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Abstract

Background: Many drugs do not work the same way for everyone owing to distinctions in their genes. Pharmacogenomics
(PGx) aims to understand how genetic variants influence drug efficacy and toxicity. It is often considered one of the most actionable
areas of the personalized medicine paradigm. However, little prior work has included in-depth explorations and descriptions of
drug usage, dosage adjustment, and so on.

Objective: We present a pharmacogenomics knowledge model to discover the hidden relationships between PGx entities such
as drugs, genes, and diseases, especially details in precise medication.

Methods: PGx open data such as DrugBank and RxNorm were integrated in this study, as well as drug labels published by the
US Food and Drug Administration. We annotated 190 drug labels manually for entities and relationships. Based on the annotation
results, we trained 3 different natural language processing models to complete entity recognition. Finally, the pharmacogenomics
knowledge model was described in detail.

Results: In entity recognition tasks, the Bidirectional Encoder Representations from Transformers–conditional random field
model achieved better performance with micro-F1 score of 85.12%. The pharmacogenomics knowledge model in our study
included 5 semantic types: drug, gene, disease, precise medication (population, daily dose, dose form, frequency, etc), and adverse
reaction. Meanwhile, 26 semantic relationships were defined in detail. Taking melanoma caused by a BRAF gene mutation into
consideration, the pharmacogenomics knowledge model covered 7 related drugs and 4846 triples were established in this case.
All the corpora, relationship definitions, and triples were made publically available.

Conclusions: We highlighted the pharmacogenomics knowledge model as a scalable framework for clinicians and clinical
pharmacists to adjust drug dosage according to patient-specific genetic variation, and for pharmaceutical researchers to develop
new drugs. In the future, a series of other antitumor drugs and automatic relation extractions will be taken into consideration to
further enhance our framework with more PGx linked data.

(JMIR Med Inform 2020;8(10):e20291) doi: 10.2196/20291
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Introduction

Pharmacogenomics
The field of pharmacogenomics (PGx) has developed rapidly
since the initial scientific discoveries of genetic characteristics
affecting individual response to drugs or other agents [1].

Through these years of development, PGx aims at understanding
how genetic variants influence drug efficacy and toxicity. It
combines pharmacology (the science of drugs) and genomics
(the study of genes and their functions), and is certain to improve
new drug development and precision medication. Such studies
can reveal how genetic variation across individuals affects a
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drug’s pharmacokinetics and pharmacodynamics [2]. Many
drugs do not work the same way for everyone. Consequently,
PGx is often considered one of the most actionable areas of the
personalized medicine paradigm [3].

As of June 2019, more than 190 drugs [4] approved by the US
Food and Drug Administration (FDA) clearly stated on in their
medical specifications that they need to be deployed with greater
precision based on individual genotype. The introduction of
targeted drugs and targeted therapies provides a more feasible
and effective way for cancer treatment, improves drug efficacy,
and reduces adverse reactions. Therefore, studies of new
therapies related to PGx such as drug combinations and new
drug discoveries [5] have become increasingly popular. A typical
case of repurposing drugs is afatinib (40 mg q.d.), which was
introduced [6] for treating lung cancer after NGR1 gene fusion.

Named Entity Recognition
Named entity recognition (NER) is a basic tool for natural
language processing (NLP) tasks such as information extraction,
question answering system, syntactic analysis, and machine
translation. Its main goal is identifying entities with specific
meaning in the text, mainly including people’s names, place
names, organization names, proper nouns, etc. It is the
foundation of identifying semantic relationships between entities
and filling a knowledge base.

The common statistical models of NER mainly include the
Hidden Markov Model [7] and the conditional random field
(CRF) [8]. In recent years, neural network deep learning
methods based on the development of word vector technology,
such as the convolutional neural network (CNN) [9] and the
recurrent neural network (RNN), have made a great
breakthrough in the field of NLP. After that, long short-term
memory (LSTM) [10] added a memory cell to RNN, to
overcome the problem of gradient explosion and gradient
disappearance. Bidirectional RNN [11] adopts a double-layer
RNN structure, which can collect forward and backward
information at the same time.

