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Abstract

Background: Thefirst-year survival rate among patients undergoing hemodialysis remains poor. Current mortality risk scores
for patients undergoing hemodialysis employ regression techniques and have limited applicability and robustness.

Objective: We aimed to develop a machine learning model utilizing clinical factors to predict first-year mortality in patients
undergoing hemodialysis that could assist physiciansin classifying high-risk patients.

Methods: Training and testing cohorts consisted of 5351 patients from a single center and 5828 patients from 97 renal centers
undergoing hemodialysis (incident only). The outcome was all-cause mortality during thefirst year of dialysis. Extreme gradient
boosting was used for algorithm training and validation. Two models were established based on the data obtained at dialysis
initiation (model 1) and data 0-3 months after dialysis initiation (model 2), and 10-fold cross-validation was applied to each
model. The area under the curve (AUC), sensitivity (recall), specificity, precision, balanced accuracy, and F1 score were used to
assess the predictive ability of the models.

Results: In the training and testing cohorts, 585 (10.93%) and 764 (13.11%) patients, respectively, died during the first-year
follow-up. Of 42 candidate features, the 15 most important features were selected. The performance of model 1 (AUC 0.83, 95%
Cl 0.78-0.84) was similar to that of model 2 (AUC 0.85, 95% CI 0.81-0.86).

Conclusions; We developed and validated 2 machine learning models to predict first-year mortality in patients undergoing
hemodialysis. Both models could be used to stratify high-risk patients at the early stages of diaysis.

(JMIR Med Inform 2020; 8(10):€20578) doi: 10.2196/20578
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patientsremains poor, especialy in thefirst year of theinitiation

Introduction of dialysis [4.5],

Background
The overall prevalence of chronic kidney disease is 10.8% in

End-stage renal diseaseisacomplex disease state with multiple
associated comorbidities. Patientsinitiating hemodialysis often

China and 15% in the United States, which has brought
significant economic, social, and medical burdens on patients
and society [1-3]. According to the United States Renal Data
System, there are approximately 120,000 patients with end-stage
renal disease starting chronic renal replacement therapy every
year [2]. However, survival among incident hemodiaysis

http://medinform.jmir.org/2020/10/e20578/

have acute complications, and some of them suffer from major
comorbid conditions that are associated with poor short-term
prognoses [6]. It is essential to stratify the risk of mortality
according to clinica and laboratory findings of patients
undergoing hemodialysis; therefore, theidentification of patients
undergoing hemodialysis who are at high risk of first-year
mortality isof great clinical significance. It caninform patients
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of their survival prognosis in the early stages of dialysis and
allow clinicians to make targeted intervention strategies to
improve first-year outcomes. Previous studies [7-11] have
identified many risk factors for early dialysis mortality, such
asold age, chronic heart failure, catheter use, low albumin, low
hemoglobin, and high estimated glomerular filtration rate at
dialysis initiation. However, because of the heterogeneity of
primary disorders and broad comorbidities, these risk factors
are not enough to be used for conclusive decision making. In
recent years, a number of clinical risk models have been
developed to predict early mortality in the dialysis population,
and most are based on linear models (logistic or Cox model)
[12-16]. The performances of these models were not good
enough in either the original population or the external
validation—areaunder the curve (AUC) of these modelsranged
from 0.710t0 0.752[17]. In addition, no study compared models
based on predialysis data with models based on data after
dialysis.

In recent years, machine learning has been proven to be avery
powerful method by researchers in medical fields [18-21].
Machine learning is useful in identifying the most important
factors and for developing predictive models with the best
performance. A recent study [22] reported on a random forest

Figure 1. A workflow to develop the prediction models for first-year mortali
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machine learning model used to predict first-year survival of
incident hemodialysis patients. The model’s AUC was 0.749
(95% CI 0.742-0.755), which was superior to those of traditional
risk prediction models; however, this is not accurate enough
for clinical application.

Objective

Therefore, in this study, we sought to develop and validate
sufficiently accurate models based on machine learning
techniques, utilizing readily available clinical factorsto predict
first-year mortality in incident dialysis patients.

