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Abstract

Background: Although many efforts have been made to develop comprehensive disease resources that capture rare disease
information for the purpose of clinical decision making and education, there is no standardized protocol for defining and harmonizing
rare diseases across multiple resources. This introduces data redundancy and inconsistency that may ultimately increase confusion
and difficulty for the wide use of these resources. To overcome such encumbrances, we report our preliminary study to identify
phenotypical similarity among genetic and rare diseases (GARD) that are presenting similar clinical manifestations, and support
further data harmonization.

Objective: To support rare disease data harmonization, we aim to systematically identify phenotypically similar GARD diseases
from a disease-oriented integrative knowledge graph and determine their similarity types.

Methods: We identified phenotypically similar GARD diseases programmatically with 2 methods: (1) We measured disease
similarity by comparing disease mappings between GARD and other rare disease resources, incorporating manual assessment;
2) we derived clinical manifestations presenting among sibling diseases from disease classifications and prioritized the identified
similar diseases based on their phenotypes and genotypes.

Results: For disease similarity comparison, approximately 87% (341/392) identified, phenotypically similar disease pairs were
validated; 80% (271/392) of these disease pairs were accurately identified as phenotypically similar based on similarity score.
The evaluation result shows a high precision (94%) and a satisfactory quality (86% F measure). By deriving phenotypical similarity
from Monarch Disease Ontology (MONDO) and Orphanet disease classification trees, we identified a total of 360 disease pairs
with at least 1 shared clinical phenotype and gene, which were applied for prioritizing clinical relevance. A total of 662
phenotypically similar disease pairs were identified and will be applied for GARD data harmonization.

Conclusions: We successfully identified phenotypically similar rare diseases among the GARD diseases via 2 approaches,
disease mapping comparison and phenotypical similarity derivation from disease classification systems. The results will not only
direct GARD data harmonization in expanding translational science research but will also accelerate data transparency and
consistency across different disease resources and terminologies, helping to build a robust and up-to-date knowledge resource
on rare diseases.

(JMIR Med Inform 2020;8(10):e18395) doi: 10.2196/18395
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Introduction

A rare disease in the United States is defined by the 1983
Orphan Drug Act as a condition that affects fewer than 200,000
people [1], whereas the analogous legislation introduced in the
European Union in 2000 considers a disease to be rare when it
affects fewer than 1 in 2,000 people [2]. In comparison to
common diseases, health care providers are challenged by a
lack of familiarity with diagnosing and treating rare diseases,
which can lead to missed, delayed, or inaccurate diagnoses even
when an approved, effective therapy is available [3]. Improved
understanding and recognition of rare diseases are key for
accurate and timely diagnosis, and this relies on broad
dissemination of and access to knowledge about rare diseases
[4]. A huge amount of effort has been made to develop rare
disease resources for patients, families, and clinicians, such as
the Genetic and Rare Diseases Information Center (GARD) [5],
Orphanet [6], and Monarch Disease Ontology (MONDO) [7];
however, disparate data and incomplete data harmonization are
still major barriers to improved coordination across specialists,
leading to inefficiencies and delays in diagnosis, care, and
treatment. This is exemplified by the difficulty faced in
accurately answering the question, how many total rare diseases
are there? A recent report by Haendel et al [8], after an
examination of multiple rare resources, concluded that “there
are total of 10,393 rare diseases in MONDO…the majority,
6370 rare diseases, are presented in three or more resources,
whereas 4023 are unique to one source.” The fact that more
than one-third of rare diseases are unique to 1 source highlights
a reality that those resources continue to use their own disease
definitions or harmonization rules to develop their rare disease
vocabularies. Insufficient effort put toward data harmonization
ultimately leads to redundancy in categorization efforts and a
resulting inconsistency of rare disease representation globally.

