery; forceps assistance; vacuum

assistance; maternal age; gravida; para; maternal race Asian,
Black, Hispanic, or White; ABO blood type mismatch; Rh
mismatch; baby direct Coombs status; baby initial hematocrit;
age; and value of first total serum bilirubin measurement) and
12 predictors that varied with time (current age; current bilirubin
level; fractional weight change; count of breast milk, formula
and donor human milk feeds, urine output and stools; last rate
of rise; last proportion of time under phototherapy; and time to
next measurement and fraction of that time under phototherapy).
For the linear models, the quadratic age-squared term was added
to account for the nonlinearity of bilirubin trajectories with age
[4].

During the initial model exploration, it quickly became apparent
that a limited number of predictive features would be sufficient
for near-optimal model performance. For the simple linear
model, the best subset and stepwise forward feature selection
chose the same features until the 13th predictive feature was
added, but showed limited improvement after the seventh feature

(minimal R2 statistic improvement from 0.783 to 0.785). The
features selected, in order of importance, included current result,
proportion phototherapy before target measurement, current
age, previous proportion of phototherapy, current age squared,
time to target measurement, count of breast milk feeds, and first
bilirubin measurement.

Random forest and Xgboost models are able to report predictive
feature importance contributing to model accuracy. Providing
all 34 predictive features to the random forest and Xgboost
models and inspection of the variable importance plots also
suggested that a limited number of features would provide
near-maximal predictive accuracy. For the Xgboost model, the
top 8 features included current result, last rate of rise, proportion
phototherapy, time to target measurement, birth weight,
gestational age, first bilirubin measurement, and current age;
each of the remaining 26 features contributed <1% to Xgboost
variable importance (data not shown). For the random forest
model, the top 8 features included time to target measurement,
proportion phototherapy, previous rate of rise, current result,
current age, birth weight Z-score, previous proportion of
phototherapy, and count of formula feeds.

The 8 features selected for final predictive model training were
current result, last rate of rise, proportion of time under
phototherapy between the current and the future target
measurement, time to target measurement, gestational age,
current age, previous proportion of time under phototherapy,
and fractional weight change from birth. All models used these
features except the age-squared term that was included for the
linear models (to allow for nonlinear response with age). The
last rate of rise and previous proportion of time under
phototherapy were excluded from the LSTM model as those
features were available via the preceding time step. Seven
predictive models and 1 negative control were generated with
the training set (Textbox 1; further detailed in Multimedia
Appendix 1).
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Textbox 1. Predictive models and descriptions.

• current: Negative control, predicting the current bilirubin level as the subsequent level

• lm: Linear model with no interaction terms; includes quadratic age-squared term

• ridge: Linear model with all combinations of predictors as interaction terms and ridge regression regularization (L2 norm) selected by 10-fold
cross-validation for coefficient shrinkage

• lasso: Similar to ridge but using least absolute shrinkage and selection operator (LASSO) regularization (L1 norm) for coefficient shrinkage and
implicit feature selection

• nn: Multilayer perceptron (a simple neural network) with 2 fully connected hidden layers

• lstm: Long short-term memory recurrent neural network with 4 time steps feeding into a single hidden layer

• rf: Decision tree-based random forest ensemble with 500 trees

• xgboost: Decision tree-based XGBoost ensemble model with 500 boosting iterations

Predictive Model Assessment
Predictive model performance was assessed using the held-out
test set. Of the 5788 babies born after February 2019, 1224 had
at least 2 total serum bilirubin measurements <72 hours apart
within the first 10 days after birth, with a total of 4544 total
serum bilirubin measurements resulting in a test set of 3320
examples.

For each prediction, the error is defined by the predicted value
minus the actual value, with positive and negative values
reflecting predictions that are too high or too low, respectively.
Prediction models often have an overall mean prediction error
of 0; simplistically, if the prediction is equally likely to be too

high (positive error) or too low (negative error), the mean error
may be near 0. Therefore, to assess the model performance, the
absolute value of the prediction errors, which can be considered
the magnitude of the error, was calculated.