Methods

Study Design

Thisstudy retrospectively collected datafrom Zhejiang Dialysis
System. Zhejiang Dialysis System isadatabase of hemodialysis
and peritoneal dialysis patients in East China. Training data
were retrieved from the First Affiliated Hospital College of
Medicine Zhgjiang University between January 2007 and April
2019 (Figure 1). Testing data were collected from 97 renal
centers between January 2010 and August 2018 for external
vaidation (Figure 1). All follow-up datawere updated to August
2019.

ty inincident hemodialysis patients. X GBoost: extreme gradient boosting.
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maintenance hemodialysis were included. Patients who died
within 12 months of follow-up were also included.
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The exclusion criteria were as follows:. patients with a history
of previous renal replacement therapy, patients whose kidney
function recovered within 3 months, patientswho received renal
transplantation or switched to peritonea dialysis within 12
months after dialysisinitiation. We al so excluded patients with
missing information on disease diagnoses or age at dialysis
initiation.

This study followed the tenets of the Declaration of Helsinki
and was approved by the ethics committee of the First Affiliated
Hospital of Zhejiang University (11T720200088A) in Hangzhou,
China. Written informed consent was obtained from each
participant.

Outcome and Predictors

The outcome of this study was al-cause mortality during the
first year of dialysis. Outcome status and potential candidate

http://medinform.jmir.org/2020/10/e20578/
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variables for the prediction tool, including demographic
information, disease diagnoses, comorbidities, and laboratory
test results, were obtained from the Zhejiang Diaysis System.

Demographic information and type of vascular access were
collected at the start of dialysis. Disease diagnoses, comorbid
information, and laboratory test results were collected 0-3
months after dialysisinitiation. Themost recent serum creatinine
measurements prior to the index date were used to estimate the
glomerular filtration rate using the Chronic Kidney Disease
Epidemiology Collaboration equation [23].

A total of 42 variableswereincluded as candidate features based
on review of relevant literature and clinical experience. Only
BMI and ferritin had missing data, and both instances of missing
data were less than 6% (Table 1).
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Table 1. Baseline characteristics of the training and testing cohorts.