The goal of data harmonization is to improve the compatibility
of data collected from independent sources (horizontally) in
order to better understand disease etiology from different angles,
which may forward the discovery of therapeutic approaches for
rare diseases. For each individual source, data harmonization
is crucial to better represent and organize data for supporting
data harmonization horizontally. Current data harmonization
efforts are primarily aligning standard nomenclatures or human
efforts to translate specific medical and clinical features into a
standardized and sharable format. For instance, Pontikos et al
[9] introduced Phenooplis, an open platform for the
harmonization and analysis of genetic and phenotypic data that
harmonize phenotypes with the help of Human Phenotype
Ontology (HPO). The International Cancer Genome Consortium
(ICGC) and The Cancer Genome Atlas (TCGA) invited the
cancer-genomics and bioinformatics communities to work
together to identify the best pipelines for the detection of
mutations in DNA-sequencing reads for cancer genomes in
order to facilitate the harmonization of mutation-calling
procedures among institutions [10,11]. Orphanet and OMIM
(Online Mendelian Inheritance of Man) heavily relied on human

efforts for their data curation and harmonization [12,13]. To
avoid cumbersome human efforts and a lack of rare disease
standards in this study, we proposed to systematically identify
phenotypically similar rare diseases from GARD and determine
their similarity types, including duplicate diseases, sibling
diseases, and subtypes for supporting rare disease data
harmonization.

Rare disease designations are often in conflict across different
datasets due to the differing statutory requirements used in
defining a rare disease in different countries, and as such, useful
methods to improve interoperability across these broad
terminologies and standards are required. With the aim of
eliminating data redundancy and inconsistency across different
resources, improving data interoperability, and facilitating data
harmonization, the implementation of a knowledge graph is
capable of semantically organizing and integrating complex
networks of data into one collection. Knowledge graphs have
been widely applied in the medical domain and in the rare
disease field. For instance, Reumann et al [14] reported their
solution for cognitive differential diagnosis (DDx) in rare
diseases based on knowledge graph technology that incorporates
data from ICD-10, DOID, medDRA, PubMed, Wikipedia,
Orphanet, the CDC, and anonymized patient data. Li et al [15]
presented their work to develop a rare disease classification
algorithm established on a knowledge graph. Sosa et al [16]
applied a knowledge graph–embedding method that explicitly
models the uncertainty associated with literature-derived
relationships and uses link prediction to generate drug
repurposing hypotheses for rare diseases. In this study, we
accessed data from an integrative knowledge graph that we
developed from our previous study [17] with a variety of rare
disease-related resources for phenotypical similarity
identification among GARD diseases.

In this study, we report our preliminary work to identify
phenotypically similar GARD diseases from an integrative
knowledge graph using 2 approaches: (1) disease mapping
comparison, and (2) phenotypical similarity derivation from
disease classification systems. This effort will not only direct
GARD data harmonization but will also support data
harmonization across different resources, and eventually support
clinical decision making. Phenotypically similar GARD diseases
applied in this study specifically refer to disease subtypes and
sibling diseases that share similar clinical manifestations. For
example, 2 GARD diseases of “lactate dehydrogenase
deficiency” and “lactate dehydrogenase A deficiency” are
subtypes, and they have similar phenotypical profiles.

Background and Materials

Rare Disease Resources
The Genetic and Rare Diseases Information Center (GARD) is
a program managed by the National Center for Advancing
Translational Sciences (NCATS), National Institutes of Health
(NIH). Since 2003, GARD has provided the public with access
to current, reliable, and easy-to-understand information about
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rare and genetic diseases [5]. As part of the data harmonization
effort toward furthering the development of the GARD, we
harmonized GARD diseases according to their phenotypical
similarity in this study. To fulfill this task, we assessed
phenotypical similarity among GARD diseases by leveraging
several well-known disease resources, including Orphanet,
OMIM, MONDO, the HPO, and the UMLS (Unified Medical
Language System), owing to their complementary focus and
coverage. We briefly describe these applied resources below.

Orphanet is an EU resource that focuses on gathering and
improving knowledge on rare diseases [6]. Rare diseases in the
Orphanet, depending on their clinical presentation, are included
in as many classifications as needed. The Orphanet classification
is organized according to three hierarchical levels: group of
disorders, disorder, and subtype of a disorder. The disorder level
is designated as the main topologic level for each clinical entity
characterized by a set of homogeneous phenotypic abnormalities
and evolution, allowing for a definitive clinical diagnosis
[18,19].

OMIM (Online Mendelian Inheritance in Man) is a
comprehensive, authoritative compendium of human genes and
genetic phenotypes that is freely available and updated daily.
It contains information on all known mendelian disorders and
over 15,000 genes. OMIM focuses on the relationship between
phenotype and genotype [20].