In 2018, Devlin et al [12] from Google AI Language proposed
the Bidirectional Encoder Representations from Transformers
(BERT) which provided outstanding performance in 11 NLP
tasks, opening a new era for NLP. Similar to the general
pretraining 2-stage training method, BERT uses the language
model for pretraining as the first stage. In the second stage, it
fine-tunes for downstream tasks, and achieves the best results
in multiple NLP tasks. The BERT–CRF model [13] and
multilingual BERT model [14] were trained on different
languages such as Portuguese and the F1 score was ultimately
improved. Today, the BERT model has also been applied in
biomedical research. BERT-based models were investigated
for their effectiveness in biomedical and clinical entity
normalization, and achieved state-of-the-art performance on
large-scale electronic health record notes [15] and online corpus
[16]. The BioBERT model [17] for biomedical text mining tasks
and the ClinicalBERT [18] for clinical notes were also
introduced and outperformed previous models.

Biomedical Knowledge Representation
The Knowledge Representation Model can be understood as a
structured set of directed graphs, in which the nodes of the graph
represent entities or concepts, while the edges represent the
semantic relationship between entities or concepts. During the
development of the knowledge representation, sematic networks,
ontology, and knowledge graphs/models are most commonly
used in the field of biomedical science.

A semantic network [19], or frame network, is a knowledge
base that represents semantic relations between concepts in a
network.

An ontology is a formal explicit description of concepts in a
domain, properties of each concept, various features and
attributes, and restrictions on these properties [20]. The Drug
Target Ontology [21] provided a framework and formal
classification, which included related information between
protein, gene, protein domain, binding site, small-molecule
drug, mechanism of action, and many other types of information.
Dumontier and Villanuevarosales [22] constructed a lightweight
ontology, Pharmacogenomics Ontology, based on
Pharmacogenomics Knowledge Base (PharmGKB) data, which
contains 40 core concepts, involving phenotype, genotype, and
drug therapy.

A knowledge graph/model emphasizes data cleaning and
knowledge fusion, and its essence is a semantic network, which
allows access to knowledge inference. Since this concept was
put forward by Google in 2012 [23], researchers have conducted
a series of discussions and research aimed at intelligent retrieval.
High-quality heterogeneous graphs such as the Safe Medicine
Recommendation (SMR) [24] and KnowLife [25] contain
entities and relationships between disease, medicine, patient,
gene, organ, and other biomedical entities constructed by
bridging electronic medical records, ICD-9, DrugBank,
electronic health record [26], and other databases, which leads
to more hidden relationships.

Above all, the knowledge graph/model technology provides a
means to extract structured knowledge from massive texts and
images. It has broad applications in biomedical field and can
promote intelligent semantic retrieval, medical questions and
answers, clinical decision support, and many other scenarios.

Related Works
With the rapid growth and accumulation of massive PGx data,
there is an increasing need for scientific data collecting,
organizing, modeling, and mining. These data reflect a hierarchy
of relationships and detailed information between biomedical
entities. Currently, the semantic types and relationships involved
in PGx knowledge representation are usually limited to drug,
gene, and disease.

Drug–Gene Target Treatment
Drug2Gene [27] was a knowledge base combining information
on compound, drug, gene, and protein from 19 publicly available
databases. Sun et al [28] designed a computational workflow
to construct drug-target networks including drugs, genes, and
diseases from different knowledge bases.
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Drug–Gene–Drug Interaction
Bo et al [29] extracted drug–gene–drug interactions from
biomedical literature using the bidirectional LSTM (Bi-LSTM)
model by combining biomedical resources with lexical
information and entity position information. Coulet et al [30]
instantiated a description logics knowledge base to identify gene
variant–drug response associations.