Sheng et d

Characteristics

At didysisinitiation

Training cohort

Testing cohort

0-3 months

Training cohort

Testing cohort

(n=5351) (n=5828) (n=4425) (n=3729)
Sex, n (%)
Male 3295 (61.58) 3524 (60.47) 2744 (62.01) 2264 (60.71)
Female 2056 (38.42) 2304 (39.53) 1681 (37.99) 1465 (39.29)
Body massindex (kg/m?), mean (SD)? 22.09 (3.29) 21.73 (3.07) 22.19 (3.39) 21.83(3.04)
Ageat dialysis initiation (years), mean (SD) 51.67 (16.48) 62.53 (16.20) 52.61 (16.59) 62.45 (15.9)
Systolic pressure (mmHg), mean (SD) 137.49 (22.93) 146.18 (24.58) 138.52 (23.15) 146.33 (24.68)
Diastolic pressure (mmHg), mean (SD) 77.76 (12.26) 78.95 (15.52) 80.45 (12.15) 79.02 (15.45)
Chronic kidney disease etiology, n (%)
Chronic glomerulonephritis 2823 (52.76) 3015 (51.73) 2445 (55.25) 2064 (55.35)
Diabetic nephropathy 1120 (20.93) 1191 (20.44) 895 (20.23) 818 (21.94)
Hypertensive nephropathy 262 (4.90) 557 (9.56) 218 (4.93) 370 (9.92)
Lupus nephritis 68 (1.27) 50 (0.86) 57 (1.29) 29 (0.78)
ANCA-associated? vasculitis 57 (1.07) 64 (1.10) 53 (1.20) 33(0.88)
Gouty nephropathy 32 (0.60) 125 (2.14) 26 (0.59) 72 (1.93)
Polycystic kidney disease 286 (5.34) 214 (3.67) 220 (4.97) 150 (4.02)
Other 703 (13.14) 612 (11.07) 511 (11.54) 204 (5)
Comorbid conditions, n (%)
Cirrhosis 86 (1.61) 90 (1.54) 81(1.83) 60 (1.61)
Multiple myeloma 46 (0.86) 90 (1.54) 46 (1.04) 51 (1.37)
Atrial fibrillation 108 (2.02) 109 (1.87) 85 (1.92) 72 (1.93)
Congestive heart failure 969 (18.11) 999 (17.14) 794 (17.94) 605 (16.22)
Ischemic heart disease 1476 (27.58) 1578 (27.08) 1206 (27.25) 983 (26.36)
M etastatic cancer 86 (1.61) 91 (1.56) 74 (1.67) 38(1.02)
Lymphoma 7(0.13) 7(0.12) 6 (0.14) 1(0.03)
Chronic obstructive pulmonary disease 241 (4.50) 165 (2.83) 169 (3.82) 78 (2.09)
Cerebrovascular disease 322 (6.02) 411 (7.05) 244 (5.51) 271 (7.27)
Laboratory data
Leukocyte (10%L), mean (SD) 7.32 (2.95) 7.71(3.79) 7.40 (3.09) 6.90 (3.22)
Neutrophil (10%L), mean (SD) 5.23 (2.68) 5.06 (3.32) 5.36 (2.78) 4.22 (257
Hemoglobin (g/L), mean (SD) 94.82 (23.30) 83.09 (19.12) 91.05 (21.68) 86.50 (14.67)
Platelet (10L), mean (SD) 193.28 (93.47) 182.47 (83.70) 190.84 (88.13) 184.36 (71.39)
Albumin (g/L), mean (SD) 36.01 (6.75) 33.27 (5.99) 36.80 (6.59) 33.98 (5.54)
Phosphorus (mmol/L), mean (SD) 1.81(0.62) 1.70 (0.66) 1.66 (0.52) 1.54 (0.50)
Calcium (mmol/L), mean (SD) 2.15(0.28) 2.02 (0.30) 2.14(0.22) 2.08(0.23)
Potassium (mmol/L) 4.87 (1.12) 452 (0.91) 4.76 (0.96) 4.42 (0.69)
Parathyroid hormone (pg/ml), mean (SD) 334.71 (292.07) 246.95 (193.61) 315.98 (291.84) 241.26 (206.48)
Creatinine (umol/L), mean (SD) 807.11 (352.04) 718.84 (336.47) 755.28 (315.95) 661.5 (268.48)
Urea nitrogen (mmol/L), mean (SD) 22.65 (12.07) 23.61 (11.77) 19.87 (8.72) 20.01 (8.13)
Uric acid (umol/L), mean (SD) 436.84 (147.54) 450.27 (157.44) 392.87 (126.48) 402.19 (113.46)
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Characteristics

At didysisinitiation

Training cohort

Testing cohort

0-3 months

Training cohort

Testing cohort

(n=5351) (n=5828) (n=4425) (n=3729)
C-reactive protein, mean (SD) 40.84 (44.09) 25.65 (44.46) 18.52 (35.01) 20.23 (31.22)
Cholesterol (mmol/L), mean (SD) 4.34(1.30) 430 (1.42) 427 (1.23) 4.34(1.25)
Triglycerides (mmol/L), mean (SD) 1.56 (1.00) 1.60 (1.03) 1.58 (0.96) 1.63 (0.97)
High-density lipoprotein, (mmol/L), mean (SD) 1.14(0.42) 1.11 (0.43) 1.12 (0.39) 1.15(0.38)
Low-density lipoprotein (mmol/L), mean (SD) 2.36 (1.10) 2.37 (1.02 2.31(1.04) 2.35(0.92)
Very low-density lipoprotein (mmol/L), mean (SD)  1.65 (1.55) 2.11(1.35) 1.63(1.54) 1.60 (0.93)
Ferritin (ng/mL), mean (SD)° 174.59 (126.34) 328.25 (295.78) 144.34 (144.87) 30542 (278.73)
eGFRY (mL/min/1.73m?), mean (SD) 6.75 (3.79) 7.28(3.93) 7.23(3.85) 7.58 (3.44)

Vascular access at dialysisinitiation, n (%)

Nontunneled catheter 3295 (61.58) 3388 (58.13) 2495 (56.38) 1893 (50.76)

Tunneled catheter 1068 (19.96) 1266 (21.72) 1005 (22.71) 938 (25.15)

Fistulaor graft 988 (18.46) 1174 (20.14) 925 (20.90) 898 (24.08)
Death at 1-year follow-up, n (%) 585 (10.93) 764 (13.11) 437 (9.88) 477 (12.79)

#The missing rates of body mass index in the 4 cohorts were 270 (5.04%), 298 (5.11%), 210 (4.74%), and 168 (4.50%), respectively.