MONDO (Monarch Disease Ontology) aims to harmonize
disease definitions across the world. It is a semi-automatically
constructed ontology that merges multiple disease resources to
yield a coherent merged ontology. One feature of the MONDO
is that it curates precise 1-to-1 equivalence axioms connecting
to other resources, validated by OWL reasoning [7]. MONDO
provides a hierarchical structure that can be used for
classification or for rolling up diseases to higher-level groupings.

The Human Phenotype Ontology (HPO) provides a standardized
vocabulary of phenotypic abnormalities encountered in human
disease. HPO currently contains over 13,000 terms and over
156,000 annotations to hereditary diseases [21].

The Unified Medical Language System (UMLS) is a
terminology integration system developed at the National
Library of Medicine (NLM). The UMLS Metathesaurus
integrates more than 160 biomedical vocabularies. Synonymous
terms from the various source vocabularies are grouped into
one concept [22].

An Integrative Knowledge Graph
We previously developed an integrative knowledge graph with
34 different biomedical data resources at the time of writing,
including the aforementioned resources. This graph database is
hosted in Neo4j and is publicly accessible without login
credentials [17]. In this study, we accessed this knowledge graph
to obtain data from the aforementioned resources and applied
it for the measurement of phenotypical similarity among GARD
diseases.

Methods

In this study, we aimed to identify phenotypical similarity
among rare diseases to support data harmonization and data
interoperability with existing standardized terminologies and
ontologies. We designed two complementary approaches: (1)
analysis of disease mappings to Orphanet, OMIM, and the
UMLS to measure phenotypical similarity among GARD
diseases; (2) prioritizing phenotypical similarity derived from
MONDO and Orphanet disease classification systems with
shared phenotypes from the HPO and genes from OMIM. The
architecture of this study is shown in Figure 1.

Figure 1. The architecture of phenotypically similar GARD disease identification.
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Phenotypical Similarity Identification Based on GARD
Disease Mappings
In order to identify phenotypical similarity, we computed disease
similarity among disease mappings between GARD diseases
and disease concepts from Orphanet, OMIM, and the UMLS,
which offer a wide spectrum of characteristics of rare
diseases—in Orphanet, diseases are defined upon their clinical
presentation; in OMIM, disease definition is based on genetic
etiology; in UMLS, a broader biomedical definition of diseases
is offered.

Disease Mapping Retrieval from the Knowledge Graph
We obtained disease mappings from the aforementioned
knowledge graph. There are 2 ways to retrieve disease mappings
for GARD diseases from the knowledge graph: (1) by
developing mappings based on specific edge properties; for
instance, 2 concepts with the same concept names are mapped
via one edge property of “N_Name”; (2) by extracting mappings
directly from GARD disease nodes, which store GARD-curated
external mappings to Orphanet, OMIM, and the UMLS. To
ensure mapping quality, we performed the second approach by
accessing 1 node property of I_CODE and storing external

mappings for each GARD disease node. For instance, 3 external
mappings, including “OMIM:603358,” “ORPHANET:53693,”
and “UMLS:C1864002” for the GARD disease of “GRACILE
SYNDROME(GARD:0000001),” are stored in its property of
“I_CODE” and can be retrieved by executing the following
Cypher Query 1 [23], which is Neo4j's graph query language
that allows users to store and retrieve data from the graph
database:

Cypher Query 1. match P = (n:S_GARDa) where any (x in
n.I_CODE where x= “GARD:0000001”) return n.I_CODE

aS_GARD referring to GARD data

We executed the Cypher Queries listed in Table 1 to retrieve
disease mappings for GARD diseases. Each GARD disease
obtains zero to multiple mappings accordingly. For instance,
“Gracile Syndrome (GARD:0000001)” has the 3 disease
mappings described above; however, “Acalvaria (
GARD:0000361)” only has 1 mapping, “ORPHANET:945.”
To ensure that each GARD disease was associated with at least
1 mapping for similarity measurement, we excluded 1498
GARD diseases with no mappings to any of these 3 resources.

Table 1. Disease mapping extraction from the Neo4j knowledge graph.