Table 1 summarizes the predictive performance of all 8 models,
which included a negative control and 7 models trained by
supervised learning. The second and third columns show the
mean and median absolute value of prediction errors for the
3320 test set examples for each model. The Xgboost model had
the lowest mean (1.04 mg/dL, SD 0.99) and median (0.78
mg/dL) absolute values of prediction error, that is, for the
Xgboost model, 50% of the test set predictions were within 0.78
mg/dL of the actual value.

Table 1. Pairwise comparison of the predictive models.

P valuedMedian (IQR)cMAEb (SD)Modela

rfnnlassolstmridgelmcurrent

N/Ae1.800 (0.900-2.900)2.105 (1.674)current

N/A<.00010.997 (0.476-1.808)1.325 (1.208)lm

N/A<.0001<.00010.893 (0.420-1.609)1.175 (1.095)ridge

N/A.0056<.0001<.00010.809 (0.363-1.493)1.121 (1.142)lstm

N/A.0067<.0001<.0001<.00010.802 (0.365-1.456)1.075 (1.036)lasso

N/A.056<.0001<.0001<.0001<.00010.791 (0.362-1.407)1.053 (1.007)nn

N/A.74.090<.0001<.0001<.0001<.00010.782 (0.355-1.438)1.050 (1.003)rf

.29.29.0045<.0001<.0001<.0001<.00010.776 (0.355-1.427)1.038 (0.989)xgboost

aModels are as described in Textbox 1.
bMAE: mean absolute error of bilirubin level predictions with SD (mg/dL) on the held-out test set (n=3320).
cMedian absolute error of bilirubin level predictions and IQR (mg/dL).
dP values for pairwise model comparisons by paired t test with Holm adjustment for multiple testing.
eN/A: not applicable.

To assess the performance of each model with respect to each
other model, a total of 28 pairwise comparisons of the 8 models’
predictions on the same 3320 test set examples, including the
negative control, were analyzed by using a paired t test with
Holm adjustment for multiple testing (Table 1, right-most 7
columns). Xgboost performance (Table 1, last row) was
statistically significantly better than the negative control, simple
linear model, ridge regression, LSTM neural network, and

LASSO models (P values from <.0001 to .0045), but was not
statistically significantly superior to the simple neural network
(P=.29) or random forest (P=.29) models.

Although Table 1 summarizes model performance across the
entire test set, the greatest clinical concern is high bilirubin
levels. To visualize whether performance was impacted by
bilirubin level, prediction error was visualized with respect to
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the bilirubin value at the time of prediction for each of the
models (Figure 2). Each point represents the error of a single
prediction. For all models, the absolute value of the prediction
error with respect to bilirubin level at the time of the prediction
(Figure 2, red dashed lines) tended to increase at higher starting
bilirubin levels, increasing from approximately 0.8 to 1.6 mg/dL
as the starting bilirubin varied from 0 to 20 mg/dL for the neural
network, random forest, and Xgboost models. However, the
simple linear and ridge regression models also demonstrated a

larger error magnitude at the low range of current bilirubin
levels. The blue solid line represents the mean error versus the
bilirubin level at the time of prediction. The Xgboost model
demonstrates a mean prediction error of near 0 across all
bilirubin values at the time of prediction (xgboost panel, blue
line). In contrast, the simple linear and ridge regression models
tend to predict values that are too high when bilirubin values
are low at the time of prediction (blue line >0 at low starting
bilirubin levels).

Figure 2. Model prediction errors versus bilirubin level at time of prediction. Each panel depicts the performance of a single predictive model, as
described in Textbox 1. Each point represents the error of a single prediction in the test set (n=3320, over 98% visible within ±5 mg/dL error). The
curves show the smoothed mean error (blue solid) and mean absolute value of error (red dashed); the gray band is the 95% CI of the mean.