PANCA: anti neutrophil cytoplasmic antibody.

“The missing rates of ferritin in the 4 cohorts were 0.36%, 3.00%, 0.36%, and 2.13%, respectively.

deGFR: estimated glomerular filtration rate.

Data Preprocessing

Before the baseline model was developed, missing data were
imputed with the mean value for continuous variables and the
mode valuefor categorical variables. By using one-hot encoding,
all categorical featureswere transformed into numerical features.
Box-Cox transformation was performed to normalize numerical
features that were highly skewed [24].

Algorithm Development and Validation

An extreme gradient boosting machine learning algorithm was
employed to build a model to predict the correlation between
features and the outcome. Extreme gradient boosting is an
integrated learning algorithm based on gradient boosted decision
trees[25]. Using the Gini impurity index [26], we estimated the
feature importance scores of candidate features after going
through the training process. The feature importance scores
showed how valuable each feature was in the construction of
the boosted decision trees within the model.

The extreme gradient boosting a gorithm was employed because
(1) it has high efficiency and accuracy, (2) it can prevent
overfitting viaregularization, (3) it providesfeatureimportance,
and (4) it alows the use of a wide variety of computing
environments.

Other popular machine learning algorithms—adaptive boosting,
light gradient boosting machine, logistic regression, linear
discriminant analysis, random forest, extra trees, gradient
boosting, multiple layers perception, k-nearest neighbor, and
decision trees—were compared with extreme gradient boosting.

We developed 2 models that were based on the data obtained
at dialysisinitiation (model 1) and data0-3 months after dialysis

http://medinform.jmir.org/2020/10/e20578/

initiation (mode! 2); 10-fold cross-validation was used to avoid
overfitting and to validate each model [27]. We measured AUC,
sensitivity (recall), specificity, precision, balanced accuracy,
and F1 score to assess the predictive ability of each model. The
balanced accuracy was calcul ated asfollows: balanced accuracy
= (sensitivity + specificity) / 2. The F1 score were calculated
as follows: F1 score = (2 x precision x recall) / (precision +
recall). Shapley additive explanation (SHAP) values were used
to measure the marginal contribution of each feature to the
models [28].

Results

Demographic and Clinical Characteristics

The demographic and clinical characteristics of thetraining and
testing cohortsindicated that most characteristicsweresimilarly
distributed (Table 1). All patientswere Chinese. The mean ages
at dialysisinitiation were 51.67 years (SD 16.48) inthetraining
cohort and 62.53 years (SD 16.20) in the testing cohort; 61.58%
of the patients (3295/5351) in the training cohort and 60.47%
of the patients (3524/5828) in the testing cohort were men; out
of 5351 patients, 585 (10.93%) deaths were reported in the
training cohort, and out of 5828 patients, 764 (13.11%) deaths
were reported in the testing cohort.

M odel Performance

Theranks of features sel ected after training the extreme gradient
boosting models are shown in Multimedia Appendix 1 and
Multimedia Appendix 2. The same 15 most important features
were chosen for both model 1 and model 2: age at dialysis
initiation, vascular access, metastatic cancer, diabetic
nephropathy, congestive heart failure, ischemic heart disease,
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cerebrovascular disease, albumin, hemoglobin, neutrophil,
C-reactive protein, creatinine, estimated glomerular filtration
rate, systolic blood pressure, and BMI.

Among the 11 algorithms applied (Table 2), the extreme gradient
boosting algorithm had the best generalized performance for
both model 1 (AUC 0.83, 95% CI 0.78-0.84; balanced accuracy
84.52%; F1 score 0.75) and model 2 (AUC 0.85, 95% ClI
0.81-0.86, balanced accuracy 89.21%, F1 score 0.78). Asshown
in Figure 2, the receiver operating characteristic curves of both
models were similar.

SHAPvalueresultsare shown in Figure 3 (model 1) and Figure
4 (model 2). Each point represents adata samplefor the feature.

Table 2. Performance of different algorithms trained on the testing data set.