Cypher QueriesDisease mappings

match P = (n:S_GARD) where any (x in n.I_CODE where x=~ ‘ORPHA.*’)return distinct n.I_CODEGARD2Orphanet

match P = (n:S_GARD) where any (x in n.I_CODE where x=~ ‘OMIM.*’)return distinct n.I_CODEGARD2OMIM

match P = (n:S_GARD) where any (x in n.I_CODE where x=~ UMLS.*’)return distinct n.I_CODEGARD2UMLS

Calculating Similarity to Prioritize Phenotypical
Similarity of GARD Disease Pairs
In order to compare phenotypical similarity among the GARD
diseases based on their similarity, we enumerated all mappings
obtained for 5236 GARD diseases and ended with a total of
9672 mappings. For each GARD disease, we generated
fingerprints based on those mappings. One disease mapping
corresponding to one binary fingerprint, with presence denoted
as 1 and absence denoted as 0. To this end, each GARD disease
was represented as a vector of 9672 bits. Then, we calculated
cosine similarity [24] for each pair of GARD diseases based on
their fingerprints. For those disease pairs without any shared
mappings, which means their similarity score equals 0, we
excluded them for manual similarity identification.

Phenotypically Similar GARD Disease Identification
To determine the phenotypical similarity of GARD diseases,
our subject matter experts (GA, KH, and ES) manually evaluated
the prioritized disease pairs based on their similarity scores
generated from the above step. The manual validation was not
only attempting to examine the accuracy of computational
results to establish business rules for further GARD data
harmonization, but also to validate correctness and coverage of
the GARD-curated external mappings.

The manual review process consisted of 3 steps: (1) categorizing
GARD disease pairs to phenotypical similarity types, namely
“Duplicates,” “Subtypes,” “Siblings,” and “Unrelated;” (2)

researching the latest epidemiology studies (eg, PubMed articles,
trusted resources) for each disease if applicable, to re-evaluate
the qualification of RARE disease based on the US definition
of rare disease [1]; (3) documenting the decision-making process
for future reference. As an example demonstrating this review
process, “Testicular Cancer (GARD:0007746)” and “Testicular
germ cell tumor (GARD:0013047),” with a similarity score of
0.71, were initially grouped as subtypes. However, researching
the latest epidemiological data for testicular cancer uncovered
that “in 2017, there were an estimated 269,769 men living with
testicular cancer in the United States” [25]; this indicates that
the prevalence rate of testicular cancer does not meet (ie, is
higher than) the US definition of rare diseases, and so it was
marked to “Retire.”

In this context, we defined precision as the fraction between
the number of correctly identified phenotypically similar disease
pairs based on manual evaluation and the total number of similar
disease pairs identified; we defined recall as the fraction
between the number of correctly identified phenotypically
similar disease pairs and the total number of similar disease
pairs; we defined F measure as the balanced harmonic mean of
the precision and recall. We computed precision, recall, and F
measure to measure the performance of this approach.

Phenotypical Similarity Derivation from Disease
Classification Systems
Diseases from the same disease category exhibit a high
phenotypic homogeneity [26]; we assume that phenotypical
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similarity is evidently presenting among sibling diseases, which
share the same parent diseases in disease classification systems.
To further prove our assumption by assessing 3 disease
classification systems, including GARD, MONDO, and
Orphanet, we developed a web application to search and review
a specific disease term presenting in these 3 disease trees to

perform a comparison. This web application is publicly
accessible [27]. Figure 2 shows one screenshot of the search
results for “Wilson disease.” MONDO and Orphanet have more
refined and complete disease classifications than the GARD,
which enables phenotypical similarity identification for GARD
diseases.

Figure 2. Disease tree visualization via the GARD Data Tree web tool.

Retrieving Phenotypically Similar GARD Diseases
With the help of the GARD Data Tree web tool, we were able
to form a process of deriving phenotypical similarity among
GARD diseases in 3 steps: (1) mapping GARD diseases to
MONDO and Orphanet; (2) extracting all sibling diseases of
the mapped MONDO and Orphanet diseases from their disease
trees; and (3) mapping the retrieved sibling diseases back to the
GARD. The GARD diseases retrieved from the third step should
be phenotypically similar to the query GARD disease from the
first step. We further validated them by leveraging their
associated phenotypes and genotypes.