Comparison With Clinician Accuracy
Model performance was also assessed by comparing predictions
made by the models with prospective predictions made by
clinicians participating in the clinical care of newborn infants.
A convenience sample of 210 predictions made by clinicians
at 1 hospital was compared with model predictions, all from
the held-out test set. The clinicians included attending

neonatologists, advanced practitioners (neonatal-perinatal
medicine fellows, neonatal nurse practitioners, and pediatric
hospitalists with primary responsibilities in the NICU), pediatric
residents (interns and seniors), and bedside nurses (in the level
2 and level 3 nurseries). All predictive models other than the
negative control had a lower absolute error than the clinician’s
predictions (Table 2).
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Table 2. Absolute errors of clinician and model predictions.

P valueClinician error differencedMedian (IQR)cMean (SD)bModela

N/AN/Ae1.10 (0.60-1.80)1.38 (1.31)clinicians

<.0001–0.49 (–0.68 to –0.29)1.50 (0.80-2.58)1.86 (1.55)current

.01090.19 (0.04 to 0.34)0.94 (0.50-1.67)1.19 (1.03)lm

.00050.23 (0.10 to 0.36)0.97 (0.48-1.47)1.14 (1.01)ridge

.00020.29 (0.14 to 0.44)0.91 (0.37-1.55)1.08 (1.01)lstm

<.00010.30 (0.17 to 0.43)0.94 (0.51-1.38)1.08 (0.95)lasso

<.00010.32 (0.18 to 0.45)0.87 (0.34-1.36)1.06 (1.02)nn

<.00010.34 (0.20 to 0.48)0.76 (0.34-1.48)1.04 (0.91)rf

<.00010.37 (0.22 to 0.52)0.88 (0.37-1.41)1.01 (0.90)xgboost

aModels are as described in Textbox 1, with 210 predictions made by each model. Clinician predictions were from all role groups (attendings, advanced
practitioners, residents, and nurses).
bPrediction mean absolute error and SD (mg/dL).
cPrediction median absolute error and IQR (mg/dL).
dMean error differences (mg/dL, clinician absolute error minus model absolute error) with 95% confidence range and comparisons by paired t test.
Positive values reflect higher prediction errors by clinicians.
eN/A: not applicable.

Clinician accuracy may differ by role (Table 3), but because
predictions were made on different subsets of patients, accuracy
by role group could not be directly compared with paired testing.
Although advanced practitioners and attendings made
predictions with lower mean absolute error (MAE), these
predictions were made on measurements for which the simple
neural network also had the lowest MAE, that is, this subset

may have made it easier to make accurate predictions. When
comparing predictions made by clinicians in each role with
predictions made by the neural network, clinicians had
statistically significant higher errors for all except the nursing
group, which had the lowest number of predictions (n=31),
potentially limiting statistical power.

Table 3. Clinician prediction accuracy by role and comparison with the neural network predictive model.

P valueMean error differencecModel median error

(IQR)b
Model MAE
(SD)

Clinician median error

(IQR)b
Clinician MAE

(SD)a
Role

<.00010.32 (0.18 to 0.45)0.87 (0.34-1.36)1.06 (1.02)1.10 (0.60-1.80)1.38 (1.31)All clinicians
(n=210)

.0170.24 (0.04 to 0.44)0.83 (0.34-1.31)0.93 (0.76)0.90 (0.50-1.40)1.17 (1.09)Advanced practition-
er (n=74)

.0030.37 (0.13 to 0.61)0.76 (0.25-1.33)0.99 (1.08)1.20 (0.57-1.70)1.36 (1.31)Attending (n=60)

.00710.43 (0.12 to 0.73)1.09 (0.50-1.57)1.12 (0.87)1.10 (0.70-1.90)1.54 (1.20)Resident (n=45)

.320.25 (−0.25 to 0.75)1.07 (0.37-1.52)1.40 (1.49)1.20 (0.50-1.80)1.65 (1.82)Nurse (n=31)

aClinician and neural network model prediction mean absolute error (MAE, mg/dL) and SD.
bClinician and neural network model prediction median absolute error (mg/dL) and IQR.
cMean clinician absolute error minus neural network absolute error (mg/dL), with 95% confidence range and comparisons by paired t test. Positive
values reflect higher prediction errors by clinicians.