Sheng et d

History of congestive heart failure, albumin level, C-reactive
protein level, and age at dialysis initiation were the most
important factors affecting the prediction for first-year mortality
in both model 1 and model 2. Figure 5 shows an example using
model 2 that shows how features contribute to the probability
for a single participant. This participant had a history of
congestive heart failure, low creatinine level, a high C-reactive
protein level, high neutrophil count, and old age at dialysis
initiation, which contributed to a higher probability of mortality
in thefirst year, although he had normal BM1 and dlightly high
systalic blood pressure levels.

Models Precision, % Sensitivity, % Specificity, % Flscore Balancedaccuracy, % aAyc?(950Cl) Accuracy, %

Model 1
Adaptive boosting 43.34 55.37 89.29 04862 72.33 0.81(0.77-0.82) 84.92
Decision tree 68.61 35.47 97.55 04676 66.51 0.78(0.76-0.80) 89.41
Extratrees 78.56 59.95 97.53 0.6800 78.74 0.83(0.77-0.83) 92.60
Gradient boosting 52.58 49.35 93.29 05091 71.32 0.82(0.77-0.83) 87.53
k-nearest neighbor 47.32 50.92 91.45 04905 71.18 0.76 (0.76-0.84) 86.14
Linear discriminant analysis  14.02 82.46 23.74 0.2397 53.10 0.75(0.74-0.84) 31.43
Light gradient boosting 91.76 62.70 99.15 0.7449  80.92 0.82(0.77-0.83) 94.37
Logistic regression 14.16 85.47 21.84 0.2430 53.66 0.68(0.68-0.85) 30.18
Multiple layers perception  16.64 78.80 40.44 0.2748  59.62 0.80(0.68-0.85) 45.47
Random forest 90.62 40.45 99.37 0.5593 69.91 0.81(0.78-0.83) 91.64
Extreme gradient boosting  79.34 71.86 97.18 0.7541 84.52 0.83(0.78-0.84) 93.86

Model 2
Adaptive boosting 61.83 72.33 93.45 0.6667 82.89 0.83(0.80-0.84) 90.75
Decision tree 78.50 63.52 97.45 0.7022 80.48 0.81(0.80-0.82) 93.11
Extratrees 74.48 60.59 96.96 0.6682 78.77 0.84(0.80-0.85) 92.30
Gradient boosting 83.08 67.92 97.97 0.7474  82.95 0.84(0.82-0.85) 94.13
k-nearest neighbor 87.37 52.20 98.89 0.6535 75.55 0.82(0.81-0.86) 92.92
Linear discriminant analysis  16.33 82.81 37.76 0.2728 60.29 0.76()0.76-0.86 43.52
Light gradient boosting 77.97 75.68 96.86 0.7681 86.27 0.85(0.80-0.85) 94.15
Logistic regression 16.12 81.76 37.58 0.2692 59.67 0.73(0.73-0.86) 43.23
Multiple layers perception  16.19 80.08 39.21 0.2694 59.65 0.71(0.71-0.86) 44.44
Random forest 66.67 70.02 94.86 0.6830 8244 0.82(0.80-0.85) 91.69
Extreme gradient boosting ~ 78.95 78.62 96.92 0.7878 87.77 0.85(0.81-0.86) 94.58

8AUC: area under the curve.
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Figure 2. Receiver-operating characteristic curves of model 1 and model 2. AUC: the area under the curve.
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Figure 3. SHAP vaues illustrating how features contribute to model 1. Blue shows a negative contribution, and red shows a positive contribution.

SHAP: Shapley additive explanation.
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Figure 4. SHAP vaues illustrating how features contribute to model 2. Blue shows a negative contribution, and red shows a positive contribution.

SHAP: Shapley additive explanation.
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Discussion

Principal Findings

In this study, by implementing advanced machine learning
techniques, we developed and validated 2 clinical risk prediction
modelsfor first-year mortality inincident hemodialysis patients.
The 2 extreme gradient boosting model s were established based
on the data available at dialysis initiation and data from 0-3
months after dialysis initiation. The performance of model 1
(AUC 0.83) was similar to that of model 2 (AUC 0.85),
suggesting that we can predict first-year mortality in patients
undergoing hemodialysis at dialysisinitiation.