These 3 steps can be formalized in Cypher Queries accordingly;
examples are shown in Figure 3. After obtaining mappings

between GARD and Orphanet/MONDO by executing Cypher
Query 1 shown in Figure 3, we searched parent diseases of those
mapped MONDO and Orphanet diseases. Cypher Query 2 is
an example of extracting Orphanet parent diseases for the
Orphanet concept “Wilson Disease (ORPHA:905),” which is
mapped to “GARD:0007893” from Cypher Query 1. Cypher
Query 3 demonstrates a process that extracts all child diseases
for 1 Orphanet parent disease, “SUPRANUCLEAR EYE
MOVEMENT DISORDER (ORPHANET:98687),” which is 1
parent node returned from Cypher Query 2, and maps those
child Orphanet diseases to GARD diseases. In order to identify
the most phenotypically similar GARD diseases obtained from
Cypher Query 3 to the inquiry disease “Wilson Disease
(GARD:0007893),” we prioritized similarity based on their
associated phenotypes and genes.
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Figure 3. Cypher query examples for extracting phenotypically similar GARD diseases by navigating Orphanet disease classification systems.

Prioritizing Phenotypically Similar GARD Diseases
Based on Phenotypes and Genotypes
Given the fact that a majority of rare diseases are genetic in
origin and that clinical phenotypes are one of the red flags
increasing rare disease attentiveness in clinical practice [28],
we developed a protocol for prioritizing phenotypical similarity
based on phenotypes and genotypes. We collected phenotypes
from the HPO and genes from OMIM from our knowledge
graph, for those similar GARD disease pairs identified from the

above step. The number of phenotypes and genes shared by
each pair of phenotypically similar GARD diseases was applied
for prioritization.
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Results

Results of Disease Mapping Analysis

Disease Concept Retrieval
We extracted disease mappings between GARD and Orphanet,
OMIM, and the UMLS from our Neo4j knowledge graph. The
retrieval results are shown in Table 2.

Table 2. Results of disease mapping retrieval from Neo4j graph.

Number of mappingsTypes of mapping

2,869GARD2Orphanet

3,500GARD2OMIM

3,584GARD2UMLS

Disease Similarity Calculation
We enumerated disease pairs for 5236 GARD diseases with
disease mappings and calculated cosine similarity for those

GARD pairs. After excluding those disease pairs with similarity
equaling 0, 392 diseases pairs remained. Table 3 summarizes
the results of the similarity calculation.

Table 3. Similarity calculation results for disease pairs (n=392).

Number of disease pairsSimilarity scores

341

2640.5 <= Similarity < 1

940 < Similarity < 0.5

Evaluation and Disease Similarity Identification
Our subject matter experts manually reviewed these 392 disease
pairs and assigned their similarity types accordingly. Table 4
shows their review results.

Of the 392 disease pairs, 341 (87%) were identified and
categorized as phenotypically similar, corresponding to the

categories “Duplicated,” “Siblings,” and “Subtypes.” Of those
341 disease pairs, 271 disease pairs (80%) with similarity scores
greater than 0.5 were verified as phenotypically similar.
However, 34 disease pairs were determined to be “Unrelated,”
and another 17 disease pairs were “Ungrouped;” this needs
further discussion, and so we excluded the latter group for
calculations of precision, recall, and F measure.

Table 4. Manual review results for the disease pairs (n=392); precision=94%, recall=79%, F measure=86%.

Phenotypical similarity typesVariables

UngroupedUnrelatedSubtypesSiblingsDuplicated

Number of disease pairs, n

N/AN/Aa119117105Phenotypically similar (n=341)

1734N/AN/AN/ANot phenotypically similar (n=51)

Similarity scores, n

Phenotypically similar (n=341)

N/AN/A2721470.7≥Score≥1 (n=95)

N/AN/A5381420.5≥Score≥0.7 (n=176)

N/AN/A391516Score>0.5 (n=70)

Not phenotypically similar (n=51)

88N/AN/AN/A0.7≥Score≥1 (n=16)

78N/AN/AN/A0.5≥Score≥0.7 (n=15)

218N/AN/AN/AScore>0.5 (n=20)

aN/A: not applicable.
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Results of Phenotypical Similarity Derivation from
Disease Classification Systems
Based on the above analysis, 53 GARD diseases were marked
for retirement. Of the remaining of 5955 GARD diseases, 4798
GARD diseases obtained 1 or more phenotypically similar
GARD disease(s) from this step. The stepwise results are shown
in Figure 4.