Drug–Gene–Phenotype Relationship
Dalleau et al [31] assembled a set of linked PGx data from 6
distinct resources such as DisGeNET [32] and ClinVar [33].

Disease–Chemical–Gene Relationship
Kim et al developed DigSee [34] for disease–gene relationships
and DigChem [35] for disease–gene–chemical relationships
from biomedical literature abstracts at a PubMed scale.

However, there currently exist no in-depth explorations and
descriptions of personalized medication, such as drug usage,
dosage adjustment, and applicable population. Therefore, there
is significance in applying the knowledge model to the field of
PGx in further study, which will assist clinicians and clinical
pharmacists in precise medication.

Objective
In this study, we proposed the following 2 objects:

1. We aimed to present a pharmacogenomics knowledge model
consisting of 5 semantic types related to PGx and precision
medication, and also give definitions of relationships
between these entities. The model mostly focuses on
anticancer drugs, drug usage, and adjustments of daily
dosage.

2. We aimed to semiautomatically construct PGx corpora,
which are relatively rare in the existing research, and make
them open access. The NLP algorithms for PGx NER were
also trained for facilitating corpus annotation.

Methods

Study Steps
There are 3 main steps in our study (Figure 1).

1. Data preparation: Data related to PGx were collected from
DailyMed, DrugBank, and RxNorm.

2. Data processing: Manual annotation for PGx entities and
relationships were applied to drug labels in PDF/XML
format from DailyMed. The BERT–CRF model were
trained for entity recognition in this study. Data from
DrugBank and RxNorm were also downloaded, parsed, and
extracted for more drug attributes and relationships.

3. Model construction: The PGx knowledge model was
described in this aspect based on the entities and
relationships extraction. Melanoma was also used as an
example to verify the accuracy and validity of our model.

Figure 1. The framework of our study.

Data Preparation
Data related to PGx need to be collected and integrated in this
study, which are currently stored in DrugBank, PharmGKB,
Comparative Toxicogenomics Database (CTD), RxNorm, and
other databases. Based on the pharmacogenomics knowledge
model built in our study, we chose the following 3 data sources
to accomplish data crawling and data preparation.

DailyMed
The text of drug labels was obtained from DailyMed, which is
a free drug information resource [36] provided by the US
National Library of Medicine (NLM). It consists of digitized
versions of drug labels as submitted to the US FDA. DailyMed
was of special interest because of its comprehensive coverage,
open availability, and the package inserts’combination of format
consistency and rich detail. Drug labels in DailyMed give a
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detailed description of drugs’ indications and usage, adverse
reaction, and applicable population, especially the dosage, dose
form, and dosage adjustment. We downloaded 4067 drug labels
randomly for pretraining tasks and 190 drug labels in the table
of PGx biomarkers for annotation tasks.

DrugBank
DrugBank is a unique bioinformatics and cheminformatics
resource that combines detailed drug (ie, chemical,
pharmacological, and pharmaceutical) data with comprehensive
drug target (ie, sequence, structure, and pathway) information
[37] provided by the University of Alberta. The latest release
of DrugBank (version 5.1.4, released July 2, 2019) was parsed
in this paper for drug attributes such as drug name, description,
chemical formula, molecular weight, drug approval status, and
so on.

RxNorm
RxNorm [38] provides a suite of standards for clinical drugs in
the form of “Ingredient–Strength–Dose Form–Brand name,”
and is designed by NLM for the electronic exchange of clinical
health information. Several attributes and drug–drug interactions
of precise medication were selected from RxNorm, such as daily
dose, dose form, and frequency as attributes, and
has_dose_form, dose_form_of as relationships.

Annotation Task
We recruited 3 annotators, all of whom had a medical training
background and curation experience. Each drug label was
annotated independently by 2 annotators (ie, double annotation).

Differences were resolved by a third and senior annotator.
Besides this, we measured agreement of relationship annotations
using the F score to assess consistency.