Mortality for patients undergoing hemodialysis during the first
year of diaysisinitiationishigh [4]. Therefore, early and precise
individualized risk estimates are required for clinical decision
making. Traditional strategies for building prediction models
have contributed to quality improvement and decision support.
Neverthel ess, these model s have somelimitationsthat may lead
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to missing important predictors and rel ationships. Our prediction
models (model 1: AUC 0.83, model 2: AUC 0.85), compared
with previous models (AUC 0.710-0.752) [12-17], were more
accuratein stratifying therisk of first-year mortality for patients
undergoing hemodialysis. Our prediction models had several
unique and important characteristics. First, many clinical
features have been reported for the prediction of first-year
mortality in incident hemodialysis patients; some of these
features are interact with each other. Traditional prediction
models do not account for interactions between input features.
By using extreme gradient boosting, we selected the 15 most
important features from 42 candidate features, and then
combined them nonlinearly. Second, missing dataand datanoise
are inevitable in clinical data collected from the real world,
which isacomplex problem for traditional strategies. Machine
learning techniques can deal with missing data and data noise
automatically to improve model performance. Third,
relationships between data may change over time because of
improvements in treatment and changing populations. For
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example, the rates of diabetic nephropathy and cardiovascular
disease have been increasing yearly [1,2]. Traditional prediction
models are always nonrenewable. Machine learning allows for
continual updating of the model to incorporate new data and
capture changes in the relationships between features. Finally,
compared with traditional predictive models, machinelearning
models are more complex and harder to interpret; it is not easy
to determine how these models make decisions. Therefore, we
used SHAP valuesto interpret the modelsin this study. SHAP
valuesfor asingle patient can help physicians evaluate prognosis
and make individualized treatment regimens.

Previous studies [8,15,29] have used data from distinct time
periods. Floege et a [15], by using 90- to 180-day baseline and
0- to 90-day baseline data for the prediction of first-year
mortality, revealed that 2 Cox regression models had similar
performances. Some studies[8,29] used dataobtained at dialysis
initiation to predict the 3- to 6- month mortality of patients
undergoing hemodialysis. Akbilgic et a [17] developed a
random forest model based on 49 predialysis patient features
(AUC 0.75, 95% CI 0.74-0.76); however, it may be not feasible
for all users because too many features are needed. Our models
were based on 15 featuresthat are easily availablefor clinicians.
The performance of model 1 was satisfactory, suggesting that
model 1 can be used to classify high-risk patients at the early
stage of dialysis. Thefirst-year mortality risk of dialysis patients
may be reduced by personalized and targeted preventive
therapies.

Limitations and Future Work

Despite the promising prospects demonstrated by our study, it
had some limitations. First, our training data were based on
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retrospective data generated from a single center. Therefore, a
possible center effect cannot be excluded. Second, athough no
restriction was placed on ethnicity, all patients included were
Chinese. The primary disease of end-stage renal disease and
cardiovascular conditions of patients undergoing hemodialysis
in Chinadiffer from those of patients undergoing hemodialysis
in other regions[2,30]. Thus, the applicability of our modelsto
other ethnic groups and regions needs to be confirmed. Third,
weonly assessed 1-year mortality, whereas|ong-term mortality
isalso important [31]. Therefore, we plan to establish a model
to predict 2-year and 5-year mortality in future studies. Finally,
therapeutic intervention data, such as dialysis dose and
frequency, were not used in this study because therapeutic
interventions were not always fixed until 1-2 months after
dialysis initiation, and therapeutic interventions in patients
varied. We also plan to display the prediction models on the
website of the Zhejiang Dialysis Quality Control Center and as
amobile app for better application.

Conclusions

To accurately predict first-year mortality in incident
hemodialysis patients, we developed and validated 2 machine
learning models based on data available at dialysis initiation
and data 0-3 months after dialysis initiation. The overall
diagnostic performances of the 2 modelswere similar. We hope
our models may assist clinicians in stratifying the risk of
mortality at the early stages of dialysis. Our models need to be
evaluated in data sets of patients undergoing hemodialysisfrom
other ethnic groups and regions before implementation in
clinical practice. For future research, long-term mortality
predictions for patients undergoing incident dialysis will be
addressed.
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