Of 5286 GARD diseases mapped to one of 21,823 MONDO
diseases with parent diseases, 4549 GARD diseases obtained

phenotypically similar GARD diseases via MONDO sibling
disease mappings. Of 2631 GARD diseases mapped to one of
7024 Orphanet diseases with parent diseases, 2459 GARD
diseases obtained phenotypically similar GARD diseases via
Orphanet sibling disease mappings. By combining these 2 lists
of mappings, 4798 GARD diseases obtained phenotypically
similar diseases. We paired these 4798 GARD diseases with
identified phenotypically similar diseases and ended with unique
241,604 GARD disease pairs.

Figure 4. Results of phenotypically similar GARD disease retrieval based on MONDO and Orphanet disease classifications.

Phenotypically Similar Disease Prioritization Based on
Phenotypes and Genotypes
Of the 241,604 disease pairs identified for these 4798 GARD
diseases, 84,054 disease pairs shared at least 1 phenotype and
396 disease pairs shared at least 1 gene. By combing these 2
sets, there are 360 GARD disease pairs with at least 1 shared
phenotype and gene. As all of those disease pairs were extracted
from sibling diseases presenting in the MONDO and Orphanet,
these 360 disease pairs were consequently grouped as “Siblings”
with different degrees of phenotypical similarity based on the
number of their shared phenotypes and genes.

By combining 341 disease pairs identified from the step of
disease mapping analysis, 662 disease pairs showed
phenotypical similarity. It is worth noting that there are 39
overlaps between these 2 sets. Based on the manual evaluation
shown in Table 4, these 39 pairs consist of 25 disease pairs that
are sibling diseases, 7 disease pairs that are subtypes, 2 pairs
that are duplicates, and 5 pairs that are unrelated diseases.

Discussion

In this study, we identified and prioritized phenotypical
similarity among GARD diseases by comparing disease
similarity and deriving phenotypical similarity from disease
classification systems. As a proof-of-concept, we demonstrated
the usefulness of the identified phenotypically similar disease

pairs to support data harmonization for GARD. By incorporating
these identified similar diseases, GARD will have the capability
of supporting education and clinical decision making; for
instance, GARD can provide more complementary information
not only for the inquiry disease but also for phenotypically
similar diseases.

There are many different rare disease resources available, and
each of them has their own strength and focus. OMIM classifies
diseases based on their genetic cause, Orphanet defines rare
diseases based on phenotypical characteristics, and UMLS
incorporates biomedical vocabulary and standards to define
their disease concepts. Given the complementary definition of
disease concepts from these 3 resources, we employed their
mappings to the GARD diseases for disease similarity
comparison. Of the 392 disease pairs, 271 disease pairs (80%)
with similarity scores greater than 0.5 were successfully
validated as clinically relevant by our genetic specialists. Besides
these true positives, feedback from our subject matter experts
on the false positives [ie, 16 disease pairs (~4%) with similarity
scores greater than 0.5 were manually determined as irrelevant]
and false negatives [ie, 70 disease pairs (~18%) with similarity
scores less than 0.5 were manually determined as relevant]
illustrates that it is important to accurately capture the latest
information in regard to disease mappings across different
resources, and to incorporate human interpretations. For
example, “Spondylothoracic dysostosis (GARD:0006798)” and
“Spondylocostal dysostosis 1 (GARD:0010726)” share 3 of the
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same mappings, “ORPHA:2311,” “UMLS:C0265343,” and
“OMIM:277300,” so their similarity score equals 1.0, indicating
that they should be highly similar. However, our experts marked
them as “Unrelated” due to the fact that these 2 conditions were
grouped together in the past (both were previously referred to
as Jarcho-Levin syndrome); they are considered as distinct
conditions now, according to references from GHR (Genetic
Home Reference) [29,30]. Berdon et al [31] also discussed the
clinical and radiological distinction between these 2 diseases.
Another example is “Hunter Carpenter Macdonald syndrome
(GARD:0002751)” and “Infantile neuroaxonal dystrophy
(GARD:0003957),” which have a similarity score of 0.35,
indicated they should be less relevant. However, it was marked
as relevant by our experts given that PLA2G6-associated
neurodegeneration (PLAN) comprises a continuum of 3
phenotypes with overlapping clinical and radiologic features
for these 2 diseases, and similar evidence can be found at
Orphanet [32] that reveals that Hunter-Carpenter-McDonald
syndrome has been moved to “Infantile neuroaxonal dystrophy.”
In comparison of the total 13,705,230 GARD disease pairs,
there are only 392 disease pairs with similarity scores greater
than 0, which might direct the extension in 2 ways. First, 3
selected resources might not be comprehensive enough to cover
all GARD diseases for disease similarity comparison based on
their disease mappings. Therefore, we plan to extend our work
with additional rare disease resources, such as MONDO, Disease
Ontology, NCI Thesaurus, etc. Second, external disease
mappings curated by GARD are accurate but might be
incomplete due to cumbersome human effort. Thus, we will
extend the disease mappings by inferring new associations via
network analysis from the Neo4j knowledge graph.