Because all 190 drug labels in the FDA table of PGx biomarkers
[4] are in PDF format, the annotator needed to convert all of
them into an editable format such as .txt (Notepad or other word
processors) or .doc/.docx (Microsoft Word) before annotation.

The main tasks involved in the annotation stage were the
recognition of semantic types and semantic relationships from
drug labels sections, including “Indications and Usage,” “Dosage
and Administration,” “Use in Specific Populations,” “Warnings
and Precautions,” and “Adverse Reactions.” For semantic types,
different highlighted colors represented different entities
according to the frame of the PGx knowledge model. In this
work, drug was annotated in yellow, gene was annotated in red,
disease was annotated in gray, dosage and dose form were
annotated in green, adverse reaction was annotated in purple,
and population was annotated in blue. For semantic
relationships, the more important and difficult section,
annotators read the drug labels and recorded the relation
descriptions between diseases and drugs, diseases and genes,
diseases and diseases, drugs and genes, drugs and drugs, and
drugs and dosage manually. This formed the basis of relationship
definition in the follow-up work. Before annotation, we also
indicated the annotation guidelines, see in Figure 2.

An example of drug label annotation is shown in Figure 3.
Finally, all the annotated semantic types and relationships were
recorded in a structured database designed in advance.
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Figure 2. Annotation guidelines.
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Figure 3. Annotation example of MEKINIST.

BERT–CRF for NER
After the annotation of entities, we applied the BERT–CRF
model for NER. The CRF model and BERT–Bi-LSTM–CRF
model were also trained in our study as a comparison.

The BERT–CRF architecture was composed of 4 sections: the
input layer, the pretraining model, the full connection layer, and
the CRF layer, which assigns a tag to each word based on its
context in the output (Figure 4). We feed a sentence to the
architecture to obtain contextual BERT embedding for each
word as {Tok1,...,TokN} The context could be captured via many
attention heads in each of its layers as well. These embeddings
were then transported to a CRF layer to obtain the tag as
{Tag1,...,TagN} for each word block.

The BERT-Base Multilingual, which has 110M parameters,
was used in this NER task. We set the training batch size to 32,
the max_seq to 80, and the learning rate to 0.00001. A total of
10 epochs were trained in each iteration to ensure model
convergence. Other parameters related to BERT are set to
default values. The dropout rate was set to 0.9 in fully connected
layers to prevent over fitting. The transfer matrix in CRF is also
left for the model to learn. The transfer matrix in the CRF layer
was learned by the model itself. Importantly, the Bi-LSTM layer
was added in this architecture before feeding the tweet-level
representation into the CRF layer, to compare the performance
between BERT–CRF with Bi-LSTM and without Bi-LSTM.

JMIR Med Inform 2020 | vol. 8 | iss. 10 | e20291 | p. 6http://medinform.jmir.org/2020/10/e20291/
(page number not for citation purposes)

Kang et alJMIR MEDICAL INFORMATICS

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


Figure 4. BERT–CRF architecture. BERT: Bidirectional Encoder Representations from Transformers; CRF: Conditional Random Field.

Model Representation
We extended the semantic types of our model from 3 common
types of drug, gene, and disease to 5 types: drug, gene (gene
name, gene mutation), disease (disease name, position, etc),
precise medication (population, daily dose, dose form,
frequency, take time for, take with a meal or not, etc), and
adverse reaction.

All the semantic types and attributes covered in
pharmacogenomics knowledge model are shown in Table 1.

The entities model in pharmacogenomics knowledge model
was defined and EID represented the unique identifier for
entities

     Entity={EID*,TERM*,Source,SEMANTICType*} (1)

The relationships model in pharmacogenomics knowledge model
was defined and RID represented the unique identifier for
relationships

     Relation={RID*,Relationship*,Domain*,

          Range*,Definition,TreeNumber*} (2)

The whole pharmacogenomics knowledge model can be
represented as the risk factors of precision medication for
cancers. In this model, disease (C, especially for cancer in this
paper) is usually caused by gene mutations (G), which decided
the target drug (Dr) for treatment.