Predicting Exceeding the Phototherapy Threshold
Although many treatment guidelines exist for the management
of neonatal hyperbilirubinemia [7], the novelty of the approach
described here is that the ability to predict actual bilirubin values
allows the model to be adapted for different guidelines.

Two previously published models [27,28] predicted the need
to resume phototherapy as recommended by consensus treatment
guidelines [8], after an initial episode of phototherapy. The
guidelines apply only to newborn infants at ≥35 completed

weeks of gestation. Both models reported an AUROC curve of
0.88.

As a concrete example of adapting the general approach
described in this study to a specific consensus-based guideline,
the simple neural network was retrained to make a similar
prediction—whether or not the next bilirubin measurement
would exceed the phototherapy threshold—using the same 8
predictors described above by (1) limiting the data set to only
those babies born at or after 35 weeks and (2) changing the
prediction target to the dichotomous outcome exceeding the
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AAP-recommended phototherapy threshold [8]. The risk
category was determined by gestational age and the presence
of potential isoimmune hemolytic disease as reflected by a
baby’s Coombs-positive result.

Limiting the data set to only those born after 35 weeks yielded
a training set of 19,242 bilirubin prediction targets, of which

910 (910/19,242, 4.73%) exceeded the phototherapy threshold,
and a held-out test set of 2449 prediction targets, of which 104
(104/2449, 4.25%) exceeded the phototherapy threshold. After
training to make the binomial prediction, this neural network
model performed well on the held-out test set with an AUROC
curve of 0.941 (95% CI 0.910 to 0.973; Figure 3).

Figure 3. Receiver operator characteristic curve for neural network prediction of exceeding the American Academy of Pediatrics–recommended
phototherapy initiation threshold on the subsequent bilirubin measurement in newborn infants ≥35 weeks of gestation. The area under the receiver
operator characteristic curve was 0.941 (95% CI 0.910 to 0.973); a no-skill classifier would have an area under the receiver operator characteristic curve
of 0.5. The color represents the decision threshold value corresponding to the sensitivity and specificity on the receiver operator characteristic curve.
AUROC: area under the receiver operator characteristic curve; ROC: Receiver operator characteristic.

The binary outcome in this data set is significantly imbalanced,
with only 4.25% (104/2449) of the test set with a subsequent
bilirubin measurement exceeding the phototherapy threshold.
Although frequently used to report performance on binary
classifiers, the AUROC curve can be misleading in imbalanced
data sets for which the area under the precision recall (PR) curve
(AUPRC) may be more informative [39,40]. The PR plot
displays the relationship between precision (positive predictive

value) and recall (sensitivity). Unlike the AUROC, for which
a no-skill classifier would have an AUROC curve of 0.5, the
no-skill baseline AUPRC varies depending on the class
distribution. In this case, the baseline AUPRC for a no-skill
classifier would be 0.0425. Figure 4 displays the PR curve
performance of the neural network model, again with a good
performance on the held-out test set with an AUPRC curve of
0.573.
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Figure 4. Precision recall curve for neural network prediction of exceeding the American Academy of Pediatrics–recommended phototherapy initiation
threshold on the subsequent bilirubin measurement in newborn infants ≥35 weeks of gestation. The area under the precision recall curve was 0.573; for
this data set, a no-skill classifier would have an area under the precision recall curve of 0.043. The color represents the decision threshold value
corresponding to the precision and recall on the curve. AUPRC: area under the precision recall curve; PPV: positive predictive value.