Phenotypical similarity derivation from disease classifications
resulted in 360 disease pairs shared with at least 1 phenotype
and gene, and they are grouped as sibling diseases. Among
241,604 disease pairs retrieved from the disease classification
trees, there are 84,054 disease pairs that share at least 1
phenotype and 396 disease pairs that share at least 1 gene.
Compared to the number of disease pairs with shared
phenotypes, a relatively small number of disease pairs shared
at least 1 gene; we are planning to obtain more genes for GARD
diseases from other resources, including DisGeNet [33] and
ClinVar [34]. Given the success we gained from this study in
identifying phenotypical similarity derived from sibling diseases
from disease classifications, we propose to extend this work
with subtype diseases (ie, parent diseases and child diseases)
by mining disease classifications. Once we have GARD diseases
that we are able to assign to those relevant categories, we will
develop our own disease classification system, which will not
only define more accurate disease definitions and relationships
among those diseases but will also serve as a unique, rare disease
resource in the United States.

By combining 2 sets generated by our 2 approaches, we
identified 662 phenotypically similar disease pairs and mapped
them to 4 phenotypical similarity types, namely, “Duplicates,”
“Subtypes,” “Siblings,” and “Unrelated,” which will be applied
to direct GARD data harmonization. To be specific, for
“Duplicate” disease pairs, we will select and keep primary
diseases in the GARD database; “Siblings” and “Subtypes” will
direct GARD disease classification regeneration; for “Unrelated”
diseases, we will keep these 2 diseases separately in the GARD
database.

By comparing these 2 sets, there are 39 overlapped disease pairs.
These 39 disease pairs were grouped as “Siblings” by the second
approach of disease classification derivation. However, based
on the evaluation result (Table 4) from the first approach of
disease mapping analysis, of these 39 disease pairs, 25 disease
pairs were grouped as “Siblings,” 7 pairs were grouped as
“Subtypes,” 2 pairs were grouped as “Duplicated,” and 5 pairs
were grouped as “Unrelated.” For instance, “Malignant
hyperthermia” and “King Denborough syndrome” are classified
as sibling diseases by the second approach, since they are
siblings in Orphanet, which groups them under the same disease
parent class of “Rare Disease With Malignant Hyperthermia
(ORPHA:466658).” However, they are determined as different
diseases by our subject-matter experts, and the same statement
has been made in the GARD page for “King-Denborough
syndrome (GARD:0008433),” claiming that “King-Denborough
syndrome is a congenital myopathy associated with
susceptibility to malignant hyperthermia (GARD:0006964)”
[35]. Such discrepancies occurring across different resources
unveiled from this study illustrate that there is an urgent need
to propose a standard protocol for guiding data harmonization
in the rare disease field globally. Regardless of phenotypical
similarity types, the process our subject-matter experts took in
the evaluation step is crucial to re-evaluate rare diseases with
the latest prevalence data, which is one critical step to determine
their eligibility of RARE. For instance, there are more than
200,000 individuals in the United States who are affected with
familial Alzheimer disease (GARD:0000632) [36,37]; thus, the
prevalence rate of this disease does not meet the criteria of the
United States’ rare disease definition, so it will be retired from
the GARD database.

Conclusion
In this paper, we report our recent effort at identifying
phenotypical similarity among rare diseases by leveraging
disease mappings among various resources and disease
classifications. This effort will not only direct further GARD
data harmonization but will also highlight the value of
cross-resource collaboration. We propose to extend this work
with more rare disease resources at the NIH or outside the NIH
for the improved assembly of information for rare diseases in
order to better disseminate information to patients and health
care providers.
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