     Dr = F(C,G) (3)

During treatment, routine dosage/dose form (Ds) has been
already offered by the FDA drug labels. However, it differs
when the patient has an adverse reaction (A) or the disease
occurs in special groups (P) such as pregnancy, lactation,
pediatric, geriatric. Assuming that the 4 factors are independent
in some cases, each factor can effect dosage/dose form
separately.

     Ds = F(Dr,G,A,P) (4)

Above all, gene mutation, disease, adverse reaction, and patient
populations are the risk factors in pharmacogenomics knowledge
model of drugs to be used, and suitable dosage and dose form
especially.

     Dr, Ds=F(C,G,A,P) (5)
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Table 1. Semantic types and attributes in the knowledge model.

Entity/AttributeSemantic Type

Drug Name, Description, Chemical Formula, Molecular Weight, Drug Approval Status, CASa, UNIIb, Pharmacology IndicationDrug

Gene name, MutationGene

Disease Name, PositionDisease

N/AcAdverse Reaction

Pediatric Use Population, Applicable Population, Gender, Age, RacePopulation

Daily dose, Dose form, Frequency, Take time for, Take with a meal or not, etcDrug Use

aCAS: Chemical Abstracts Service Number.
bUNII: Unique Ingredient Identifier.
cN/A: not available.

Results

Data Set Overview
In this paper, we have collected 4067 drug labels in XML format
downloaded from DailyMed as pretraining data for the
BERT–CRF architecture, and 190 drug labels after annotation

for model representation in which 90% (n=171) form the training
set and 10% (n=19) form the test set, randomly assigned.
Statistics-annotated corpus are presented in Table 2. Besides,
the number of unique unigrams were 2216 in the training set
and 829 in the test set; the number of unique bigrams were
120,705 in the training set and 18,851 in the test set.

Table 2. Number of entities in training and test sets.

Number of entities in the test setNumber of entities in the training setEntity

3176Drug

2660Gene

3394Disease

723Body_Part

2799Daily_Dose

816Dose_Form

1232Frequency

77372Adverse_Reaction

Performance of Named Entity Recognition
Three basic models are compared, with the specific results
shown in Table 3 in which minor averaging for the F1 score
was used. The BERT–CRF model achieved better performance
than the other 2 models in this task. In some recent studies, the
full connectivity layer was done by the Bi-LSTM layer, which
ultimately resulted in the BERT–Bi-LSTM–CRF model.
However, the BERT–Bi-LSTM–CRF model presented a more

complex structure and slower training speed than BERT–CRF.
Besides this, there was a little difference of 2% between these
2 models, so BERT–CRF was selected in our study. The
BERT–CRF model showed a high F1 score in drug, dose form,
and body part, but a low F1 score in daily dose and disease,
shown in Table 4. However, these performances were only for
the PGx corpus built semiautomatically in this work, and the 3
basic models may present different results in other studies with
large-scale corpora.

Table 3. Performance of the models.

F1 (%)Recall (%)Precision (%)Model

80.1673.5788.03CRFa

85.1285.1285.12BERT–CRFb

83.0581.0085.22BERT–Bi-LSTM–CRFc

aCRF: Conditional Random Field.
bBERT: Bidirectional Encoder Representations from Transformers
cBi-LSTM: Bidirectional Long Short-Term Memory.
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Table 4. Performance of the semantic type.

F1Semantic type

BERT–CRF (%)BERT–Bi-LSTM–CRFb,c (%)CRFa (%)

100.0094.1294.12Drug

71.4380.0066.67Gene

57.1466.6761.54Disease

85.7157.1557.14Body_Part

42.1131.5831.58Daily_Dose

100.00100.00100.00Dose_Form

75.0075.0062.50Frequency

73.7479.0068.15Adverse Reaction

aCRF: Conditional Random Field.
bBERT: Bidirectional Encoder Representations from Transformers
cBi-LSTM: Bidirectional Long Short-Term Memory.