Discussion

Principal Findings
Using a cohort of 10,947 babies from 4 hospitals born between
22 and 43 completed weeks of gestation and with 41,695 total
serum bilirubin measurements, this study reports the generation
and validation of machine learning models to predict follow-up
bilirubin levels within 72 hours of a previous measurement
during the first 10 days after birth that outperform clinician
predictions. A set of 8 predictive features was sufficient for
optimal model performance. This may be the first report of
predicting specific bilirubin levels in newborn infants at any
gestational age when taking into account the effect of
phototherapy. This approach was also applied to predict
subsequently exceeding the AAP-recommended phototherapy
threshold for neonates born at ≥35 weeks of gestation, with
good performance.

Potential Applications

Prediction of Exceeding the Phototherapy Threshold of
a Clinical Guideline
Previously published models [27,28] predicted the need to
resume phototherapy as recommended by consensus treatment
guidelines [8] after an initial episode of phototherapy and used
logistic regression with only 2 or 3 predictors: gestational age,
age at phototherapy initiation, and bilirubin level when
phototherapy was discontinued relative to the phototherapy
initiation threshold. These models achieved an AUROC curve
of 0.88.

The models in this study differ in several ways: prediction of
actual bilirubin values rather than a binary outcome, no
restriction on gestational age, and taking into account previous

episodes of phototherapy or phototherapy before the following
measurement. This generalization allows application to any of
the many clinical practice guidelines available for the
management of neonatal hyperbilirubinemia.

In this study, the AAP 2004 guideline was chosen as a specific
example of this approach. Retraining on a data set limited to
babies born at ≥35 weeks of gestation and changing the
prediction target to the binary outcome resulted in a neural
network model with an AUROC curve of 0.941 (95% CI 0.910
to 0.973) on the held-out test set, which compares favorably
with the previously reported logistic regression models (AUROC
curve of 0.88). The improved performance might be related to
taking into account the risk factor for isoimmune hemolytic
disease (ie, the presence of baby’s Coombs-positive status) that
alters the consensus guideline phototherapy initiation thresholds
but is not directly included as a predictor in the previously
published models.

Predicting subsequently requiring phototherapy when the
baseline prevalence is only approximately 4% and with an
imperfect predictive model, as demonstrated in the receiver
operator characteristic and PR curves (Figures 3 and 4), is
challenging and requires a tradeoff between sensitivity,
specificity, and positive and negative predictive values.

The choice of a decision threshold depends greatly on the goal
of the prediction. For example, if the goal is the relatively
low-cost determination of which newborn infants should have
a follow-up appointment with their pediatrician sooner rather
than later after discharge, a lower decision threshold could be
chosen that tolerates a higher false-positive rate. In the predictive
model reported here, a decision threshold of 0.3 could be chosen,
yielding a lower positive predictive value of 46%, but with a
higher sensitivity of 58% and a negative predictive value of
98.1%.
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In contrast, if the goal was to determine whether an infant’s
discharge from the hospital should be delayed to initiate
phototherapy, thereby increasing costs related to longer length
of stay, a higher threshold might be chosen. For example,
choosing a decision threshold of 0.6 for the model presented
here would yield a positive predictive value that is increased to
87% but with sensitivity decreased to 25% and a negative
predictive value of 96.8%. This choice would be to attempt to
avoid prolonging the length of stay by keeping infants who are
less likely to actually need phototherapy, but allowing a lower
sensitivity and instead relying on outpatient follow-up to identify
those infants who would need to be readmitted for phototherapy.

Application to Guidelines to Account for Previous
Phototherapy
A more fundamental question is whether the AAP consensus
treatment recommendations should be used after phototherapy
has already been provided. This usage is not directly addressed
or recommended in the 2004 guidelines [8] and there might be
issues in the face validity of this practice. For example, early
initiation of intensive phototherapy may effectively limit the
initial increase in serum bilirubin but this may also result in a
potentially falsely-reassuring low (subphototherapy threshold)
age-specific bilirubin level, which may be followed by a
resumed rapid rate of increase after discontinuation of
phototherapy.