Semantic Relationships Extraction
Because this study required a high accuracy of relationship
extraction, we adopted a manual method in this task.
Descriptions of semantic relationships were normalized at the
same time during annotation, such as “in combination with” =
“synergized by,” “recommended dosage” = “routine dosage.”
The normalized descriptions are presented in Table 5. The other
expressions in drug labels were stored as synonyms in our study
at the same time. In order to make the pharmacogenomics

knowledge model be more portable, several semantic
relationships were extended, such as “is biomarker-efficacy of,”
“is biomarker-prognosis of.”

In the end, 26 kinds of semantic relationships were extracted,
and the consistency of the entity relationship annotation was
78.55%. Among them, there were 14 first-level semantic
relationships and 12 second-level semantic relationships. Each
kind of semantic relationships has been defined in detail, as
shown in the accessory document.

Table 5. Examples of semantic relationship–normalized description.

Expressions in drug labelsNormalized descrip-
tion

for the prevention of, for relief of the signs and symptoms, for the treatment of, for the prevention of, as monotherapy ofTreats

in combination with, coadministered withSynergized by

avoid concurrent administration of, avoid concomitant use ofAntagonized by

total daily doses, recommended dosageHave dosage

with *** mutation, the presence of *** mutation, be homozygous forHave mutation

Pharmacogenomics Knowledge Model
Based on the entity recognition and relationship definitions
mentioned above, the pharmacogenomics knowledge model is
presented as Figure 5.
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Figure 5. Overview of pharmacogenomics knowledge model.

The Case of Melanoma
Melanoma is a malignant neoplasm derived from cells that are
capable of forming melanin, which may occur in the skin of
any part of body. It frequently metastasizes widely, and the
regional lymph nodes, liver, lungs, and brain are likely to be
involved. The incidence of malignant skin melanomas is rising
rapidly in all parts of the world. Therefore, melanoma, which
is caused by BRAF gene mutation, was taken as an example to
verify our model.

Seven drugs were included in the cases: binimetinib,
cobimetinib, dabrafenib, encorafenib, nivolumab, trametinib,
and vemurafenib. Most were newly indicated for the treatment

of unresectable or metastatic melanoma with BRAF V600E or
V600K mutations, as detected by FDA-approved tests in 2018.
Among them, dabrafenib, encorafenib, and vemurafenib are
targeted drugs for BRAF gene mutations.

By researching the 7 drugs, 4846 triples were established in the
pharmacogenomics knowledge model of melanoma, among
them 4713 triples were drug–drug relationships, 41 were
drug–adverse reaction, 30 were drug–dosage, 24 were adverse
reaction–dosage, 22 were drug–disease, 7 were drug–gene, 4
were drug–population, 2 were gene–mutation, and 3 were
gene–disease. An example of data visualization of trametinib
can be seen in Figure 6. Relationships can be displayed when
the mouse hovers over the joint(s).
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Figure 6. An example of pharmacogenomics knowledge model data visualization.

Data Set Access
We provided a user-friendly interface [39] that enables users to
access the pharmacogenomics knowledge model data set (Figure
7). In the “Home” page, users can learn basic information and
purpose of this knowledge model. On “The Case of Melanoma”
page, users can obtain all the triples in melanoma cases and

browse the triples by different groups of relationships.
Visualization of the triples are presented as well. On the
“Download” page, users can download the melanoma data set,
drug attribute data set, and annotated data set in Microsoft Excel
format, as well as the relationships and definition document in
Microsoft Word format for the user’s convenience.
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Figure 7. User interface of pharmacogenomics knowledge model data set.

Discussion

Potential Relationships in Pharmacogenomics
Knowledge Model
The pharmacogenomics knowledge model constructed in this
paper reveals hidden relationships between drug, gene, disease,
precise medication, and adverse reaction. Trametinib is used as
an example, which is a kinase inhibitor indicated as a single
agent for the treatment of BRAF-inhibitor treatment-naïve
patients with unresectable or metastatic melanoma with BRAF
V600E or V600K mutations as detected by an FDA-approved
test. The recommended dosage is 2 mg orally once daily, and
should be taken at least 1 hour before or at least 2 hours after a

meal. However, we recognized from pharmacogenomics
knowledge model that more careful attention should be paid to
dosing schedules, when medication experience changes or other
side effects occur. That is to say, trametinib needs to be stopped
permanently in case of fever or interstitial lung disease, taken
1-2 hours before meals in case of metastatic thyroid cancer, and
once a day in case of liver injury.

Comparison With Relevant Data Sources
The pharmacogenomics knowledge model included 9 groups
of PGx relationships in this model, which can present more
potential information than other relevant data sources such as
DrugBank, PharmGKB, CTD, and RxNorm, as shown in Table
6.
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Table 6. Comparison between pharmacogenomics data sources.

PGxKMgRxNormfCTDePharmGKBdDrugBankRelationships

√—√√√aDrug–Gene

√——√*b√Drug–Drug

√—√—cGene–Disease

√——√—Gene–Mutation

√—√√*√Drug–Disease

√————Drug–Adverse Reaction

√√——√Drug–Dosage

√————Drug–Population

√————Adverse Reaction–Dosage

aHave structured data and can be downloaded in the web set.
bHave information (unstructured data) for such relationships in the web set.
cHave no information for such relationships in the web set.
dPharmGKB: Pharmacogenomics Knowledge Base.
eCTD: Comparative Toxicogenomics Database.
fRxNorm: drug data interaction standard in American Clinical Information System
gPGxKM: pharmacogenomics knowledge model.

Limitations and Future Studies
However, there are still some limitations in our study. First, this
study aimed to build a pharmacogenomics knowledge model
and semiautomatically annotate the corpus using the existing
NLP tools. However, we did not validate the feasibility of NLP
tools or compare the NLP performance using a benchmark data
set, such as clinical records from the Third i2b2 Workshop on
NLP Challenges [40] or LabeledIn [41], of labeled indications
for human drugs. Our future research will explore BERT–CRF
model verification on other standard drug corporas. Second,
relation extraction was manually done by the 3 annotators which
will place restrictions on the application of pharmacogenomics
knowledge model, and an evaluation of automatic relation
extraction will be conducted in the future. Common relation
extraction methods such as CNN, LSTM, and BERT method
will be used to improve extraction efficiency.

In future studies, we also plan to do the following jobs to
improve our research. First, a series of other antitumor drugs
will be taken into consideration to fill up our framework, such
as ceritinib and afatinib for non–small-cell lung cancer. Second,

linked data can also be extended to other sources, such as CTD,
PharmGKB, and DisGeNET. We hope that this knowledge
model for PGx interactions could serve as a framework and a
resource for future drug research and development.

Conclusions
A pharmacogenomics knowledge model was constructed for
precision medication in our research, which reflected the
multidimensional relationships between drug, gene, disease, as
well as relationships from gene to drug to dosage or frequency
associations. Extraction task for PGx entities has been done
using the BERT–CRF model with F1 score of 85.12%. Our
pharmacogenomics knowledge model contained 5 semantic
types (drug, gene, disease, precise medication, and adverse
reaction) and 26 semantic relationships had been defined in
detail. Using melanoma caused by BRAF gene mutation as an
example, we verified the feasibility of this model using the
FDA’s drug labels and relevant linked data. Finally, we
highlighted this knowledge model as a scalable framework for
clinicians and clinical pharmacists to adjust drug dosage
according to patient-specific genetic variation, and to support
pharmaceutical researchers during new drug discoveries.
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