The predictive models reported in this study may be useful for
developing treatment clinical decision support that predicts the
risk of subsequently exceeding consensus-developed thresholds.
The present treatment recommendations describe 3 phototherapy
initiation curves for different risk categories that plateau at 15,
18, and 21 mg/dL for higher, medium, and lower risk,
respectively. The models described here could be used to predict
whether a chosen threshold might be exceeded in the future,
when taking into account previous phototherapy as well as other
clinical features (age, gestational age, empirically observed
bilirubin rate of rise, etc).

Predictive Models for Neonatal Readmission
Readmissions of apparently healthy newborn infants are often
associated with jaundice. In a retrospective study of 296,114
neonates discharged from 21 well-baby nurseries in the
Intermountain Healthcare system, feeding problems (41%) and
jaundice (35%) were frequently present in the 5308 early
readmissions of apparently healthy neonates [2]. It is possible
that the predictions made by the models reported here could be
combined with other clinical features to develop a risk calculator
for neonatal readmission. This risk assessment might identify
higher-risk neonates for closer follow-up with primary care
providers, visiting nurses, or lactation consultants. Previous
unpublished work in assessing the risk of readmission of
apparently healthy newborn infants discharged from a well-baby
nursery used gestational age, age at time of discharge, weight
loss, size for gestational age (eg, small for gestational age),
maternal parity, and maternal race to yield a logistic regression
predictive model with fair performance for predicting
readmission (AUROC curve of 0.76; Joseph H Chou,
unpublished work). An interesting future direction would be to
determine whether the addition of present or predicted follow-up

bilirubin measurements might improve performance. Ideally,
this risk assessment would be performed automatically within
the EHR, not requiring clinician input, and made available closer
to the time of discharge.

Assessment of Adjunctive Treatment Efficacy
Intravenous immunoglobulin (IVIG) remains a recommended
treatment modality for neonatal isoimmune hemolytic disease
if total serum bilirubin continues to rise despite intensive
phototherapy [8]. However, although some reports suggested
a reduction in the need for exchange transfusion after IVIG
administration, the practice remains controversial because most
clinical trials were not blinded and a recent systematic
meta-analysis suggested overall poor quality of evidence and
an unknown benefit effect estimate [41]. In nonneonatal
populations, IVIG has been rarely associated with worsening
of hemolysis [42]; if this phenomenon is present in the neonatal
population, there is the possibility of actually worsening jaundice
from IVIG therapy.

In the models for bilirubin prediction reported in this study,
administration of IVIG was not included as a predictive feature
as it was a very rare occurrence (administered in 96 of the
52,149 [0.18%] babies in the starting population). In future
work, it would be interesting to determine whether
administration of IVIG affected the accuracy of predictions.
For example, if IVIG administration was temporally associated
with subsequent bilirubin predictions that were consistently too
high, this could be interpreted as indirect evidence of IVIG
resulting in a lower bilirubin rate of rise. Unlike previous
unblinded studies that used avoidance of exchange transfusion
as an outcome (albeit a clinically significant outcome), this
proposed approach might be less susceptible to bias.

Limitations

Implementation for Clinical Use
The models described in this study are not intended to be used
directly by clinicians manually entering predictors, which would
likely be too cumbersome for integration into care delivery
workflows. Rather, the goal was to generate the best possible
performing predictive models using only features easily
accessible within the EHR for future integration into automated
clinical decision support. Some EHR software providers are
beginning to integrate analytics and artificial intelligence
modules into their platforms, for example, the Cogito enterprise
analytics module by Epic (Epic Systems Corporation) includes
business intelligence and machine learning capabilities that is
either embedded at the point of care or deployed via a
cloud-based platform. A future goal would be to seamlessly
provide advanced clinical decision support from within the EHR
platform available during care delivery, without clinical provider
intervention.

Data Quality and Completeness
The data were limited to those available from routine clinical
care, thus predictions outside the norms of clinical care might
be less accurate. However, the available data likely reflect the
scenarios of highest interest to clinicians. Another concern is
the potential for sampling bias. Follow-up bilirubin
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measurements may not have been initially planned but were
instead obtained after visual recognition of unexpected jaundice,
resulting in a bias toward higher bilirubin levels. A similar
concern was raised in the AAP guidelines that the Bhutani
nomograms should not be considered as describing the natural
history of the neonatal bilirubin trend [4,8].

This study intentionally included all study subjects regardless
of missing data on the basis that clinicians also often need to
make decisions in the face of missing information. The goal of
this study was not to generate predictions only if all desired
information was available but rather to provide the best
predictions possible using the available, potentially incomplete
information. For model training, missing data were handled
simplistically—median imputation and casting categorical
predictors as whether or not known to be present. More
sophisticated imputation techniques might yield better prediction
performance.

The accuracy of the data extracted from the EHR was another
concern. The duration and timing of phototherapy was
determined by the timestamps of the clinician orders, which
may not reflect actual start and stop times. It was not possible
to differentiate between type or intensity of phototherapy or
how frequently a baby was permitted to be removed from
phototherapy. Of note, for the predictions provided by clinicians,
providers actively providing care to the neonates were instructed
to take all information into account, even if unavailable for
predictive model training.

Some data were not available or were not extracted from the
EHR and were therefore not available for model training. For
example, glucose-6-phosphate dehydrogenase (G6PD)
deficiency can result in jaundice secondary to hemolysis.
However, G6PD status was not included as a predictive feature
because the results from testing are typically not available in
the neonatal time frame and the goal of this study was to
generate models usable at the time of neonatal admission. As
discussed earlier, IVIG therapy was not included in the model
training because of its rarity (96/52,149, 0.18%). Exchange
transfusion is another therapy for isoimmune hemolytic jaundice,
sometimes utilized after failure of intensive phototherapy and
IVIG administration. Exchange transfusion information was
not readily extracted from the EHR, but its utilization is likely
even less frequent than IVIG administration. As this information
was not made available for model training, predictions are
unlikely to be accurate in the setting of G6PD deficiency, IVIG
administration, or exchange transfusion. However, although
more accurate or more complete data for model training might
improve prediction accuracy, it is notable that despite potential
limitations to data quality, predictive model accuracy still
surpassed that of clinicians.

Model Training
In this study, the data were explicitly split into a training set
used for data exploration and model parameter choice and a
held-out test set used for final model evaluation. A limitation
of this approach is that each of the final models was trained
once on the training set and evaluated once on the test set,
limiting the ability to assess performance variance for each
model.

An alternative approach would be to perform, for example,
10-fold cross-validation by combining the data into one large
data set, creating 10 overlapping partitions of training and test
sets and performing model training on each of the 10 partitions,
each resulting in model evaluation on a different test set,
allowing a better sense of model performance variance.

However, a major concern with this approach was the potential
for data leakage and overestimation of performance. By the
time clinician predictions were being collected, the previous
data from June 2015 through February 2019 were explored for
the initial steps of feature selection, hyperparameter choice (eg,
regularization strength), and model architecture (eg, tree
ensemble settings, multilayer perceptron structure). If the same
data were used to evaluate performance via cross-validated
model training, it may result in overly optimistic evaluation
metrics.

Instead, the approach was to prevent any possibility of data
leakage by completely separating out the post-February 2019
held-out test set and not accessing it until after the models were
fully trained on the training set and then reporting model
performance on the held-out test set. Another reason for this
approach was the limited number of clinician predictions
available, all after February 2019.

Future work could use newly acquired data to retrain the
predictive models with the previously identified model
parameters using K-fold cross-validation to allow a better
estimate of model performance and variance.

Model Interpretability
Machine learning model interpretability is a significant issue
[43-45]. The risk of trusting uninterpretable predictive models
is the potential for failing to recognize when incorrect guidance
is being provided. The models trained in this study range from
those that are relatively interpretable (linear model with no
interaction terms) to those whose functioning is obfuscated
(neural network). As is typical in machine learning, a tradeoff
between model simplicity and predictive performance was
observed. Future work would aim to provide a means to
understand model functioning when maintaining prediction
accuracy. Another important direction for future work would
be to provide confidence ranges for individual predictions.

Limitations of Laboratory Measurement
Nonsystematic laboratory variation of bilirubin analysis limits
the achievable prediction accuracy. In a survey of instruments
used for neonatal bilirubin measurement, the coefficient of
variation (a measure of dispersion used to describe precision)
ranged from 2% to 6% [46,47]. In this study, laboratory
measurement precision was not evaluated; however, the test set
median target bilirubin level was 10.6 mg/dL with a neural
network model MAE of 1.05 mg/dL, suggesting that limitations
in instrument precision (2% to 6% of 10.6 mg/dL is 0.21 mg/dL
to 0.64 mg/dL) might account for a significant proportion of
prediction error.

Transcutaneous Bilirubinometry
Transcutaneous bilirubin (TcB) measurement provides a
convenient and noninvasive method for estimating serum
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bilirubin levels [48]. Nomograms have been developed for
normal newborns born at ≥35 completed weeks of gestation
[49-51], and a systematic review suggests that TcB measurement
is reasonably accurate in the preterm population (born before
37 weeks of gestation) [52].

In this study, TcB data were not included as a predictive feature
in model generation as they were noncontributory. In the 4
hospitals included in this study, the clinical practice was to
routinely obtain a TcB measurement only in newborn infants
born at or after 35 weeks of gestation. The TcB measurement
was used mainly as a screening test; if concerning, serum
bilirubin was immediately sent and all subsequent management
was guided by serum bilirubin measurement.

As the goal of this study was to predict subsequent bilirubin
measurements and to include infants born at <35 weeks of
gestation and because any concerning TcB measurement was
immediately followed by a serum bilirubin measurement,
transcutaneous bilirubinometry, as utilized at the 4 hospitals in
this study, did not provide additional information useful for
model training. However, at other institutions with different
practices, TcB measurement is likely to be useful for predictive
modeling.

Generalizability
The prediction models were not externally validated to assess
generalizability. However, it may be preferable for hospitals to

train their own predictive models that account for local
equipment and practices. For example, a hospital that routinely
uses double overhead fluorescent tube banks of phototherapy
as well as a bilirubin blanket under the baby will likely have
different phototherapy efficacy compared with using only a
single overhead fluorescent tube bank of phototherapy. The
increasing accessibility of EHR data and relative ease of
machine learning model training may make hospital-specific
predictive models possible. Although personalized medicine
has typically referred to practice tailored to individual patient
variation, personalization should also be applied to hospital
systems.

Conclusions
Models were developed to predict follow-up total serum
bilirubin levels in newborn infants <10 days old, which
outperform clinicians. This may be the first report of models
that predict actual bilirubin levels, are not limited to term and
late preterm patients, and take into account the effect of
phototherapy. The predictive features are readily accessible in
EHRs, making integrated clinical decision support potentially
feasible. Important directions for future work include improving
model interpretability while maintaining prediction accuracy
and providing confidence ranges of predictions.
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Abbreviations
AAP: American Academy of Pediatrics
AUPRC: area under the precision recall curve
AUROC: area under the receiver operator characteristic
G6PD: glucose-6-phosphate dehydrogenase
EHR: electronic health record
IVIG: intravenous immunoglobulin
LASSO: least absolute shrinkage and selection operator
LSTM: long short-term memory
MAE: mean absolute error
NICU: neonatal intensive care unit
PR: precision recall
TcB: transcutaneous bilirubinometry
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